用户名: 密码: 验证码:
电子捕获剂协同载贵金属TiO_2光催化降解典型制药污染物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对近年来制药废水带来的环境问题日益严重的情况,结合越来越受到关注的TiO_2光催化法,本文制备了系列载贵金属催化剂,并系统地研究了添加不同电子捕获剂(H_2O_2,KBrO_3,K_2S_2O_8)协同载贵金属TiO_2光催化降解典型制药废水污染物(苯酚,吡啶,硝基苯,β-lactam类抗生素阿莫西林)相关活性及影响因素,得到了一系列富有意义的结果。研究内容主要包括:
     第一,通过光沉积法成功的将不同贵金属负载在锐钛矿相TiO_2(M/TiO_2)上,并对各种催化剂进行了性能表征。其中,通过紫外可见分光光度计地检测,结果表明:在紫外光区域,M/TiO_2与TiO_2对光的吸收差别不大,各催化剂对可见光地吸收强弱顺序为: Au/TiO_2 > Ru/TiO_2 > Ag/TiO_2 > Pt/TiO_2 > Ir/TiO_2 > Pd/TiO_2 > Rh/TiO_2 > TiO_2;通过BET地检测,结果表明,负载各种贵金属对TiO_2的比表面积并未产生明显的影响,这主要是由于贵金属的负载量很少而且分布均匀;通过电子扫描电镜地检测及能谱地分析,结果表明:用光沉积法能够将贵金属均匀分散的负载在TiO_2表面,能很好的抑制团聚作用,得到分散度很好的催化剂。
     第二,开展了电子捕获剂协同载贵金属TiO_2光催化降解苯酚的实验研究,结果表明:H_2O_2最利于协同TiO_2光催化去除苯酚;H_2O_2协同M/TiO_2光催化降解苯酚的活性顺序为: Ag/TiO_2 > Ir/TiO_2 > Pd/TiO_2 > Rh/TiO_2 > Pt/TiO_2 > Ru/TiO_2 > Au/TiO_2;在最优条件下( Ag/TiO_2载Ag量0.5%,催化剂浓度0.10g/L,H_2O_2投加量50mM,pH值为5),3小时光催化降解率达到57%,比TiO_2的降解率提高了35%。
     第三,开展了电子捕获剂协同载贵金属TiO_2光催化降解吡啶的实验研究,结果表明:KBrO_3最利于协同TiO_2光催化去除吡啶;KBrO_3协同M/TiO_2光催化降解吡啶的活性顺序为: Ag/TiO_2 > Au/TiO_2 > Pd/TiO_2 > Pt/TiO_2≈TiO_2 > Ir/TiO_2 > Rh/TiO_2≈Ru/TiO_2;在最优条件下(Ag/TiO_2载Ag量0.5%,催化剂浓度0.10g/L,KBrO_3投加量10mM,pH值为9),3小时光催化降解率达到62%,比TiO_2的降解率提高23%。
     第四,开展了电子捕获剂协同载贵金属TiO_2光催化降解硝基苯的实验研究,结果表明:KBrO_3最利于协同TiO_2光催化去除硝基苯;KBrO_3协同M/TiO_2光催化降解苯酚的活性顺序为: Au/TiO_2 > Ag/TiO_2≈TiO_2 > Ir/TiO_2 > Ru/TiO_2 > Pd/TiO_2 > Pt/TiO_2 > Rh/TiO_2;在最优条件下(Au/TiO_2载Au量0.1%,催化剂浓度0.10g/L,KBrO_3投加量5mM,pH值为3),6小时光催化降解率达到95%,比TiO_2的降解率提高17%。
     第五,开展了电子捕获剂协同载贵金属TiO_2光催化降解β-lactam类抗生素阿莫西林的实验研究,结果表明:KBrO_3最利于协同TiO_2光催化降解阿莫西林;KBrO_3协同M/TiO_2光催化降解阿莫西林的活性顺序为: Rh/TiO_2 > Pd/TiO_2 > Ag/TiO_2 > Au/TiO_2≈Ir/TiO_2 > TiO_2 > Pt/TiO_2 > Ru/TiO_2;在最优条件下( Rh/TiO_2载Rh量0.1%,催化剂浓度0.15g/L,KBrO_3投加量0.5mM,pH值为5),2小时光催化降解率达到100%,比TiO_2的降解率提高80%。
     第六,开展了UV+TiO_2、捕获剂+UV+TiO_2、贵金属/TiO_2+UV+捕获剂三种催化体系对四种污染物光催化降解动力学的研究,分析结果表明三种催化体系都比较符合一级反应动力学模型,遵循一级反应动力学规律,相关系数都比较高,而且反应速率常数K逐步增大,说明添加电子捕获剂并负载贵金属的确能有效提高光催化反应的速率。
In recent years, environmental problems caused by medical waste are more and more serious, combined with the strong oxidizing ability of the TiO_2 photocatalytic method, we have system studied of adding different electron capture agents (H_2O_2, KBrO_3, K_2S_2O_8) Collaborative TiO_2 loaded with precious metals photocatalytic degradation of typical medical waste water pollutants contained phenol, pyridine, nitrobenzene,β-lactam antibiotic amoxicillin.
     We loaded the precious metal on the surface of anatase TiO_2 using light deposition method, and then characterized by a variety of means to characterize their properties. UV-vis diffuse reflectance spectra showed that: in the UV region, the light absorbed by TiO_2 or M/TiO_2 is not very different, in the visible region, the absorption from strong to weak as: Au/TiO_2 > Ru/TiO_2 > Ag/TiO_2 > Pt/TiO_2 > Ir/TiO_2 > Pd/TiO_2 > Rh/TiO_2 > TiO_2; BET analysis showed that: loading all kinds of precious metals did not produce significant effects on the specific surface area of TiO_2, for the load of precious metals rarely and well distribution;Scanning electron microscopy and EDS analysis showed that: the precious metal can be extremely dispersed on the surface of TiO_2 by the light deposition method and inhibit the agglomeration of the nanosized precious metal to get a good dispersion and uniform distribution.
     We have studied the photocatalytic degradation of typical medical waste water pollutants phenol by adding electron capture agents collaborative TiO_2 loaded with precious metals. The results showed that the most favorable electron capture agents was H_2O_2; when the different precious metals loading on TiO_2 and H_2O_2 was added, the activity order of phenol removal was: Ag/TiO_2 > Ir/TiO_2 > Pd/TiO_2 > Rh/TiO_2 > Pt/TiO_2 > Ru/TiO_2 > Au/TiO_2. The favorable loading amount of the best precious metal Ag was 0.5%; the optimal dosage of catalyst was 0.02g; the best dosage of H_2O_2 was 50mM;the optimal pH was 5. Under these optimal conditions, the photocatalytic degradation rate reachs 57% in 3 hours, increased by 35% compared with the degradation rate of TiO_2 + UV system.
     We have studied the photocatalytic degradation of typical medical waste water pollutants pyridine by adding electron capture agents collaborative TiO_2 loaded with precious metals. The results showed that the most favorable electron capture agents was KBrO_3; when the different precious metals loading on TiO_2 and KBrO_3 was added, the activity order of pyridine removal was: Ag/TiO_2 > Au/TiO_2 > Pd/TiO_2 > Pt/TiO_2 TiO_2 > Ir/TiO_2 > Rh/TiO_2 Ru/TiO_2. The favorable loading amount of the best precious metal Ag was 0.5%; the optimal dosage of catalyst was 0.02g; the best dosage of KBrO_3 was 10mM;the optimal pH was 9. Under these optimal conditions, the photocatalytic degradation rate reachs 62% in 3 hours, increased by 23% compared with the degradation rate of TiO_2 + UV system.
     We have studied the photocatalytic degradation of typical medical waste water pollutants nitrobenzene by adding electron capture agents collaborative TiO_2 loaded with precious metals. The results showed that the most favorable electron capture agents was KBrO_3; when the different precious metals loading on TiO_2 and KBrO_3 was added, the activity order of nitrobenzene removal was:Au/TiO_2 > Ag/TiO_2≈TiO_2 > Ir/TiO_2 > Ru/TiO_2 > Pd/TiO_2 > Pt/TiO_2 > Rh/TiO_2. The favorable loading amount of the best precious metal Au was 0.1%; the optimal dosage of catalyst was 0.02g; the best dosage of KBrO_3 was 5mM;the optimal pH was 3. Under these optimal conditions, the photocatalytic degradation rate reachs 95% in 6 hours, increased by 17% compared with the degradation rate of TiO_2 + UV system.
     We have studied the photocatalytic degradation of typical medical waste water pollutantsβ-lactam antibiotics amoxicillin by adding electron capture agents collaborative TiO_2 loaded with precious metals. The results showed that the most favorable electron capture agents was KBrO_3; when the different precious metals loading on TiO_2 and KBrO_3 was added, the activity order of amoxicillin removal was: Rh/TiO_2 > Pd/TiO_2 > Ag/TiO_2 > Au/TiO_2 Ir/TiO_2 > TiO_2 > Pt/TiO_2 > Ru/TiO_2. The favorable loading amount of the best precious metal Rh was 0.1%; the optimal dosage of catalyst was 0.03g; the best dosage of KBrO_3 was 0.5mM;the optimal pH was 5. Under these optimal conditions,the photocatalytic degradation rate reachs 100% in 2 hours, increased by 80% compared with the degradation rate of TiO_2 + UV system.
     Finaly, for each pollutant were carried out three different comparative experiments of photocatalytic degradation: "without electron scavenger, TiO_2 withnot precious metals "; "with electron capture agent, TiO_2 withnot precious metals "; "with electron capture agent, TiO_2 loaded with precious metals ". The results show that for phenol, loading properly amount of Ag on TiO_2 and adding right amount of H_2O_2 can significantly increase the degradation rate of TOC contaminants; while for the other three pollutants, adding TiO_2 electron capture agent and load on precious metals does not increase TOC degradation rate, but it also can promote the pollutants to the transformation of small molecule intermediates. Kinetic analysis showed that three kinds of catalyst systems are consistent with the first order kinetic model, following the first order reaction rule, and the reaction rate constant K gradually increase, that add an electron capture agent and load the precious metals indeed effectively improve the photocatalytic reaction rate.
引文
[1]郑志军,王奎涛,张炳烛,等.“二氧化氯催化氧化处理工业有机废水的发展[J].无机盐工业,2008,40(9):11-12.
    [2]郑志军,王奎涛,高金龙,等.“印染废水的二氧化氯-活性炭组合脱色”[J].印染,2008,34(16):33-34.
    [3]王亚明.“有机废水催化氧化处理的研究进展”[J].化工环保1999,19(3):145-147.
    [4]钟理,张浩.“催化氧化法降解废水的过程”[J].现代化工,1999,19(5): 16-19.
    [5]贺鹏,陈英.“非均相催化氧化过程降解废水的技术进展”[J].化工进展,1999,12(5):26-34.
    [6]林仁漳,陈玉成,魏世强.“高浓度难降解有机废水的催化氧化技术”[J].环境污染治理技术与设备,2002,3(5):49-53.
    [7] Ana L, Wevar O, Elizabeth A, et al., Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairy roots increases phytoremediation of phenol, Plant Science, 2005, 169: 1102~1111
    [8] Hiroaki Tada, Tetsuji Ishida,Ayako Takao,Seishiro Ito,Sudip Mukhopadhyay, Tomoki Akita,Koji Tanaka,Hisayoshi Kobayashi.“Kinetic and DFT Studies on the Ag/TiO_2-Photocatalyzed Selective Reduction of Nitrobenzene to Aniline”. ChemPhysChem 2005, 6, 1537– 1543 .
    [9] Hiroaki Tada,Tetsuji Ishida, Ayako Takao, Seishiro Ito.“Drastic Enhancement of TiO_2-Photocatalyzed Reduction of Nitrobenzene by Loading Ag Clusters”. Langmuir 2004, 20, 7898-7900
    [10] Rajesh J. Tayade, Praveen K. Surolia, Manoj A. Lazar, and Raksh V. Jasra.“Enhanced Photocatalytic Activity by Silver Metal Ion Exchanged NaY Zeolite Photocatalysts for the Degradation of Organic Contaminants and Dyes in Aqueous Medium”. Ind. Eng. Chem. Res. 2008, 47, 7545–7551.
    [11]刘瑞仙,于文彬。“制药废水处理方法研究综述”.生态与环境.
    [12]黄亮.“光催化氧化技术处理制药废水研究进展”.工业水处理Vol. 29 No. 8Aug., 2009.
    [13] Praveen K. Surolia, Rajesh J. Tayade, and Raksh V. Jasra.“Photocatalytic Degradation of Nitrobenzene in an Aqueous System by Transition-Metal-Exchanged ETS-10 Zeolites”. Ind. Eng. Chem.Res. 2010, 49, 3961–3966.
    [14] Rajesh J. Tayade,Ramchandra G. Kulkarni,and Raksh. V. Jasra.“Transition Metal Ion Impregnated Mesoporous TiO_2 for Photocatalytic Degradation of Organic Contaminants in Water”. Ind. Eng. Chem. Res. 2006, 45, 5231-5238.
    [15]黄亮.“光催化氧化技术处理制药废水研究进展”.工业水处理Vol. 29 No. 8Aug., 2009.
    [16] M. Maicu, M.C. Hidalgo, G. Colon, J.A. Navio. Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO_2 for the photocatalytic decomposition of phenol. Journal of Photochemistry and Photobiology A: Chemistry 217 (2011) 275–283.
    [17] Bo Sun, Alexandre V. Vorontsov, and Panagiotis G. Smirniotis. Role of Platinum Deposited on TiO_2 in Phenol Photocatalytic Oxidation. Langmuir 2003, 19, 3151-3156.
    [18] Anna Dobosz and Andrzej Sobczyn? ski. Water Detoxification: Photocatalytic Decomposition of Phenol on Au/TiO_2. Monatshefte fur Chemie 132, 1037±1045 (2001).
    [19] Catherlne Malllard-Dupuy, Chantal Gulllard, Henrl Courbon, and Pierre Plchat.“Kinetics and Products of the TiO_2 Photocatalytic Degradation of Pyridine in Water”. Environ. Sci. Technol. 1004, 28, 2176-2183.
    [20] Hong Zhao,Suohong Xu,Junbo Zhong,Xinhe Bao.“Kinetic study on the photo-catalytic degradation of pyridine in TiO_2 suspension systems”. Catalysis Today 93–95 (2004) 857–861.
    [21] Alexander G. Agrios, Pierre Pichat.“Recombination rate of photogenerated charges versus surface area: Opposing effects of TiO_2 sintering temperature on photocatalytic removal of phenol, anisole, and pyridine in water”. Journal of Photochemistry and Photobiology A: Chemistry 180 (2006) 130–135.
    [22] Patrik Kopf, Ernst Gilbert, Siegfried H. Eberle.“TiO_2 photocatalytic oxidation of monochloroacetic acid and pyridine: influence of ozone”. Journal of Photochemistry and Photobiology A: Chemistry 136 (2000) 163–168.
    [23] Rosana M. Alberici, Maria C. Canela, Marcos N. Eberlin, Wilson F. Jardim.“Catalyst deactivation in the gas phase destruction of nitrogen-containing organic compounds using TiO_2/UV–VIS”. Applied Catalysis B: Environmental 30 (2001) 389–397.
    [24] Xinchen Wang, Jimmy C. Yu, Ping Liu a, Xuxu Wang, Wenyue Su, Xianzhi Fu.“Probing of photocatalytic surface sites on SO42?/TiO_2solid acids by in situ FT-IR spectroscopy and pyridine adsorption”. Journal of Photochemistry and Photobiology A: Chemistry 179 (2006) 339–347.
    [25] GAN Lihua, WANG Yudong, HAO Zhixian, XU Zijie, CHEN Longwu.“Preparation of TiO_2/ SiO2 Aerogels by Non-supercritical Drying Method and Their Degradation of Pyridine”. Chinese J.Chem.Eng.,13(6)758—763(2005).
    [26] Hiroaki Tada, Tetsuji Ishida,Ayako Takao,Seishiro Ito,Sudip Mukhopadhyay, Tomoki Akita,Koji Tanaka,Hisayoshi Kobayashi.“Kinetic and DFT Studies on the Ag/TiO_2-Photocatalyzed Selective Reduction of Nitrobenzene to Aniline”. ChemPhysChem 2005, 6, 1537– 1543 .
    [27] Hiroaki Tada,Tetsuji Ishida, Ayako Takao, Seishiro Ito.“Drastic Enhancement of TiO_2-Photocatalyzed Reduction of Nitrobenzene by Loading Ag Clusters”. Langmuir 2004, 20, 7898-7900.
    [28] Rajesh J. Tayade, Praveen K. Surolia, Manoj A. Lazar, and Raksh V. Jasra.“Enhanced Photocatalytic Activity by Silver Metal Ion Exchanged NaY Zeolite Photocatalysts for the Degradation of Organic Contaminants and Dyes in Aqueous Medium”. Ind. Eng. Chem. Res. 2008, 47, 7545–7551.
    [29] Praveen K. Surolia, Rajesh J. Tayade, and Raksh V. Jasra.“Photocatalytic Degradation of Nitrobenzene in an Aqueous System by Transition-Metal-Exchanged ETS-10 Zeolites”. Ind. Eng. Chem. Res. 2010, 49, 3961–3966.
    [30] Rajesh J. Tayade,Ramchandra G. Kulkarni,and Raksh. V. Jasra.“Transition Metal Ion Impregnated Mesoporous TiO_2 for Photocatalytic Degradation of Organic Contaminants in Water”. Ind. Eng. Chem. Res. 2006, 45, 5231-5238.
    [31] Sayoko Shironita,Tomoya Takasaki,Takashi Kamegawa,Kohsuke Mori,Hiromi Yamashita.“Synthesis of Nano-Sized Platinum Metal Particles on Ti-Containing Mesoporous Silica Using Microwave-Assisted Deposition Method”. Top Catal (2010) 53:218–223,DOI 10.1007/s11244-009-9414-y.
    [32] R.M. Mohamed.“Characterization and catalytic properties of nano-sized Pt metal catalyst on TiO_2-SiO2 synthesized by photo-assisted deposition and impregnation methods”. Journal of materials processing technology 209 ( 2009 ) 577–583.
    [33] Fernando Cárdenas-Lizana, Santiago Gómez-Quero, Hicham Idriss, Mark A.Keane.“Gold particle size effects in the gas-phasehydrogenation of m-dinitrobenzene over Au/TiO_2”. Journal of Catalysis 268 (2009) 223–234.
    [34] Tomokazu Kiyonaga,Masashi Fujii,Tomoki Akita,Hisayoshi Kobayashic,Hiroaki Tada.“Size-dependence of Fermi energy of gold nanoparticles loaded on titanium(IV) dioxide at photostationary state”. Phys. Chem. Chem. Phys., 2008, 10, 6553–6561.
    [35] Pedro Serna, Patricia Concepción, Avelino Corma.“Design of highly active and chemoselective bimetallic gold–platinum hydrogenation catalysts through kinetic and isotopic studies”. Journal of Catalysis 265 (2009) 19–25.
    [36] Xiang-Zhong Shen,Zhi-Cheng Liu, Shan-Mei Xie, Jun Guo.“Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination”. Journal of Hazardous Materials 162 (2009) 1193–1198.
    [37]胡学斌,徐璇,吉芳英,范子红.“疏水性光催化剂的制备及其催化动力学”.无机材料学报:1000-324X(2009)06-1115-06.
    [38] Paola Piccinini, Claudio Minero, Marco Vincenti, Ezio Pelizzetti.“Photocatalytic mineralization of nitrogen-containing benzene derivatives”. Catalysis Today 39 (1997) 187-195.
    [39] Giovanni Palmisano, Vittorio Loddo,Vincenzo Augugliaro,and Leonardo Palmisano.“Photocatalytic Oxidation of Nitrobenzene and Phenylamine: Pathways and Kinetics”. AIChE Journal DOI 10.1002/aic.11137.
    [40] Dhananjay S. Bhatkhande ,Vishwas G. Pangarkar , Anthony A.C.M. Beenackers.“Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: chemical effects and scaleup”. Water Research 37 (2003) 1223–1230.
    [41] D. Klauson, J. Babkina, K. Stepanova, M. Krichevskaya, S. Preis.“Aqueous photocatalytic oxidation of amoxicillin”. Catalysis Today 151 (2010) 39–45.
    [42] Emad S.Elmolla ,Malay Chaudhuri.“Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution”. Desalination 256 (2010) 43–47.
    [43] Emad S.Elmolla ,Malay Chaudhuri.“Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO_2 and UV/H_2O_2/TiO_2 photocatalysis”. Desalination 252 (2010) 46–52.
    [44] L. Rizzo, S. Meric, M. Guida, D. Kassinos, V. Belgiorno.“Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals”. Water research 43(2009)4070–4078.
    [45] Ayrton F. Martins,Francieli Mayer,Eliza C. Confortin,Carla da S. Frank.“A Study of Photocatalytic Processes Involving the Degradation of the Organic Load and Amoxicillin in Hospital Wastewater”. Clean 2009, 37 (4–5), 365– 371.
    [46]范山湖,沈勇,陈六平,古喜兰,李玉光,石宗炳.“TiO_2固定床光催化氧化头孢拉啶”.催化学报0253-9837(2002)02-0109-04.
    [47] B. Czech. Effect of H_2O_2 Addition on Phenol Removal from Wastewater Using TiO_2/Al2O3 as Photocatalyst. Polish J. of Environ. Stud. Vol. 18, No. 6 (2009), 989-993.
    [48] Jin-Chung Sin, Sze-Mun Lam, and Abdul Rahman Mohamed. Optimizing photocatalytic degradation of phenol by TiO_2/GAC using response surface methodology. Korean J. Chem. Eng., 28(1), 84-92 (2011).
    [49] M. Ugurlu, M.H. Karaoglu. TiO_2 supported on sepiolite: Preparation, structural and thermal characterization and catalytic behaviour in photocatalytic treatment of phenol and lignin from olive mill wastewater. Chemical Engineering Journal 166 (2011) 859-867.
    [50] P.Nalini Vijaya Laxmi, P. Saritha, N. Rambabu, V. Himabindu, Y. Anjaneyulu. Sonochemical degradation of 2chloro-5methyl phenol assisted by TiO_2 and H_2O_2. Journal of Hazardous Materials 174 (2010) 151-155.
    [51] Cláudia Gomes Silva, Joaquim Luís Faria. Effect of key operational parameters on the photocatalytic oxidation of phenol by nanocrystalline sol-gel TiO_2 under UV irradiation. Journal of Molecular Catalysis A: Chemical 305 (2009) 147–154.
    [52] Roberto Scotti, Massimiliano D’Arienzo, Franca Morazzoni, Ignazio Renato Bellobono. Immobilization of hydrothermally produced TiO_2 with different phase composition for photocatalytic degradation of phenol. Applied Catalysis B: Environmental 88 (2009) 323-330.
    [53] Chwei-Huann Chiou, Cheng-Ying Wu, Ruey-Shin Juang. Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO_2 process. Chemical Engineering Journal 139 (2008) 322-329.
    [54] Garun Tanarungsun, Worapon Kiatkittipong, Piyasan Praserthdam, Hiroshi Yamada,Tomohiko Tagawa, Suttichai Assabumrungrat.Hydroxylation of benzene to phenol on Fe/TiO_2 catalysts loaded with different types of second metal. Catalysis Communications 9 (2008) 1886-1890.
    [55] Minoo Tasbihi, Che Rohaida Ngah, Norashid Aziz, Anis Mansor, Ahmad Zuhairi Abdullah,Lee Keat Teong, and Abdul Rahman Mohamed. Lifetime and Regeneration Studies of Various Supported TiO_2 Photocatalysts for the Degradation of Phenol under UV-C Light in a Batch Reactor. Ind. Eng. Chem. Res. 2007, 46, 9006-9014.
    [56] Beata Tryba, Antoni W. Morawski, Michio Inagaki, Masahiro Toyoda. Effect of the carbon coating in Fe-C-TiO_2 photocatalyst on phenol decomposition under UV irradiation via photo-Fenton process. Chemosphere 64 (2006) 1225-1232.
    [57] B. Tryba, M. Toyoda, A.W. Morawski, M. Inagaki. Modification of carbon-coated TiO_2 by iron to increase adsorptivity and photoactivity for phenol. Chemosphere 60 (2005) 477-484.
    [58] Hyunwoong Park,Wonyong Choi. Photocatalytic conversion of benzene to phenol using modified TiO_2 and polyoxometalates. Catalysis Today 101 (2005) 291-297.
    [59] Istva?n Ilisz, Zsuzsanna La?szlo?, Andra?s Dombi. Investigation of the photodecomposition of phenol in near-UVirradiated aqueous TiO_2 suspensions. I: Effect of charge-trapping species on the degradation kinetics. Applied Catalysis A: General 180 (1999) 25±33.
    [60] N. Sobana, K. Selvam, M. Swaminathan. Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO_2. Separation and Purification Technology 62 (2008) 648-653.
    [61] S. Qourzal , N. Barka, M. Tamimi, A. Assabbane, Y. Ait-Ichou. Photodegradation of 2-naphthol in water by artificial light illumination using TiO_2 photocatalyst: Identification of intermediates and the reaction pathway. Applied Catalysis A: General 334 (2008) 386–393.
    [62] M.M. Haque, M. Muneer. TiO_2-mediated photocatalytic degradation of a textile dye derivative, bromothymol blue, in aqueous suspensions. Dyes and Pigments 75(2007) 443-448.
    [63] Chen Shifu, Liu Yunzhang. Study on the photocatalytic degradation of glyphosate by TiO_2 photocatalyst. Chemosphere 67 (2007) 1010-1017.
    [64] M. Muruganandham,M.Swaminathan. TiO_2–UV photocatalyticoxidation of Reactive Yellow 14:Effect of operational parameters. Journal of Hazardous Materials B135 (2006) 78–86.
    [65] M. Muruganandham, M. Swaminathan. Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO_2-UV process. Dyes and Pigments 68 (2006) 133-142.
    [66] A.K. Gupta, Anjali Pal, C. Sahoo. Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO_2. Dyes and Pigments 69 (2006) 224-232.
    [67] Nevim San, Arzu Hatipoglu, Gülin Ko?türk, Zekiye ??nar. Prediction of primary intermediates and the photodegradation kinetics of 3-aminophenol in aqueous TiO_2 suspensions. Journal of Photochemistry and Photobiology A: Chemistry 139 (2001) 225–232.
    [68] M. Saquib, M. Muneer. TiO_2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions. Dyes and Pigments 56 (2003) 37-49.
    [69] L. Ravichandran, K. Selvam, B. Krishnakumar, M. Swaminathan. Photovalorisation of pentafluorobenzoic acid with platinum doped TiO_2. Journal of Hazardous Materials 167 (2009) 763-769.
    [70] R.Dalven.Physics of Metal-Semiconducter and Metal-Insulator-Semicon doctor Junctions, Introduction to Applied Solid State Physies,2nd ed. , Plenum Press , New York London 1990,Chapter4:111-128.
    [71] Mantana Moonsiri, Pramoch RangSunvigit, Sumaeth Chavadej,Erdogan Gulari. Effects of Pt and Ag on the Photocatalytic degradation of 4-chlorophenol and its by-products.[J].Chernical Engineering Journal 97(2004):241-248.
    [72] Xin He,Xiu jian Zhao,Baoshun Liu. The synthesis and kinetic growth of anisotropic silver particles loaded on TiO_2 surface by Photoelectrochemical reduction method .[J].Applied Surface Science 254(2008):1705-1709.
    [73] A.L.Stroyuk,V.V.Shvalagin,S.Ya.Kuchmii. Photochemical synthesis and optical Properties of binary and ternary metal-semiconductor composites based on zinc oxide nanoparticles.[J].Jounal of Photochemistry and Photobiology A:Chemistry 173(2005): 185-194.
    [74] Limin Wang,NanWang,Lihua Zhu*,Hongwei Yu,Heqing Tang. Photocatalytic reduction of Cr(VI) over different TiO_2 Photocatalysts and the effects of dissolved organic species. Journalof Hazardous Materials l52(2008):93-99.
    [75] M.Sokmen,A.Ozkan.Decolourising textile wastewater with modified titania:The effect of inorganic anions on the Photocatalysis.[J].Journal of Photochernistry and Photobiology A:Chemistry147(2002):77-81.
    [76] Sooi Li Lee,Jason Scott,Ken Chiang ,Rose Amal. Nanosized metal deposits on titanium dioxide for augmenting gas-phase toluene photooxidation. J Nanopart Res (2009) 11:209–219.
    [77] Shao Feng Chen, Jian Ping Li, Kun Qian, Wei Ping Xu, Yang Lu, Wei Xin Huang and Shu Hong Yu. Large Scale Photochemical Synthesis of M@TiO_2 Nanocomposites(M=Ag, Pd, Au, Pt) and Their Optical Properties, CO Oxidation Performance, and Antibacterial Effect. Nano Res (2010) 3: 244–255, DOI 10.1007/s12274-010-1027-z.
    [78] Xianliang Fu, Jinlin Long, Xuxu Wang, Dennis Y.C. Leung, Zhengxin Ding,Ling Wu, Zizhong Zhang, Zhaohui Li, Xianzhi Fu. Photocatalytic reforming of biomass: A systematic study of hydrogen evolution from glucose solution. International journal of hydrogen energy33(2008)6484–6491.
    [79] Sung S M, Choi J R, Hah H J, et al. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO_2 undervisible and UV light irradiation [J]. Photochem.Photobio.A:Chem, 2004, 163( 1-2): 37-44.
    [80]郑怀礼,张峻华,李宏等.微乳无机凝胶法制备掺杂纳米薄膜及其光催化性能研究[J].光谱学与光谱分析, 2006, 26( 11):2057-2060.
    [81]钟超阳,潘海波,郭龙发等.四磺基酞菁锌敏化TiO_2的原位自组装合成及可见光光催化[J].光谱学与光谱分析,2007,27(6):23-29.
    [82]郭莉,赵峭梅,王丹军等.活性炭负载型TiO_2光催化剂的制备及其光催化活性研究[J].化学与生物工程,2006,23(2):16-18.
    [83]张金龙,陈锋,何斌.光催化.上海:华东理工大学出版社,2004,35.
    [84] Jaffrezic-Renault N,Pichat P,Foissy A,et al. Study of the effect of deposited platinum particles on the surface charge of titania aqueous suspensions by potentiometry, electrophoresis,and labeled-ion adsorption. J.Phys.Chem. 1986,90(12): 2733-2738.
    [85] Yang P,Lu C,Hua N P,etal. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for Photocatalysis .Materials Letters, 2002,57(4):794-80
    [86]丁敦煌,关鲁雄,杨松青,李伶慧。TiO_2/ H_2O_2光催化体系降解亚甲基蓝的动力学研究.中南工业大学学报(自然科学版)第34卷第5期.
    [87] Rosana M. Alberici , Wilson F. Jardim. Photocatalytic degradation of phenol and chlorinated phenols using Ag-TiO_2 in a slurry reactor. Water Research , Volume 28, Issue 8 , August 1994, Pages 1845-1849 .
    [88]万斌,陈鸣波,周细应,沈嘉年,李文戈. Ag/ TiO_2纳米管的制备及其光催化性能。稀有金属材料与工程,第38卷第11期.
    [89] I.M. Arabatzis, T. Stergiopoulos, M.C. Bernard, D. Labou,S.G.Neophytides, P. Falaras. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Applied Catalysis B: Environmental 42 (2003) 187–201.
    [90] Thou-Jen Whang, Hsien-Yu Huang, Mu-Tao Hsieh,Jyun-Jen Chen. Laser-Induced Silver Nanoparticles on Titanium Oxide for Photocatalytic Degradation of Methylene Blue. Int. J. Mol. Sci. 2009, 10, 4707-4718.
    [91] Xiao-yuan JIANG, Feng DU, Chun-xia GUO, Qiong YANG, Xiao-ming ZHENG.Preparation of nano-TiO_2 photocatalysts and their decomposition activity in phenol-contaminated water. Jiang et al./J Zhejiang Univ Sci A 2009 10(11):1651-1659.
    [92] Dingwang Chen, Ajay K. Ray. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO_2. Applied Catalysis B: Environmental 23 (1999) 143–157.
    [93] M. Harir, A. Gaspar, B. Kanawati, A. Fekete, M. Frommberger, D. Martens,A. Kettrup, M. El Azzouzi, Ph. Schmitt-Kopplin. Photocatalytic reactions of imazamox at TiO_2, H_2O_2 and TiO_2/H_2O_2 in water interfaces: Kinetic and photoproducts study. Applied Catalysis B: Environmental 84 (2008) 524-532.
    [94] Emad S. Elmolla , Malay Chaudhuri. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO_2and UV/H_2O_2/TiO_2 photocatalysis. Desalination 252 (2010) 46-52.
    [95] V.A. Sakkas, P. Calza, M. Azharul Islam, C. Medana ,C. Baiocchi, K. Panagiotou, T. Albanis. TiO_2/H_2O_2 mediated photocatalytic transformation of UV filter 4-methylbenzylidene camphor (4-MBC) in aqueous phase: Statistical optimization and photoproduct analysis. Applied Catalysis B: Environmental 90(2009)526-534.
    [96] Ippei Yanagisawa,Toshiyuki Oyama,Nick Serpone,Hisao Hidaka. Successful Scission of a Recalcitrant Triazinic Ring. The Photoassisted Total Breakup of Cyanuric Acid in Ozonized TiO_2 Aqueous Dispersions in the Presence of an Electron Acceptor (H_2O_2). J. Phys. Chem. C 2008, 112, 18125–18133.
    [97] Qinhai Hu, Chunlong Zhang, Zhirong Wang, Yan Chen, Kehui Mao, Xingqing Zhang, Yunlong Xiong, Miaojun Zhu. Photodegradation of methyl tert-butyl ether (MTBE) by UV/H_2O_2 and UV/TiO_2. Journal of Hazardous Materials 154 (2008) 795–803.
    [98] H.M. Coleman, V. Vimonses, G. Leslie, R. Amal. Degradation of 1,4-dioxane in water using TiO_2 based photocatalytic and H_2O_2/UV processes. Journal of Hazardous Materials 146 (2007) 496–501.
    [99] F.Akbal, A.N.Onar. Photocatalytic degradation of phenol. Environ. Monit. Assess.83:295-302,2003.
    [100]C.C.Chen, C.S.Lu, Y.C.Chung, J.L.Jan. UV light induced photodegradation of malachite green on TiO_2 nanoparticles. J.Hazard.Mater.141:520-528,2007.
    [101]Antoine Lair, Corinne Ferronato, Jean-Marc Chovelon, Jean-Marie Herrmann.Naphthalene degradation in water by heterogeneous photocatalysis:An investigation of the influence of inorganic anions. Journal of Photochemistry and Photobiology A: Chemistry 193 (2008) 193–203.
    [102]A. Riga, K. Soutsas, K. Ntampegliotis, V. Karayannis, G. Papapolymerou. Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H_2O_2/UV, Fenton, UV/Fenton, TiO_2/UV and TiO_2/UV/H_2O_2 processes. Desalination 211 (2007) 72–86
    [103]G. Li, X.S. Zhao, Madhumita B. Ray. Advanced oxidation of orange II using TiO_2 supported on porous adsorbents: The role of pH, H_2O_2 and O3. Separation and Purification Technology 55 (2007) 91–97.
    [104]Seung-Mok Lee, Young-Gyu Kim, II-Hyoung Cho. Treatment of Dyeing Wastewater by TiO_2/H_2O_2/UV Process: Experimental Design Approach for Evaluating Total Organic Carbon (TOC) Removal Efficiency. Journal of Environmental Science and Health, A40:423–436, 2005.
    [105]Jun Yano, Jun-ichi Matsuura, Hiroki Ohura, Sumio Yamasaki. Complete mineralization of propyzamide in aqueous solution containing TiO_2 particles and H_2O_2 by the simultaneous irradiation of light and ultrasonic waves. Ultrasonics Sonochemistry 12 (2005)197-203.
    [106]M. Muruganandham, N. Shobana, M. Swaminathan. Optimization of solar photocatalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO_2. Journal of Molecular Catalysis A: Chemical 246 (2006) 154–161.
    [107]M. Muruganandham, M. Swaminathan. Solar photocatalytic degradation of a reactive azo dye in TiO_2-suspension. Solar Energy Materials & Solar Cells 81 (2004) 439-457.
    [108]Yongmei Wu, Haibei Liu, Jinlong Zhang, Feng Chen. Enhanced Photocatalytic Activity of Nitrogen-Doped Titania by Deposited with Gold. J. Phys. Chem. C 2009, 113, 14689–14695.
    [109]Jiaguo Yu, Lin Yue, Shengwei Liu, Baibiao Huang, Xiaoyang Zhang. Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO_2 nanocomposite microspheres. Journal of Colloid and Interface Science 334 (2009) 58-64.
    [110]Adel A. Ismail,Detlef W. Bahnemann,Inga Bannat,Michael Wark. Gold Nanoparticles on Mesoporous Interparticle Networks of Titanium Dioxide Nanocrystals for Enhanced Photonic Efficiencies. J. Phys. Chem. C 2009, 113, 7429-7435.
    [111]Dhananjay S. Bhatkhande, Vishwas G. Pangarkar,Anthony A. C. M. Beenacker. Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: chemical effects and scaleup. Water Research 37 (2003) 1223-1230.
    [112]Ayrton F. Martins,Francieli Mayer,Eliza C. Confortin,Carla da S. Frank. A Study of Photocatalytic Processes Involving the Degradation of the Organic Load and Amoxicillin in Hospital Wastewater. Clean 2009, 37 (4-5), 365-371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700