用户名: 密码: 验证码:
慢病毒转染TLR_3基因的小分子RNA对人肺腺癌A549细胞增殖及免疫逃逸影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分TLR3在A549细胞中的表达
     目的:Toll样受体家族(Toll-like receptors,TLRs)是非常重要的天然免疫分子,并被视为联系天然免疫和获得性免疫的桥梁,近年来随着天然免疫研究的不断发展,人们逐渐关注TLRs和机体肿瘤的关系。本研究旨在探讨TLR_3在人肺腺癌细胞(A549细胞)和人支气管上皮细胞(HBE细胞)中的表达情况及意义。
     方法:体外培养A549细胞和HBE细胞,分别采用细胞免疫组化技术、实时定量PCR(Real-time Quantitative Reverse Transcriptase-Polymerase Chain Reaction,Real-Time Quantitative PCR)及western blot检测TLR_3 mRNA和蛋白在2种细胞中表达的差异。
     结果:细胞免疫组化染色,TLR_3主要表达于2种细胞的细胞膜和胞浆中,成棕黄色颗粒状,A549细胞中TLR_3 mRNA的表达高于HBE细胞,TLR_3蛋白在A549细胞中的表达高于HBE细胞。(p<0.01)
     结论:TLR_3在A549细胞中表达高于HBE细胞,提示TLR_3可能参与促进人肺腺癌细胞的生长进展过程,具体机制有待进一步深入研究。
     第二部分TLR_3基因RNAi慢病毒载体的构建
     目的:观察慢病毒表达载体介导的RNA干扰(RNAi)对人肺腺癌细胞株A549细胞Toll样受体3(Toll-like receptor 3,TLR_3)表达的影响,为后续的以TLR_3基因为靶点的肺癌研究和治疗奠定基础。
     方法:应用基因工程技术,筛选出4条针针对TLR_3基因的RNAi靶序列,分别与pCCL-CFP载体连接,构建4个重组慢病毒表达载体TLR3-RNAi-LV 1#,TLR3-RNAi-LV 2#,TLR3-RNAi-LV 3#,TLR3-RNAi-LV 4#;将连接产物转化到DHSα感受态细胞,经PCR筛选阳性克隆、测序鉴定。将TLR3-RNAi-LV、pHelper 1.0、pHelper 2.0共转染293T细胞,包装产生慢病毒颗粒并测定病毒滴度。将包装产生的4种重组慢病毒分别感染A549细胞,实时定量PCR和Western印迹检测A549细胞TLR3 mRNA和蛋白的表达,并与未转染及空转染细胞进行比较。
     结果:4个慢病毒载体PCR和测序结果与预期结果一致,经包装产生的病毒滴度分别为2E+8、2E+8、2E+8、1E+8 TU/ml。感染A549细胞后,TLR3基因mRNA和蛋白的表达量与未感染慢病毒的细胞组及空载体感染组相比均明显下降(P<0.05),其中TLR3-RNAi-LV 4#作用较明显,使mRNA表达下降80%,蛋白表达下降68%(P<0.05)。
     结论:成功构建针对TLR3基因的4个慢病毒载体TLR3-RNAi-LV,体外感染A549细胞后可有效抑制TLR3基因和蛋白的表达。
     第三部分转染TLR3-RNAi慢病毒载体对A549细胞增殖及免疫逃逸的影响
     目的:探讨通过RNA干扰技术,使人肺腺癌细胞中TLR3的表达发生变化,对人肺腺癌细胞的增殖、抗凋亡及免疫逃逸方面的影响。
     方法:利用第二部分实验构建并筛选出的TLR3-RNAi慢病毒载体,转染A549细胞,建立TLR3基因沉默的人肺腺癌稳转细胞株,同时给予慢病毒转染组、未转染组和阴性对照组TLR3的配体Poly(I:C)刺激后,分别通过流式细胞术检测B7-H1的表达,实时定量PCR方法检测PGE-2的表达,western blot方法检测磷酸化P38的含量,以及用Annexin V/PI双染色法检测A549细胞的凋亡。
     结果:在Poly(I:C)刺激时间及浓度相同的情况下,转染TLR3-RNAi慢病毒载体的A549细胞组中B7-H1阳性细胞百分比为23.35±0.071%,未转染慢病毒载体组为55.25±0.015%,阴性对照组为48.75±0.020%,慢病毒转染组明显小于未转染组及阴性对照组(p<0.01);运用2-~(△△)Ct数据分析法,转染TLR3-RNAi慢病毒载体的A549细胞组中PGE-2表达明显少于未转染慢病毒载体组及阴性对照组(p<0.01);转染TLR3-RNAi慢病毒载体的A549细胞组中磷酸化P38的百分比相对值为6.37±0.28%,未转染慢病毒载体组中磷酸化P38的百分比相对值为33.63±6.752%,阴性对照组中磷酸化P38的百分比相对值为17.36±2.24%,病毒载体转染组磷酸化P38的含量明显低于未转染慢病毒载体组及阴性对照组(p<0.01);凋亡实验显示,转染TLR3-RNAi慢病毒载体的A549细胞组细胞凋亡率为44.4±1.41%,未转染慢病毒载体组细胞凋亡率为34.7±0.89%,阴性对照组细胞凋亡率为36.5±1.12%,慢病毒转染组明显高于未转染慢病毒载体组和阴性对照组。(P<0.01),
     结论:TLR3基因沉默抑制了A549细胞中P38、PGE-2、B7-H1的表达,并降低了细胞的抗凋亡能力。
PartⅠ: The expression and significance of TLR_3 in humanpulmonary adenocarcinoma cells line A549
     Objective : Being considered as a bridge between the innate immunity and acquiredimmunity, Toll-like receptors are very important innate immunity moleculars. Recentresearches on the innate immunity have focused on the relationship between Toll-likereceptors and human tumor, This paper investgates the expression and significance ofTLR_3 in human pulmonary adenocarcinoma cell (A549 cell) and human bronchialepithelial cell (HBE cell).
     Methods: After culturing A549 cell and HBE cell in vitro, the expression of TLR_3mRNA and protein in both cells were detected by immunocytochemistry, real-timequantitative reverse transcriptase-polymerase chain reaction (Real-Time Quantitative PCR)and western blot, respectively.
     Results: By immunocytochemistry staining, TLR_3 is mainly expressed in both cells'cell membrane and endochylema as brown-yellow material. It shows that the expressions of TLR_3 mRNA and protein in A549 cell are stronger than those in HBE cell (p<0.01).
     Conclusion: The resusts suggest TLR_3 might cause the progression ofhuman pulmonary adenocarcinoma, and the mechanism needs to be furtherinvestgated.
     PartⅡ: Construct lentiviral RNAi vectors targeted againstToll-like receptor 3 gene
     Objective : To observe the influence of lentiviral vector-mediated RNA interferenceon expression of human TLR3(Toll-like receptor 3) gene in human pulmonaryadenocarcinoma cell line A549, so as to pave a way for TLR3 gene-targeted gene therapyof pulmonary adenocarcinoma.
     Methods: Gene engineering technique was used to screen four RNA interferencesequences targeting TLR3 gene; the sequences were separately cloned into the pCCL-GFPvector to construct TLR3-RNAi-LV 1# , TLR3-RNAi-LV 2# , TLR3-RNAi-LV 3#,TLR3-RNAi-LV 4#, which were subsequently confirmed by PCR and DNA sequencinganalysis. The titer of lentivirus was determined after 293T cells were contransfected withTLR3-RNAi-LV、pHelper 1.0、pHelper 2.0. The four kinds of recombinant lentiviruseswere injected into A549 cells and the TLR3 mRNA and protein expression were examinedby real-time RT-PCR and Western blotting, respectively, and the result was compared withthose of the non-transfected and blank vector transfected A549 cells.
     Results: PCR analysis and DNA sequencing confirmed that the four TLR3 vshRNAsequences were successfully inserted into the lentiviral vectors. The titer of concentratedvirus were 2E+8、2E+8、2E+8、1E+8 TU/ml ,respectively. TLR3 expression in A549 cellswas significantly inhibited at both mRNA and protein levels compared with thenon-tansfected and empty vector transfected A549 cells.(P<0.05) After transfection withTLR3-RNAi-LV 4#, TLR3 mRNA expression decreased by 80%, TLR3 protein expression decreased by 68%. (P<0.05)
     Conclusion: Four lentiviral RNAi vectors of TLR3 gene have been successfullyconstructed, and they can effectively inhibit the expression of TLR3 gene in A549 cellsin vitro.
     PartⅢ: Effect of lentivirus-induced siRNA targeted againstToll-like receptor 3 on the proliferation and immune escape ofhuman pulmonary adenocarcinoma cells line A549
     Objective: To evalute the effect of Toll-like receptor 3 on the cell proliferate、anti-apoptotic and immune escape in human pulmonary adenocarcinoma cells line A549with different expressions of Toll-like receptor 3.
     Methods: To transfecte A549 cell line with TLR3-RNAi lentiviral vector in thesecond experiment, and transfected、non-transfected and blank vector transfected A549cells were all incubated with Poly(I:C),the ligand of TLR3. The expressions of B7-H1、PGE-2 and phosphorylase p38 were respectively evaluated by flow cytometry、real-timequantitative PCR and western blot experiments. Apoptosis of those cells was detected byflow cytometry with AnnexinV FITC/PI double staining.
     Results: Under the condition of the same time and concentration of stimulation withPoly(I:C), the percentage of B7-H1-positive cells of TLR3-RNAi lentiviral vectortransfected A549 cells is 23.35±0.071%, those of the non-transfected and blank vectortransfected A549 cells were 55.25±0.015%、48.75±0.020%, respectively。Theexpression of B7-H1 of TLR3-RNAi lentiviral vector transfected A549 cells wassignificantly lower than those of the non-transfected and blank vector transfected A549cells (p<0.01); To analyze with the 2-ΔΔCt method, The expression of PGF-2 ofTLR3-RNAi lentiviral vector transfected A549 cells was significantly lower than thoseof the non-transfected and blank vector transfected A549 cells (p<0.01); the relativelypercentage of phosphorylase p38 of TLR3-RNAi lentiviral vector transfected A549 cellsis 6.37±0.28%those of the non-transfected and blank vector transfected A549 cells were 33.63±6.752%、17.36±2.24%, respectively。The expression of phosphorylase p38of TLR3-RNAi lentiviral vector transfected A549 cells was significantly lower thanthose of the non-transfected and blank vector transfected A549 cells (p<0.01); Thepercentage of the apoptosis cells of TLR3-RNAi lentiviral vector transfected A549 cellsis 44.4±1.41%, those of the non-transfected and blank vector transfected A549 cellswere 34.7±0.89%、36.5±1.12%, respectively。The percentage of the apoptosis cells ofTLR3-RNAi lentiviral vector transfected A549 cells was significantly higher than thoseof the non-transfected and blank vector transfected A549 cells (p<0.01 )
     Conclusions: Down-regulation of TLR3 led to inhibit the expression ofB7-H1、PGE-2 and phosphorylase p38 in human pulmonary adenocarcinoma cells lineA549, weaken the anti-apoptosis ability of human pulmonary adenocarcinoma cells lineA549.
引文
1 .Alan Aderdm et al.Toll-like receptors in the induction of the innate immune response.Nature, 2000, 406:782-787
    2.Sabroe I, Parker L, Dower S, Whyte M.The role of TLR activation in inflammation.J Pathol.2008 Jan; 214(2):126-35
    3.Iwa sakiA, MedzhitovR.Toll-like receptor control of the adaptive immune responses.Natlmmunol, 2004, 5:987
    4.Rifkin IR, Leadbetter EA et al Toll-like receptors, endogenous ligands, and systemic autoimmune disease.Immunol Rev 2005 204:27-42
    5.Janewayjr CA.Theimmune sytem evolved to discriminate infectious nonself from noninfectious self.Immunol Today, 1992, 13:11
    6.Matziner p The danger model:A renewed sense of self.Science, 2002, 96:30
    7.Johnson GB, Brunn G, Tang AH, etal.volutionary clues to the functions of the Toll-like family as surveillance receptors.Trends lmmunol, 2003, 24:19
    8.Related Articles, Links Chen R, Alvero AB, Silasi DA Cancers take their Toll--the function and regulation of Toll-like receptors in cancer cells Oncogene.2008 Jan 7; 27(2):225-33.Review
    9、Zheng SL, Augustsson-Balter K, Chang B, et al Variants of toll-like receptor 4 are associated with prostate cancer risk.Cancer Res 2004 64:2918-2922
    10.San J, Wiklund F et al.Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk.J Natl Cancer Inst 2005 97:525-532
    11.Harmey JH, Bucana CD, Lu W et al Lipopolysaccharide induced metastatic growth is associated with increased angiogenesis, vascular permenability and tumour cell invasion.Int J Cancer 2002 101: 415-422
    12.Pidgeon GP, Harmey JH, Kay E, et al The role of endotoxin/lipopolysaccharide in surgically induced tumour growth in a murine model of metastatic disease.Br J Cancer 1999 81:1311-1317
    13.Luo JL, Maeda S, Hsu LC et al Inhibition of NFkappaB in cancer cells converts inflammation-induced tumor growth mediated by TNF-alpha to TRAIL-mediated tumor regression.Cancer Cell 2004 6:297-305
    14.Chang YJ, Wu MS et al Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Srcdependent nuclear factor-kappaB activation.Mol Pharmaco 2004 1 66:1465-1477
    15.Huang B, Zhao J, et al Toll-like receptors on tumor cells facilitate evasion of immune surveillance.Cancer Res 2005 65:5009-5014
    16.Jude BA, Pobezinskaya et al Subversion of the innate immune system by a retrovirus.Nat Immunol 2006 4:573-578
    17.Ian F.Hermans, Jonathan D.Silk, Uzi Gileadi, Dendritic Cell Function Can BeModulated through Cooperative Actions of TLR Ligands and Invariant NKT Cells.J Immunol 2007:2721-272
    18.Serafini P, DesantoC, Marigo, etal Derangement of immune responses by myeloid suppressor cells Cancer immunol Immunother, 2004, 53:64
    19.Vabulas RM, Ahmad-Nejad P, da Costa C, etal.Endocytosed HSP60s use Toll-like receptor 2 (TLR2)and TLR4 to activate the Toll/interleukin-1 receptor signaling Pathway ininnate immune cells.J Biol Chem, 2002, 276:31332
    20.OkamuraY, WatariM, JerudES, et al.The extra domain A of fibronectin activates Toll-likereceptor4.J Biol Chem , 2001, 276:10229
    21.JohnsonGB, BrunnGJ, PlattJL.Cutting edge:An endogenous Pathway to systemic infammatory response syndrome(SIRS)-like reactions through Toll-like receptor 4. J Immunol, 2004, 172:20
    1.Sabroe I, Parker L, Dower S, Whyte M. The role of TLR activation in inflammation. J Pathol. 2008 Jan: 214(2):126-35
    2.Related Articles, Links Chen R, Alvero AB, Silasi DA Cancers take their Toll--the function and regulation of Toll-like receptors in cancer cells Oncogene. 2008 Jan 7; 27(2):225-33. Review
    3.Simpson D.A.C., Feeney S., Boyle C and Stitt A.W. Retinal VEGF mRNA measured by SYBR green I fluorescence: A versatile approach to quantitative PCR. Mol Vis.2000 Oct 5; 6:178-83
    4.Ririe K.M., Rasmussen R.P., and Wittwer C.T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem. 1997 Feb 15; 245(2):154-60
    5.Kellogg D.E., Rybalkin I., Chen S., Mukhamedova N., VlasikT., Siebert P.D., and Chenchick A. TaqStart Antibody: "hot start" PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. Biotechniques. 1994 Jun; 16(6):1134-7
    6.Kenneth J, Livak, Thomas D, etal Analysis of relative gene expression data using Real Time Quantitative PCR and the 2-△△Ct method [J] Methods, 2001; 25:402 8 7. Medzhitov R, Preston-Hurlburt P, Janeway CAJ. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity[J].Nature 1997, 388:3 94-3 97
    8.Harmey JH, Bucana CD, Lu W et al Lipopolysaccharide induced metastatic growth is associated with increased angiogenesis, vascular permenability and tumour cell invasion. Int J Cancer 2002 101: 415- 422
    9.Pidgeon GP, Harmey JH, Kay E, et al The role of endotoxin/lipopolysaccharide in surgically induced tumour growth in a murine model of metastatic disease. Br J Cancer 1999 81: 1311-1317
    10.Luo JL, Maeda S, Hsu LC et al Inhibition of NFkappaB in cancer cells converts inflammation-induced tumor growth mediated by TNF-alpha to TRAIL-mediated tumor regression. Cancer Cell 2004 6: 297-305
    11. Chang YJ, Wu MS et al Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Srcdependent nuclear factor-kappaB activation. Mol Pharmaco 2004166: 1465-1477
    12.Rifkin IR, Leadbetter EA et al Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev 2005 204: 27-42
    13. Janeway jr CA. Theimmune sytem evolved to discriminate infectious nonself from noninfectious self. Immunol Today, 1992, 13:11
    14. Matziner p The danger model:A renewed sense of self. Science, 2002, 96:30
    15. Johnson GB, Brunn G, Tang AH, etal. volutionary clues to the functions of the Toll-like family as surveillance receptors. Trends Immunol, 2003, 24:19
    16. Serafini P, DesantoC, Marigo, etal Derangement of immune responses by myeloid suppressor cells Cancer immunol Immunother, 2004, 53:64
    17.Vabulas RM, Ahmad-Nejad P, da Costa C, etal. Endocytosed HSP60s use Toll-like receptor 2 (TLR2 )and TLR4 to activate the Toll/interleukin-1 receptor signaling Pathway ininnate immune cells. J Biol Chem, 2002, 276:31332
    18.OkamuraY, WatariM, JerudES, et al.The extra domain A of fibronectin activates Toll-likereceptor4.J Biol Chem , 2001, 276:10229
    19.JohnsonGB, BrunnGJ, PlattJL.Cutting edge:An endogenous Pathway to systemic infammatory response syndrome(SIRS)-like reactions through Toll-like receptor 4. J Immunol, 2004, 172:20
    1.Couziu J.Breakthrough of the year: Small RNAs make big splash [J].Science, 2002, 298( 5602):2296-2297
    2.Simpson D.A.C., Feeney S., Boyle C., and Stitt A.W.Retinal VEGF mRNA measured by SYBR green Ⅰ fluorescence: A versatile approach to quantitative PCR.MolVis.2000 Oct 5; 6:178-83
    3.Rifle K.M., Rasmussen R.P., and Wittwer C.T.Product differentiation by analysis of DNA melting curves during the polymerase chain reaction.Anal Biochem.1997 Feb 15; 245(2):154-60
    4.Kellogg D.E., Rybalkin I., Chen S., Mukhamedova N., Vlasik T., Siebert P.D., and Chenchick A.TaqStart Antibody: "hot start" PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase.Biotechniques.1994 Jun; 16(6):1134-7
    5.Medzhitov R, Preston-Hurlburt P, Janeway Jr CA. A human homologue of the Drosophila Toll proteins signals activation of adaptive immunity. Nature 1997; 388:394-7.
    6.Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21:335-76.
    7.Alan Aderdm et al.Toll-like receptors in the induction of the innate immune response.Nature, 2000, 406:782-787
    8.Terry K.et al.The biology of Toll-like receptors Cytokine Growth Factor Reviews, 2000, 11:219-232
    9.Huang B, Zhao J, et al Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 2005 65: 5009-5014
    10.Greten FR, Eckmann L, Greten TF et al IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004 118: 285 -296
    11.Luo JL, Maeda S, Hsu LC et al Inhibition of NFkappaB in cancer cells converts inflammation-induced tumor growth mediated by TNF-alpha to TRAIL-mediated tumor regression. Cancer Cell 2004 6: 297-305
    12.Chang YJ, Wu MS et al Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Srcdependent nuclear factor-kappaB activation. Mol Pharmaco 2004 1 66: 1465-1477
    13.del Fresno C, Otero K et al Tumor cells deactivate human monocytes by upregulating IL-1 receptor associated kinase-M expression via CD44 and TLR4. J Immunol 2003 174: 3032-3040
    14.Zheng SL, Augustsson-Balter K, Chang B, et al Variants of toll-like receptor 4 are associated with prostate cancer risk. Cancer Res 2004 64: 2918-2922
    15.Fire A, XuS, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb l9; 391(6669):806-11
    16.Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001 Jan 15; 15(2): 188-200.
    17.Jazag A, Ijichi H, Kanai F et al. Smad4 silencing in pancreatic cancer cell lines using stable RNA interference and gene expression profiles induced by transforming growth factor-beta. Oncogene. 2005 Jan 20; 24(4):662-71.
    18.Imamura T, Kanai F, Kawakami T, et al. Proteomic analysis of the TGF-beta signaling pathway in pancreatic carcinoma cells using stable RNA interference to silence Smad4 expression. Biochem Biophys Res Commun. 2004 May 21;318(1):289-96
    19.Romano G. Current development of lentiviral-mediated gene transfer. Drug News Perspect. 2005 Mar; 18(2): 128-34.
    20.Dann CT New technology for an old favorite: lentiviral transgenesis and RNAi in rats. Transgenic Res. 2007 Oct; 16(5):571-80
    21.Wiznerowicz M, Trono D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-indueible RNA interference. J Virol. 2003 Aug; 77(16):8957-61
    1.Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C.An overview of real-time quantitative PCR: application to quantify cytokine gene expression. Methods 2001 Dec; 25(4):386-401.
    2.Killgore GE, Holloway B and Tenover F. A 5' nuclease PCR (TaqMan) high-throughput assay for detection of the mecA gene in staphylococci. J Clin Microbiol.2000 Jul; 38(7):2516-9
    3.Martell M, Gomez J, Esteban JI, Sauleda S, Quer J, Cabot B, Esteban R and Guardia J. High-throughput real-time reverse transcription-PCR quantitation of hepatitis C virus RNA. J Clin Microbiol. 1999 Feb; 37(2):327-32.
    4.Oleksiewicz M.B., Donaldson A.I., and Alexandersen S. Development of a novel real-time RT-PCR assay for quantitation of foot-and-mouth disease virus in diverse porcine tissues. J Virol Methods. 2001 Mar; 92(1):23-35.
    5.Van Trappen P.O., Gyselman V.G, Lowe D.G and Rany A. Molecular quantification and mapping of lymph-node micrometastases in cervical cancer. Lancet. 2001 Jan 6; 357(9249): 15-20.
    6.Overbergh L., Valckx D, Waer M, and Mathieu C. Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PCR. Cytokine. 1999 Apr;11(4):305-12.
    7.Rifkin IR, Leadbetter EA et al Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev 2005 204: 27-42
    8.Zeh HJ, Lotze MT Addicted to death: invasive cancer and the immune response to unscheduled cell death. JImmunother 2005 28: 1-9
    9.Brunn GJ, Bungum MK, Johnson GB Conditional signaling by Toll-like receptor 4. FASEB J 2005 19: 872-874.1
    10.Kariko K, Ni H, Capodici J, Lamphier M, Weissman D mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004 Mar 26; 279(13): 12542-50
    11.Widmann C, Gibson S, Jarpe M B, Johnson G L. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol Rev, 1999,79(l):143-180
    12 Chang L, Karin M. Mammalian MAP kinase signaling cascades [J] . Nature ,2001 ,410 (6824) :37240.
    13 Irving EA, Bamford M.Role ofmitogene and st resseactivated kinases in ischemic injury[J].J Cereb Blood Flow Metab ,2002,22(6) :6312647.
    14 Suh Y.Cell signaling in aging and apoptosis [J].Mech Ageing Dev ,2002,123 (8) :8812890.
    15 Lowes VL, Ip NY, Wong YH.Integration of signals from receptor tyrosine kinases and g protein coupled receptors[J ].Neurosignals ,2002,11 (1) :5219.
    16.李慧;任秀宝;B7家族的新成员-B7-H1、B7-H2、B7-H3、B7-DC国外医学.免疫学分册,2005年01期
    17.朱伟; 曾甫清;杨军;奉友刚;膀胱癌患者外周血中CD4-+CD25-+调节性T细胞的检测及其与PGE2水平相关性分析 华中科技大学学报(医学版),2006年06期
    18.魏小勇; 黎才海;饶荣生;p38 MAPK信号通路与肿瘤的关系.实用癌症杂志,2009年01期
    19.刘素荣; 叶孟; NF-κB和凋亡相关的调控途径.现代实用医学,2009年01期
    20.Janeway Jr CA.The immune system evolved to discriminate infectious nonself from noninfectious self.Immunol Today 1992; 13:11-6.
    21.Matzinger P.The danger model: a renewed sense of self.Science 2002;296:301-5.
    22.Johnson GB, Brunn G, Tang AH, Platt JL.Evolutionary clues to the functions of the Toll-like family as surveillance receptors.Trends Immunol 2003;24:19-24.
    [1] Ohshima H, Tatemichi M, Sawa T.Chemical basis of inflammation-induced carcinogenesis.Arch Biochem Biophys 2003; 417:3-11.
    [2] Mizoguchi H, O'Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC.Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice.Science 1992; 258:1732-3.
    [3] Matsuda M, Petersson M, Lenkei R, Taupin JL, Magusson I, Mellstedt H, et al.Alterations in tumor-transducing molecules ofT-cells and NK cells in colorectal tumor-infiltrating, gut mucosal and peripheral lymphocytes: correlation with the stage of the disease.Int JCancer 1995; 61:765-72.
    [4] Lai P, Rabinowich H, Crowley-Nowick PA, Bell MC, Mantovani G, Whiteside TL.Alterations in expression and function of signaltransducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma.Clin Cancer Res 1996; 2:161-73.
    [5]KonoK, Ressing ME, Brandt RM, MeliefCJ, PotkulRK, AnderssonB, et al. Decreased expression of signal-transducing (?) chain in peripheral T-cells and natural killer cells in patients with cervical cancer. Cancer Res 1996; 2:1825-8.
    [6] Schmilau J, Nalesnik MA, Finn OJ. Suppressed T-cell receptor (?) chain expression and cytokine production in pancreatic cancer patients. Clin Cancer Res 2001; 7:933S-9S.
    [7] Samelson LE. Signal transduction mediated by the T-cell antigen receptor: the role of adapter proteins. Annu Rev Immnunol 2002; 20:371-94.
    [8] Baniyash M. TCR r chain downregulation: curtaining excessive inflammatory immune response. Nat Rev Immunol 2004; 4:675-87.
    [9] Bronstein-Sitton N, Cohen-Daniel L, Vaknin I, Ezernitchi AV, Leshem B, Halabi A, et al. Sustained exposure to bacterial antigen induces interferon-(?) -dependent T-cell receptor r chain down-regulation and impaired T-cell function. Nat Immunol 2003; 4:957-64.
    [10] Medzhitov R, Preston-Hurlburt P, Janeway Jr C A. A human homologue of the Drosophila Toll proteins signals activation of adaptive immunity. Nature 1997; 388:394-7.
    [11] Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21:335-76.
    [12] Ohashi K, Burkart V, Flohe S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 2000; 164:558-61.
    [13]Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, et al. Novel signal transduction pathway utilized by extracellular hsp70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002; 277:15028-34.
    [14] Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, AhmadNejad P, et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 2002; 277:20847-53.
    [15] Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J Immunol 2001; 67:2887-94.
    [16]Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 2002; 168:5989-92.
    [17] Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka S, Rose J, et al.The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 2001; 276:10229-33.
    [18] Johnson GB, Brunn GJ, Kodaira Y, Platt JL. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 2002; 168:5233-9.
    [19]Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, et al. ligosaccharides of hyaluronan activate dendritic cells via Toll-like receptor 4. J Exp Med 2002; 195:99-111.
    [20] Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, et al. Toll-like receptor 4-dependent activation of dendritic cells by (?)-defensin 2. Science 2002; 298:1025-9.
    [21 ] Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, et al. Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004; 279:7370-7.
    [22] Kariko K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 2004; 279:12542-50.
    [23] Berg AA. Endogenous ligands of Toll-like receptors: implications for regulating nflammatory and immune responses. Trends Immunol 2002; 23:509-12.
    [24]Akira S, Takeda K. Toll-like receptor signalling. Nat Immunol 2004; 4:499-511.
    [25]Poltorak A, He X, Smirnova I, Liu MY, van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282:2085-8.
    [26] Takeuchi O, SatoS, HoriuchiT, Hoshino K, Dong Z, ModlinRL, et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial proteins. J Immunol 2002; 169:10-A.
    [27]Takeuchi O, Hishino K, Kawai T, Sanjo H, Ogawa T, Paked K, et al. Differential roles of TLR2 and TLR4 in recognition of gramnegative and gram-positive bacterial cell wall components. Immunity 1999; 11:443-51.
    [28] Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NK-(?) B by Toll-like receptor3. Nature 2001; 413:732-8.
    [29]Hayashi F, Smith KD, Ozinsky A, HawnTR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410:1099-103.
    [30]Takeuchi O, Kawai T, Muhlradt PF, Radolf JD, Zychlinsky A, Takeda K, et al. Discrimination of bacterial lipoproteins by Toll-like receptor6. Int Immunol 2001; 13:933-40.
    [31] Lung JM, Alexopoulou L, Sato A, Karow M, Adams MC, Gale NW, et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 2004; 101:5598-603.
    [32]Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirchning C, AkiraS, et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 2004; 408:740-5.
    [33] Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408:740-5.
    [34] Hemmi H, Kaisho T, Takeuchi O, Saio S, Sanjo S, Hoshino K, et al. Small antiviral compounds activate immune cells via TLR7 MyD88 dependent signaling pathway. Nat Immunol 2002; 3:196-200.
    [35]Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 2002; 3:499.
    [36] Kopp E, Medzhitov R. Recognition of microbial infection by Toll-like receptors. Trends Immunol 2003; 15:396-401.
    [37] Yamamoto M, SatoS, HemmiH, Sanjo H, UematsuS, Kaisho T, et al. Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. Nature 2002; 420:324-9.
    [38]Homg T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP provides signaling specificity for Toll-like receptors. Nature 2002; 420:329-33.
    [39] Yamamoto M, SatoS, Mori K, HishinoK, TakeuchiO, TakedaK, et al. Cutting edge: a novel Toll-IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 2002; 169:6668-72.
    [40] Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, et al. TRAM is specifically involved in the Toll-like receptor4-mediated MyD88-independent signaling pathway. Nat Immunol 2003; 4:1144-50.
    [41] Yamamoto M, Sato S, Hemmi H, Hoshino K, KaishoT, SanjoH, et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 2003; 301:640-3.
    [42] Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG. Heat-shock proteins as activators of the innate immune system. Trends Immunol 2002; 23:130-5.
    [43] Tsan MF, Gao B. Cytokine function of heat shock proteins. Am J Physiol 2004; 286:C739-44.
    [44]Saito S, YamajiN, YasunagaK, Saito T, Matsumoto S-I, KatohM, et al. The fibronectin extra domain A activates matrix metalloproteinase gene expression by an interleukin-1-dependent mechanism. J Biol Chem 1999; 274:30756-63.
    [45]KodairaY, NairSK, Wrenshall LE, GilboaE, Platt JL. Phenotypic and functional maturation of dendritic cells modulated by heparin sulfate. J Immunol 2000; 165:1599-604.
    [46] Termeer C, Hennies J, Voith U, Ahrens T, Weiss JW, Prehm P, et al. Oligosaccharides of hyaluronan are potent activators of dendritic cell. J Immunol 2000; 165:1863-70.
    [47] Johnson GB, Brunn GJ, Platt JL. Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J Immunol 2004; 172:20-4.
    [48]Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, et al. Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2002; 276:31332-9.
    [49] Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, EquilsO, et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 2002; 168:1435-40.
    [50]Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, QureshiN, et al. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through Toll-like receptor-4. Circulation2002; 105:685-90.
    [51] Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. Hsp70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem2002;277:15107-12.
    [52] Janeway Jr CA. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 1992; 13:11-6.
    [53] Matzinger P. The danger model: a renewed sense of self. Science 2002; 296:301-5.
    [54] Johnson GB, Brunn G, Tang AH, Platt JL. Evolutionary clues to the functions of the Toll-like family as surveillance receptors. Trends Immunol 2003; 24:19-24.
    [55] Lee HK, Lee J, Tobias PS. Two lipoproteins extracted from Escherichia coli K-12 LCD25 lipopolysaccharide are the major components responsible for Toll-like receptor 2-mediated signaling. J Immunol 2002; 168:4012-7.
    [56] Majde JA. Microbial cell-wall contaminants in peptides: a potential source of physiological artifacts. Peptides 1993; 14:629-32.
    [57] Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. J Leukoc Biol 2004; 76:514-9.
    [58] Bausinger H, Lipsker D, Ziylan U, Manie S, Briand JP, Cazenave J-P, et al. Endotoxin-free heat shock protein 70 fail to induce APC activation. Eur J Immunol 2002; 32:3708-13.
    [59] Gao B, Tsan MF. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor~(?) release by murine macrophages. J Biol Chem 2003; 278:174-9.
    [60] Gao B, Tsan MF. Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor (?) from murine macrophages. J Biol Chem 2003; 278:22523-9.
    [61] Reed RC, Berwin B, Baker JP, Nicchitta CV. GRP94/gp96 elicits ERK activation in murine macrophages: a role for endotoxin contamination in NF(?) B activation and nitric oxide production. J Biol Chem 2003; 278:31853-60.
    [62] Chen K, Lu J, Wang L, Gan Y-H. Mycobacterial heat shock protein 65 enhances antigen cross-presentation in dendritic cells independent of Toll-like receptor 4 signaling. J Leukoc Biol 2004; 75:260-6.
    [63] Osterloh A, Meier-Stiegen F, Veit A, Fleischer B, von Bonin A, Breloer M. Lipopolysaccharide-free heat shock protein 60 activates T-cells. J Biol Chem 2004; 279:47906-11.
    [64] Freund J. The mode of action of immunopharmacological adjuvants. Adv Tuberc Res 1956; 1:130-48.
    [65] Seya T, Akazawa T, Uehori J, Natsumoto M, Azuma I, Toyoshima K. Role of Toll-like receptors and their adaptors in adjuvant immunotherapy for cancer. Anticancer Res 2003; 23:4369-76.
    [66] Okamoto M, Sato M. Toll-like receptor signaling in anti-cancer Immunity. J Med Invest 2003; 50:9-24.
    [67] Yamamura Y, Sakatani M, Ogura T, Azuma I. Adjuvant immunotherapy of lung cancer with BCG cell-wall skeleton (BCG-CWS). Cancer 1979; 39:3262-7.
    [68]Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A, et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of Toll-like receptors. Infect Immun 2000; 68:6883-90.
    [69] Watanabe Y, Iwa T. Clinical value of immunotherapy with the strep-tococcal preparation OK-432 in non-small cell lung cancer. J Biol Response Modif 1987; 6:169-80.
    [70] Kikkawa F, Kawai M, Oguchi H, Kojima M, Ishikawa H, Iwata M, et al. Randomized study of immunotherapy with OK-432 in uterine cervical carcinoma. Eur J Cancer 1993; 29:1524-46.
    [71]Ohe G, Okamoto M, Oshikawa T, Furuichi S, Nishikawa H, Tano T, et al. Th1-cytokine induction and anti-tumor effect of 55 kDa protein isolated from Aegineta indica L., a parasitic plant. Cancer Immunol Immunopther 2001; 50:251-9.
    [72] Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20:709-60.
    [73]Agawal S, Kandimalla ER. Medicinal chemistry and therapeutic potential of CpG DNA. Trend Mol Med 2002; 8:114-21.
    [74] Heil F, Ahmad-Nejad P, Hemmi H, Hochrein FL Ampenberger F, Gellert T, et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 2003; 33:2987-97.
    [75] Goodman MG A new approach to vaccine adjuvants, hnmunopotentiation by intracellular T-helper-like signals transmitted by loxoribine. Pharm Biotechnol 1995; 6:581-609.
    [76]Akaza H, Kotake T, Machida T. Bropirimine, an orally active anticancer agent for superficial bladder cancer. Eur Urol 1998; 34:107-10.
    [77] Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, GallinaG, et al. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 2004; 53:64-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700