用户名: 密码: 验证码:
小麦抗叶锈基因Lr38、Lr45分子标记及抗病相关分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由小麦叶锈菌(Puccinia triticina)引起的小麦叶锈病是影响世界小麦稳产高产的重要病害之一,选育并合理利用抗病品种是防治麦类锈病危害最为经济有效的途径之一。小麦抗叶锈病基因Lr38、Lr45为目前国内外有效抗叶锈病基因,本研究从Lr38、Lr45的分子标记、表达序列的分析以及蛋白质组分析等方面对小麦抗叶锈病基因Lr38、Lr45进行研究,为这两个基因的分子鉴定、辅助选择育种及抗病相关机制的研究奠定基础:
     1.应用中间偃麦草E染色体组的SCAR标记成功标记了来源于中间偃麦草的小麦抗叶锈基因Lr38,命名为Y38SCAR982,连锁分析表明为与Lr38基因共分离的SCAR标记, 120个小麦品种检测的结果表明,可方便快捷的应用于分子标记辅助选择;
     2.建立了Lr45基因的一个RAPD标记,并转化为稳定的SCAR标记,命名为YpSc20H1272;利用黑麦的RAPD片段pSc20H.2设计特异引物pSc20H23/24,建立了Lr45基因的SCAR标记,命名为YpSc20H750;利用黑麦特异SCAR标记引物H11R/F在TcLr45中扩增出特异片段,但连锁距离较远,该标记命名为YpScH650。以上所建立的TcLr45的3个SCAR标记,除YpSc20H750在黑麦5R染色体无检测位点外,都在黑麦的1R-7R染色体扩增出检测位点序列,本实验所用的100个小麦品种检测结果表明,可方便快捷的用于分子标记辅助选择。
     3.首次对小麦抗叶锈基因Lr38与Lr45进行了SRAP与SSR (eSSR)组合的TRAP分析,获得了在小麦抗叶锈近等基因系TcLr38中特异的长度为277bp的片段序列,GenBank比对分析表明为一新的小麦序列,但在本实验所用的100个小麦品种中普遍扩增出该序列。同时采用SRAP与RGA组合的TRAP对小麦抗叶锈基因Lr38与Lr45进行了分析,获得TcLr45特异的片段,GenBank比对分析与基因组DNA序列无同源性,但与EST序列具有较高的同源性,表明所获得的序列为表达基因的序列,其中一条序列与Lr10相似性达90%,推测可能与抗病相关。
     4.首次利用染色体步行NASS-PCR技术将Lr38基因Y38SCAR982片段的3′端序列延伸了1213bp,获得了一个完整的编码反转录转座子rve蛋白的ORF,编码蛋白序列为313个氨基酸的多肽。经BLASTP分析,与大麦的反转录转座子的rve整合酶核心区域蛋白序列(gb|AAV80394.1|)相似性达67%。
     5.首次利用2-DE技术分析了小麦抗叶锈基因系材料TcLr38与背景材料Thatcher间的蛋白表达差异,获得了在Thatcher中差异表达的蛋白点,PMF分析与放氧蛋白复合前体OEC、蛋白激酶、β-葡聚糖激酶序列具有较高的同源性。
     6.根据差异蛋白点OEC比对序列设计引物,获得了在TcLr38与Thatcher DNA中相同的1kb的条带,并在TcLr38与Thatcher cDNA以及TcLr38 DNA中相同的750 bp的条带。表明TcLr38基因组中除含编码放氧复合蛋白前体包含内含子的基因外,还具有直接转录放氧复合蛋白的序列。
Leaf rust, caused by Puccinia triticina, is one of the most severe diseases of common wheat (Triticum aestivum L.) all over the world. Breeding and application of resistant cultivars are the most economical and environment-friendly ways to reduce the damage caused by wheat leaf rust. Lr38 and Lr45 are the effective resistance genes to wheat leaf rust currently in the world. Related studies were carried out on both genes for molecular markers, and analysis of expression sequence as well as proteome, laying a solid foundation for the marker assisted selection (MAS) and identification of resistance mechanism for Lr genes.
     1. A new specific molecular marker disgnated as Y38SCAR982 for wheat leaf rust resistance gene Lr38 was developed by using a SCAR marker derived from E-chromosome of Thinopyrum, and it was found that Y38SCAR982 was co-segregated with gene Lr38 in the tested F2 progeny and can be used in MAS feasibly.
     2. A RAPD marker for Lr45 was acquired and converted into a stable SCAR marker named as YpSc20H1272. A SCAR marker, named YpSc20H750, for Lr45 was obtained based on specific RAPD fragment pSc20H.2 of Secale cereale. A new specific molecular marker for Lr45 was developed based on the fragment amplified with a SCAR marker primers (H11R/F) derived from S. cereale, and named as YpScH650, with a long genetic distance to Lr45. The three SCAR markers can be used to detect 1R to 7R chromosomes loci of S. cereale, except for YpSc20H750 in which no alleles loci were detected on 5R. These markers can be used in MAS feasibly based on the detection of 100 wheat cultivars used in this paper.
     3. Resistant genes of wheat leaf rust, Lr38 and Lr45, were investigated first time by TRAP, combined with SRAP and SSR or EST-SSR. A 277 bp specific fragment was acquired in TcLr38. The specific fragment has no homologous sequence in GenBank, but the same size fragment was amplified in most of the 100 wheat cultivars. The genes Lr38 and Lr45 were studied by TRAP as well, with a combination of SRAP with RGA. A specific fragment was acquired in TcLr45, which showed highly homology with EST sequence, but no homology with DNA sequences in GenBank database. One sequence of the specific fragment had 90% homology with Lr10, indicating that it may closely related to disease resistance.
    
     4. An elongated fragment of 1213 bp from the 3′end of Y38SCAR982 in Lr38 gene was obtained first time by chromosome walking NASS-PCR. A full length of 2195 bp sequence with a complete ORF, encoding 313 amino acid of retro-transposons rve, has 67% homology with rve integrase core domain sequence of Hordeum.
     5. The 2-D maps of TcLr38 and Thatcher were analyzed first time. One different expression protein spot was identified in Tathcher, and was analyzed and searched its homologous proteins in the database based on NCBI by using MALDI-TOF-MS. Oxygen-bursting complex precursor (OEC), a kinase-like and beta galactosidase-like protein showed highly homology with a part of the differential protein polypeptide.
     6. A pair of specific primers were designed based on the OEC, and a fragment of 750 bp expected product was acquired when amplification was carried out on cDNA of TcLr38, Thatcher and DNA of TcLr38. 1000 bp products was acquired just in DNA of TcLr38 and Thatcher. So, a conclusion can be drawn that there were two kinds of OEC genes in TcLr38 genome, one with introns, and the other with protein sequence of oxygen-bursting complex.
引文
[1]Kolmer J A. Genetics of resistance to wheat leaf rust[J]. Annual Review of Phytopathology, 1996, 34: 435-455.
    [2]Kloppers F J, Pretorius Z A. Effects of combinations amongst genes Lr13, Lr34 and Lr37 on components of resistance in wheat to leaf rust[J]. Plant Pathology, 1997, 46: 737-750.
    [3]Knott D R. The wheat rust breeding for resistance[J]. Theoretical and Applied Genetics, 1989, 201: 191-198.
    [4]Flor H H. Current status of the gene-for-gene concept[J]. Annual Review of Phytopathology, 1971, 9: 275-296.
    [5]Mcdowell J M, Woffenden B J. Plant disease resistance genes:recent insights and potential applications [J]. Trends in Biotechnology,2003,21(4):178-183.
    [6]Johal G S, Briggs S P. Reductase activity encoded by the Hm1 disease resistance gene in maize[J]. Science, 1992, 258:985-987.
    [7]Thomas C M, Jones D A, Parniske M, et al. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9[J]. Plant Cell, 1997, 9:2209-2224.
    [8]Dixon M S, Hatzixanthis K, Jones D A, et al. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number[J]. Plant Cell,1998,10(11):1915- 1925.
    [9]Jones D A, Thomas C M, Hammond-Kosack K E, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging[J]. Science, 1994, 266:789-793.
    [10]Whitham S, Dinesh-Kumar S P, Choi D, et al. The product of the tobacco mosaic virus resistance gene N:similarity to toll and the interleukin-l receptor[J]. Cell, 1994, 78:1101-1115.
    [11]Ellis J, Lawrence G, Ayliffe M, et al. Advances in the molecular genetic anaysis of the flax-flax rust-interaction[J]. Annual Review of Phytopathology, 1997, 35:271-291.
    [12]Peter N D, Gregory J L, Jeffrey G E.Six amino acid changes confined to the leucine-rich repeatβ-strand/β-turn motif determine the difference between the P and P2 rust resistance specificities in flax[J]. Plant Cell, 2001, 13(1):163-178.
    [13]Coulson A, Sulation J, Brenner S, et al. Toward a physical map of the genome of the nematode Caenorhabditis elegans[J]. Proceedings of the National Academy of Sciences, 1986, 83:7821-7825.
    [14]Arondel V, Lemieux B, Hwang I, et al. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis[J]. Science, 1992, 258:1353-1355.
    [15]Yan L, Loukoianov A, Tranquilli G, et al. Positional cloning of the wheat vernalization gene VRN1[J]. Proceedings of the National Academy of Sciences, 2003, 100(10):6263-6268.
    [16]Cloutier S, McCallum B D, Loutre C, et al. Leaf rust resistance gene Lr1,isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family[J]. Plant Molecular Biology, 2007,65(1-2):93-106.
    [17]Stein N, Feuillet C, Wicker T H, et al. Subgenome chromosome walking in wheat:a 450-kb physical contig in Triticum monococcum L.spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.)[J]. Proceedings of the National Academy of Sciences, 2000, 97:13436-13441.
    [18]Feuillet C, Travella S, Stein N, et al. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome[J]. Proceedings of the National Academy of Sciences, 2003, 100(25):15253-15258.
    [19]Huang L, Steven A B, Li W L, et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat[J]. Genetics, 2003, 164:655-664.
    [20]易图永,谢丙炎,张宝玺,等.植物抗病基因同源序列及其在抗病基因克隆与定位中的应用[J].生物技术通报, 2002, 2:16-20.
    [21]Shen Q H, Zhou F, Bieri S, et al. Recognition Specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus[J]. Plant Cell, 2003, 15:732-744.
    [22]Halterman D, Wei F, Wise R P. Powdery mildew-induced Mla mRNA are alternatively spliced and contain multiple upstream open reading frames[J]. Plant Physiology, 2003, 131(2):558-567.
    [23]Halterman D A, Wise R P. A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling[J]. Plant Journal, 2004, 38:215-226.
    [24]Collins N, Drake J, Ayliffe M, et al. Molecular characterization of the maize Rpl-D rust resistance haplotype and its mutants[J]. Plant Cel1, 1999, 11:1365-1376.
    [25]Bendahmane A, Kanyuka K, Baulcombe D C. Agrobacterium transient expression system as a tool for the isolation of disease resistance genes:application to the Rx2 locus in potato[J]. Plant Journal, 2000, 21(1):73-81.
    [26]Dodds P N, Lawrence G L, Ellis J G.Contrasting modes of evolution acting on the complex N locus for rust resistance in flax[J]. Plant Journal, 2001, 27:439-452.
    [27]Ballvora A, Ercolano M R, Wei J, et al. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes[J]. Plant Journal, 2002, 30:361-371.
    [28]Song J, Bradeen J M, Naess S K, et al. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight[J]. Proceedings of the National Academy of Sciences, 2003, 100:9128-9133.
    [29]Seah S, Bariana H, Jahier J, et al. The introgressed segment carry rust resistance genes Yr17,Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence[J]. Theoretical and Applied Genetics, 2001, 102:600-605.
    [30]王海燕,杨文香,孟庆芳,等.小麦抗叶锈病基因Lr35相关基因组DNA片段的分离[J].农业生物技术学报, 2006, 14(5):824-825.
    [31]褚栋,杨文香,闫红飞,等.小麦抗叶锈病基因Lr38的RGA分析初报[J].植物病理学报, 2005, 35(6)(ZK):179-180 88
    [32]Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990, 18(22):6531-6535.
    [33]Schachermayr G, Siedler H, Gale M D, et al. Identification and localization of molecular markers liked to the Lr9 leaf rust resistance gene of wheat[J]. Theoretical and Applied Genetics, 1994, 88(1):110-115.
    [34]Gupta S K, Charpe A, Koul S, et al. Deve1opment and validation of molecular markers linked to an Aegilops iumbellulata-derived leaf rust resistance gene, Lr9, for marker-assisted selection in bread wheat[J]. Genome, 2005, 48(5):823-830.
    [35]Antrique E, Singh R P, Tanksley S D, et al. Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives[J]. Genome, 1995, 38:75-83.
    [36]Dedryver F, Jubier M F, Thouvenin J, et al. Molecular markers linked to the leaf rust resistance Gene Lr24 in different wheat cultivars[J]. Genome, 1996, 39:830-835.
    [37]Procunier J D, Townley-Smith T F, Fox S, et al. PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat(Triticum aestivum L.)[J]. Journal of Genetic and Breeding, 1995, 49:92-97.
    [38]Naik S, Gill K S, Prakasa Rao V S, et al. Identification of a STS marker Linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat[J]. Theoretical and Applied Genetics, 1998, 97(4):535-540.
    [39]Lottering J M, BOtha A-M, Klopper R F. AFLP and RAPD markers Linked to leaf rust resistance gene Lr41 in wheat[J]. SAJ of Plant and Soil, 2002, 19(l):17-22.
    [40]William H M, Hoisington D, Singh R P, et al. Detection of quantitative trait loci associated with leaf rust resistance in bread wheat[J]. Genome, 1997, 40:253-260.
    [41]Moore S S, Sargeant L L, King T J, et al. The conservation of dinucleotide microsatellites among manunalian genomes allows the use of heterologous PCR Primer Pairs in closely related species [J]. Genome, 1991, 10:654-660.
    [42]Roder M S, Korzuna V, Wendehakea K, et al. A microsatellite map of wheat[J]. Genetics, 1998, 149: 2007-2023.
    [43]Pestsova E, Ganal M W, Roder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat[J]. Genome, 2000, 43(4):689-697.
    [44]Gupta P K, Balyan H S, Edwards K J. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat[J]. Theoretical and Applied Genetics, 2002, 105:413-422.
    [45]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 2004, 109:1105-1114.
    [46]Suenaga K, Singh R P, Huerta-Espino J, et al. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat[J]. Phytopathology, 2003, 93:881-890.
    [47]Baszczyk L, Goyeau H, Huang X Q, et al. Identifying leaf rust resistance gene and mapping gene Lr37 on the microsatellite map of wheat[J]. Cellular and Molecular Biology Letters, 2004, 9:869-878.
    [48]Mebrate S A, Oerke E C, Dehne H W, et al. Mapping of the leaf rust resistance gene Lr38 on wheatchromosome arm 6DL using SSR marker[J]. Euphytica, 2007, published online. http://www.springerlink.com/content/m474600206456174/
    [49]Raupp W J, Sukhwinder-Singh, Brown-Guedira G L, et al. Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat[J]. Theoretical and Applied Genetics, 2001, 102:347-352.
    [50]张娜,杨文香,李亚宁,等.小麦抗叶锈病基因Lr45的SSR分子标记[J].作物学报, 2007, 33(4): 657-662.
    [51]Brown-Guedira G L, Singh S, Fritz A K. Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii sub sp. armeniacum[J]. Pytopathology, 2003, 93:784-789.
    [52]Chen X M, Line R F, Leung H. Genome scanning for resistance-gene analogs in rice barely and wheat by high-resolution electrophoesis[J]. Theoretical and Applied Genetics, 1998, 97:345-355.
    [53]Yan G P, Chen X M, Line R F, et al. Resistance gene-analog polymorphism markers cosegregating with the Yr5 gene for resistance to wheat stripe rust[J]. Theoretical and Applied Genetics, 2003, 106: 636-643.
    [54]Shi Z X, Chen X M, Line R R, et al. Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust[J]. Genome, 2001, 44:509-516.
    [55]Li G, Quiros C F. Sequence related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J]. Theoretical and Applied Genetics, 2001, 103:455-461.
    [56]Hu J, Vick B A. Target region amplification polymorphism:a novel marker technique for plant genotyping[J]. Plant Molecular Biology Reporter, 2003, 21:289-294.
    [57]Li G, Gao M, Yang B, et al. Gene for gene alignment between the Brassica and Arobidopsis genomes by direct transcriptome mapping[J]. Theoretical and Applied Genetics, 2003, 107:168-180.
    [58]Hu J, Seiler G, Jan C C, et al. Assessing genetic variability among sixteen perennial Helianthus species using PCR-based TRAP markers[J]. Proceeding 25th Sunflower Research Workshop, 16-17, January 2003, Fargo, N D.
    [59]Ochman H, Gerber A S, Hartl D L. Genetic applications of an inverse polymerase chain reaction[J]. Genetics, 1988, 120:621-623.
    [60]Triglia T, Peterson M G, Kemp D J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences[J]. Nucleic Acids Res, 1988, 16:81-86.
    [61]Arveiler B, Porteous D J. Amplification of end fragments of YAC recombinants by inverse polymerase chain reaction[J]. Technique, 1991, 3:24-28.
    [62]Shyamala V, Ames G F-L. Genomic walking by single-specific- primer polymerase chain reaction: SSP-PCR[J]. Gene, 1989, 84:1-8.
    [63]Warshawsky D, Miller L. A rapid genomic walking technique based on ligation-mediated PCR and magnetic separation technology[J]. BioTechniques, 1994, 16:792-798.
    [64]Sterky F, Holmberg A, Alexandersson G, et al. Direct sequencing of bacterial artificial chromosome (BACs) and prokaryotic genomes by biotin-capture PCR[J]. J. Biotechnol, 1998, 246:810-813.
    [65]Yuan X Y, Cheng C A, Li L, et al. T-linker-specific ligation PCR (T-linker PCR): an advanced PCRtechnique for chromosome walking or for isolation of tagged DNA ends[J]. Nucleic Acids Res, 2003, 31:e68.
    [66]Parker J D, Rabinovitch P S, Burmer G C. Targeted gene walking polymerase chain reaction[J]. Nucleic Acids Res, 1991, 19:3056-3060.
    [67]Liu Y G, Mitsukawa N, Oosumi T, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR[J]. Plant J, 1995, 8: 457-463.
    [68]Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking[J]. Genomics, 1995, 25:674-681.
    [69]Terauchi R, Kahl G. Rapid isolation of promoter sequences by TAIL-PCR: the 5-flanking regions of Pal and Pgi genes from yams (Dioscorea) [J]. Mol Gen Genet, 2000, 263: 554-560.
    [70]Michiels A M, Tucker W, van den Endc, et al. Chromosomal walking of flanking regions from short known sequences in GC-rich plant genomic DNA[J]. Plant molecular biology reporter, 2003, 21: 295-302.
    [71]Peng H Z. Studies on the characteristic of meristem development and cloning and functional analysis of related genes in bamboo[D]. Ph. D Paper of Zhejiang University [D]2005.
    [72]Tan G H, Gao Y, Shi M. SiteFinding-PCR: a simple and efficient PCR method for chromosome walking[J]. Nucleic Acids Research, 2005, 33,(13)e122.
    [73]Yu J, Hu S N, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica) [J]. Science, 2002, 296(5565):79-92.
    [74]Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)[J]. Science, 2002, 296(5565):92-100.
    [75]Theologis A, Ecker J R, Palm C J, et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408:796-815.
    [76]乌云塔娜,张党权,谭晓风.蛋白质组学及其在植物研究中的应用[J].中南林学院学报, 2005, 25(4):115-119.
    [77]廖玉才,张启发,郑用琏.受白粉菌诱导大麦抗感等基因系蛋白质变化的双向电泳分析[J].遗传学报, 1991, 18(5):431-436.
    [78]Kim S T, Cho K S, Yu S, et al. Proteomic analysis of differentially expressed protein induced by rice blast fungus and elicitor in suspension-cultured rice cells[J]. Proteomics, 2003, 3:2368-2378.
    [79]Ventelon-Debout M, Delalande F, Brizard J P, et al. Proteome analysis of cultivar specific deregulations of Oryza Sativa Indica and O. Sativa Japonica cellular suspensions undergoing rice yellow mottle virus infection[J]. Proteomics, 2004, 4:216-225.
    [80]Kim S T, Kim S G, Hwang D H, et al. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus,Magnaporthe grisea[J]. Proteomics, 2004, 4:3569-3578.
    [81]李跃建,姬红丽,彭云良,等.应用双向电泳技术研究条锈菌侵染后小麦蛋白质的改变[J].四川大学学报(工程科学版), 2005, 37(2):80-85.
    [82]王雪.棉花黄萎病菌胁迫条件下蛋白质表达差异分析[D]. 2006,河北农业大学硕士学位论文.
    [83]李冰.小麦抗叶锈病近等基因系TcLr10与Thatcher蛋白质组表达差异分析[D]. 2007,河北农业大学硕士学位论文.
    [84]Hiebert C W, Thomas J B, McCallum B D, et al. Genetic mapping of the wheat leaf rust resistance gene Lr60 (LrW2)[J]. Crop Science, 2008, 48:1020-1026.
    [85]Feuillet C, Messmer M, Schachermayr G, et al. Genetic and physical characterization of the Lr1 leaf rust resistance locus in wheat (Triticum aestivum L.)[J]. Molecular and General Genetics, 1995, 248: 553-562.
    [86]Herrera-Foessel S A, Singh R P, Huerta-Espino J, et al. Lr61: a novel gene for leaf rust resistance in durum wheat[M]. International durum wheat symposium I, 2008: P69.
    [87]Schachermayr G, Feuillet C, Keller B. Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds[J]. Molecular Breeding, 1997, 3:65-74.
    [88]Neu C, Stein N, Keller B. Genetic mapping of the Lr20–Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat[J]. Genome, 2002, 45:737-744.
    [89]Schachermayr G M, Messmer M M, Feuillet C, et al. Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat[J]. Theoretical and Applied Genetics, 1995, 90:982-990.
    [90]Seyfarth R, Feuillet C, Schachermayr G, et al. Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat[J]. Theoretical and Applied Genetics, 1999, 99:554-560.
    [91]Li H, Victor K, Bikram S G. Molecular markers linked to the leaf rust resistance genes Lr39 and Lr40 of wheat introgressed from Aegilops tauschii[D]. Plant & Animal Genome VII Conference, San Diego, CA:1999-01, p383.
    [92]William M R P, Singh J, Huerta-Espino, et al. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat[J]. Phytopathology, 2003, 93(2):153-159.
    [93]Helguera M, Khan I A, Dubcovsky J. Development of PCR markers for the wheat leaf rust resistance gene Lr47[J]. Theoretical and Applied Genetics, 2000, 100(1):137-143.
    [94]Cherukuri D P, Gupta S K, Charpe A, et al. Identification of a molecular marker linked to an Agropyron elonguatum-derived gene Lr19 for leaf rust resistance in wheat[J]. Plant Breeding, 2003, 122:204-208.
    [95]Sudhir K G, Ashwini C, Kumble V P, et al. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat[J]. Theoretical and Applied Genetics, 2006, 113(6): 1027-1036.
    [96]Messmer M M, Seyfarth R, Keller M, et al. Genetic analysis of durable leaf rust resistance in winter wheat[J]. Theoretical and Applied Genetics, 2000, 100:419-431.
    [97]Zhang W J, Lukaszewaki A J, Kolmer J, et al. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum[J]. Theoretical and Applied Genetics, 2005, 111:573-582.
    [98]Groenewald J Z, Marais A S, Marais G F. Amplified fragment length polymorphism-derived microsatellite sequence linked to the Pch1 and Ep-D1 loci in common wheat[J]. Plant Breeding, 2003, 92122:83-85.
    [99]李星,杨文香,李亚宁,等.小麦抗叶锈基因Lr19的SSR标记[J].中国农业科学, 2005, 38(6): 1156-1159.
    [100]Kazuhiro S, Singh R P, Manilal H M. Tagging of leaf rust resistance genes, Lr34 and Lr46, using microsatellite markers in wheat[J]. Jircas Research Highlights, 2002, 31:8-9.
    [101]Helguera M, Vanzetti L, Soria M, et al. PCR Markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines[J]. Crop Science, 2005, 45: 728-734.
    [102]Hiebert C, Thomas J, McCallum B. Locating the broad-spectrum wheat leaf rust resistance gene Lr52 (LrW) to chromosome 5B by a new cytogenetic method[J]. Theoretical and Applied Genetics, 2005, 110(8):1453-1457.
    [103]张娜,闫红飞,李爱霞,等.小麦抗叶锈病基因Lr2cSSR分子标记[J].农业生物技术学报, 2009, 17 (1):148-152.
    [104]Khan R R, Bariana H S, Dholakia B B. mapping of stem and leaf rust resistance in wheat[J]. Theoretical and Applied Genetics, 2005, 111:846-850.
    [105]Gold J, Harder D, Townley S F, et al. Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines[J]. Electronic Journal of Biotechnology, 1999, 2:1-6.
    [106]张立荣,徐大庆,杨文香,等.小麦抗叶锈基因Lr37 ISSR分子标记[J].农业生物技术学报, 2004, 12(1):86-89.
    [107]Prins R J, Groenewald J Z, Marais G F, et al. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat[J]. Theoretical and Applied Genetics, 2001, 103(4):618-624.
    [108]李星,杨文香,李亚宁,等.小麦抗叶锈基因Lr19的AFLP标记[J].中国农业科学, 2005, 38(9):1796-1800.
    [109]Blaszczyk L, Tyrka M, Chelkowski J. PstIAFLP based markers for leaf rust resistance genes in common wheat[J]. Journal of Applied Genetics, 2005, 46(4):357-364.
    [110]贾漩,杨文香,刘大群.小麦抗叶锈基因Lr38的AFLP标记[J].植物病理学报, 2004, 34(4):380-382.
    [111]杨文香,贾璇,闫红飞,等.小麦抗叶锈基因Lr44的AFLP分子标记[J].河北农业大学学报, 2005(2):67-70.
    [112]张娜,杨文香,闫红飞,等.小麦抗叶锈病基因Lr45的AFLP标记[J].中国农业科学, 2005, 38(7):1364-1368.
    [113]刘雅辉,闫红飞,杨文香,等.小麦抗叶锈病基因Lr19的SRAP标记[J].华北农学报2007, 22(4)193-196.
    [114]刘雅辉,闫红飞,杨文香,等. 23个小麦抗叶锈病近等基因系SRAP多态性[J].中国农业科学2008, 41(5):1333-1340.
    [115]张娜.小麦抗叶锈病基因Lr24分子标记及其抗病相关分析[D]. 2008,河北农业大学博士学位论文.
    [116]闫红飞,刘春燕,高士刚,等.小麦抗叶锈基因Lr45的SCAR标记[J].中国农业科学,2009, 42(1):124-129.
    [117]闫红飞,杨文香,褚栋,等.小麦抗叶锈基因Lr38的一个新标记[J].中国农业科学, 2008, 41(11):3604-3609.
    [118]王海燕.TcLr35小麦抗病相关基因克隆及分析[D].2006,河北农业大学博士学位论文.
    [119]Simon G K, Evans S L, Wolfgang S, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat[J]. Science, 2009, 323 (5919):1360-1363.
    [120]Roebner R M D, Ge nnaro A, Ceoloni C. A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat Funct Integr[J]. Genomics, 2009, published online.
    [121]Friebe B, Zeller F J, Mukai Y, et al. Characterization of rust-resistant wheat-Agropyron inthermedium derivatives by C-banding, in situ hybridization and isozyme analysis[J]. Theoretical and Applied Genetics, 1992, 83:775-782.
    [122]McIntosh R A, Friebe B, Jiang J, et al. Cytogenetical studies in wheat: X VI. Chromosome location of a new gene for resistance to leaf rust in a Japanese-rye translocation line[J]. Euphytica, 1995, 82: 141-147.
    [123]Krupnov V A, Voronina S A, Sibikeev S N, et al. Virulence of leaf rust in bread wheat to Lr19. http://wheat.Pw.usda. gov/ggpages/awn/41/awn41c3.htm1.
    [124]尤明山,李保云,唐朝晖,等.偃麦草E染色体组特异RAPD和SCAR标记的建立[J].中国农业大学学报, 2002, 7(5):1-6.
    [125]Ko J M, Do G S, Suh D Y, et al. Identification and chromosomal organization of two rye genome specific RAPD products useful as introgression marks in wheat[J]. Genome, 2002, 45:157-164.
    [126]刘成,李光蓉,杨足君,等.黑麦基因组特异DNA片段的分离与SCAR标记的建立[J].西北植物学报[J]. 2006, 26(12): 2434-2438.
    [127]周建平,杨足君,冯娟,等.黑麦特异DNA重复序列的分离与鉴定[J].西南农业学报,2005, 18(5): 598-602.
    [128]Roelfs A P. Race specificity and method of study.Bushnell W R, Roelfs A P. The cereal rust.Vol.I: Origins, specificity,structure and physiology. Academic Press, Orlando, 1984, 2: 131-164.
    [129]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980, 8(19):4321-4325.
    [130]Lander E S, Green P, Abrahamson J, et al. MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural populations[J]. Genomics, 1987, 1: 174-181.
    [131]Horejsi T, Box J M, Staub J E. Efficiency of random amplified polymorphic DNA to sequence characterized amplified region marker conversion and their comparative polymerase chain reaction sensitivity in cucumber[J]. Journal of the American Society for Horticultulal, 1999, 124(2): 128-135.
    [132]Timmerman G M, Frew T J, Weeden N F, et al. Linkage analysis of er-1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D. C.) [J]. Theoretical and Applied Genetics, 1994, 88: 1050-1055.
    [133]闫红飞,杨文香,陈云芳,等.偃麦草属E染色体组特异SCAR标记对Lr19的特异性和稳定性研究[J],植物病理学报, 2009, 39(1): 78-83.
    [134]魏新燕,杨文香,刘大群,等.小麦抗叶锈基因Lr35在150个小麦品种中的分子辅助选择[J].中国农业科学, 2004, 37(12):1951-1954.
    [135]Komatsu M, Shimamoto K, Kyozuka J. Two step regulation and continuous retrotransposition of the rice Line-type retrotransposon karma[J]. Plant cell, 2003, 15(8):1934-1944.
    [136]Echenique V, Stamova B, Wolters J. Frequency of Ty1-copia and Ty3-gypsy retroelements within the Triticeae EST databases[J]. Theoretical and Applied Genetics, 2002, 104:840-844.
    [137]Bennetzen J L. Transposable element contribution to plant gene and genome evolution [J]. Plant Molecular Biology, 2000, 42:251-269.
    [138]王石平,张启发.高等植物基因组中的反转录转座子[J].植物学报, 1998, 40(4):291-297.
    [139]Kimure Y, Shimada S, Sogo R, et al. OARE-I, a Tyl-copra retrotransposon in oat activated by abiotic and biotic stresses[J]. Plant Cell Physiology, 2001, 42(12):1345-1354.
    [140]Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposon alters the expression of adjacent genes in wheat[J]. Nature Genetics, 2003, 33:102-106.
    [141]Chen Q, Conner R L, Laroche A, et al. Genome analysis of Thinopyrum intermedium and Th. ponticum using genomic in situ hybridization[J]. Genome, 1998, 41:580-586.
    [142]吉万全,薛秀庄,王秋英,等.中间偃麦草的GISH分析[J].西北植物学报, 2001, 21(3): 401-405.
    [143]Friebe B, Mukai Y, Dhaliual H S, et al. Identification of alien chromatin specifying resistance to wheat streak mosaic virus and greenbug in wheat germplasm by C-banding and in-situ hybridization[J]. Theoretical and Applied Genetics, 1991, 81:381-389.
    [144]Liu Z W, Wang R R C. Genome analysis of Elytrigia caespitosa, Lophopyrum nodosum, Pseudoroegeneria geneiculata ssp. scythica, and Thinopyrum intermedium (Triticeae, Gramine) [J]. Genome, 1993, 36(1):102-111.
    [145]Flavell R B, Bennett M D, Smith J B, et al. Genome size and the proportion of repeated sequence DNA in plants[J]. Biochem Genet, 1974, 12:257-269.
    [146]Flavell R B, Rimpau J, Smith D B. Repeated sequence DNA relationships in four cereal genomes [J]. Chromosome, 1977, 63:205-222 .
    [147]Appel G B, Blum C B, Chien S, et al. The hyperlipidemia of the nephrotic syndrome relation to plasma albumin concentration, oncotic pressure, and viscosity[J]. N Engl J Med, 1985, 312:1544- 1548.
    [148]Anamthawat J K, Heslop H J S. Species specific DNA sequences in the Triticeae[J]. Hered- itas, 1992, 116:49-54.
    [149]Anamthawat J K, Heslop H J S. Isolation and characterization of genome-specific DNA sequences in Triticeae species[J]. Molecular and General Genetics, 1993, 240(2):151-158.
    [150]Svitashev S, Bryngelsson T, Li X, et al. Genome-specific repetitive DNA and RAPD markers for genome identification in Elymus and Hordelymus[J]. Genome, 1998, 41:120-128.
    [151]Dvorak J, Zhang H B. Application of molecular tools for study of the phylogeny of diploid and polyploidy taxa in Triticeae[J]. Hereditas, 1992, 116:37-42.
    [152]Iqbal M J, Rayburn A L. Identification of the 1RS rye chromosomal segment in wheat by RAPD analysis[J]. Theoretical and Applied Genetics, 1995, 91:1048-1053.
    [153]Brunell M S, Lukaszewski A J, Whitkus R. Development of arm specific RAPD marker for rye chromosome 2R in wheat[J]. Crop Science, 1999, 39:1702-1706.
    [154]Gallego F J, Lopez-Solanilla, Figueiras A M, et al. Chromosomal location of PCR fragments as a source of DNA markers linked to aluminium tolerance genes in rye[J]. Theoretical and Applied Genetics, 1998, 96:426-437.
    [155]Hallden C, Hansen M, Nilsson N O, et al. Competition as a source of errors in RAPD analysis[J]. Theoretical and Applied Genetics, 1996, 93:1185-1192.
    [156]Paran I, Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce[J]. Theoretical and Applied Genetics, 1993, 85 (8): 985-993.
    [157]Kong L R, Tzeng D D, Yang C H. Generation of PCR-based DNA fragments for specific detection of Streptomyces saraceticus N45[J]. Proc Natl Sci Counc ROC(B), 2001, 25 (2): 119-127.
    [158]Kasai K, Morikawa Y, Sorri V A, et al. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes[J]. Genome, 2000, 43:1-8.
    [159]Nagy E D, Lelley T. Genetic and physical mapping of sequence specific amplified polymorphic (SSAP) markers on the 1RS chromosome arm of rye in a wheat background[J]. Theoretical and Applied Genetics, 2003, 107:1271-1277.
    [160]Lee J H, Graybosch R A, Lee D J. Detection of rye chromosome 2R using the polymerase chain reaction and sequence specific DNA primers[J]. Genome, 1994, 37:19-22.
    [161]Hsam S L K, Mohler V, Hartl L, et al. Mapping of powdery mildew and leaf rust resistance genes on the wheat-rye translocated chromosome 1BL.1RS using molecular and biochemical markers[J]. Plant Breeding, 2000, 119:87-89.
    [162]Seo Y W, Jang C S, Johnson J W. Development of AFLP and STS markers for identifying wheat-rye translocations possessing 2RL[J]. Euphytica, 2001, 121(3):279-287.
    [163]张文俊, Snape J W.分子标记技术定位黑麦6R染色体上的抗小麦白粉病基因[J].科学通报, 1995,40(24): 2274-2276.
    [164]王江春,胡延吉,余松烈,等.建国以来山东省小麦品种及其亲本的亲缘系数分析[J].中国农业科学,2007,40(9):1871-1876.
    [165]张勇,王德森,张艳,等.北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析[J].中国农业科学, 2006, 39(4):664-672.
    [166]Han F P, Fedak G, Guo W, et al. Rapid and repeatable elimination of a parental genome -specific DNA repeat (pGc1R-1a)in newly synthesized wheat allopolyploids[J]. Genetics, 2005, 170(3): 1239-1245.
    [167]唐宗祥,任正隆,符书兰,等.黑麦特异重复序列pSc119.1在姊妹T1RS.1BL易位系中的变异[J].遗传, 2007, 29(2):235-242.
    [168]Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers[J]. Genetic Resources and Crop Evolution, 2003, 50(3):227-238.
    [169]潘俊松,王刚,李效尊,等.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位[J].自然科学进展, 2005, 15(2):167-171.
    [170]Hatey F, Yano M, Shomura A, et al. Expressed sequence tags for genes:a review [J]. Genentics Selection Evolution, 1998, 30(1):521-541.
    [171]Yammanoto K, Sasaki T. Large scale EST sequencing in rice[J]. Plant Molecular Biology, 1997, 35 (1):135-144.
    [172]Chen X, Salamini R, Gebhardt C. A potato molecular function map for carbohydrate metabolism and transport[J]. Theoretical and Applied Genetics, 2001, 102:284-295.
    [173]Thiel T, Michalek W, Varshney R K, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.)[J]. Theoretical and Applied Genetics, 2003, 106:411-422.
    [174]Sylvia S, Campbell L, Henderson K, et al. Development of EST-derived microsatellite markers for mapping and germplasm analysis in wheat.In:Proceedings of Plant & Animal GenomeⅧConference, San Diego, CA, 2000, January 9-12.
    [175]Cordeiro G M, Casu R, McIntyre C L, et al. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum[J]. Plant Science, 2001, 160:1115-1123.
    [176]Taylor C, Madsen K, Borg S, et al. The development of sequence-tagged sites (STSs) in Lolium perenne L:the application of primer sets derived from other genera[J]. Theoretical and Applied Genetics, 2001, 103:648-658.
    [177]Decroocq V, Fave M G, Hagen L, et al. Development and transferability of apricot and grape EST microsatellite markers across taxa[J]. Theoretical and Applied Genetics, 2003, 106(5):912-922.
    [178]Holton T A, Christopher J T, Mcclure L, et al. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat[J]. Molecular Breeding, 2002, 9:63-71.
    [179]刘丽.小冰麦33苗期抗叶锈病性鉴定[D]. 2006,河北农业大学硕士学位论文.
    [180]Delavault P, Patrick T. The obligate root parasite Orobanche-cumana exhibits several rbcL sequences[J]. Gene, 2002, 297:85-92.
    [181]Chen B J, Wang Y, Hu Y L, Wu Q, Lin ZP. Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia[J]. Plant Sci, Available online, 2004.
    [182]Dhammika G, Robert G. K-emp. Genomic organization flanking region and tissue-specific expression of mouse phosphofrucokinase C gene[J]. Gene, 2000, 260(1-2):103-112.
    [184]Rampitsch C, Bykove N V, McCallum B, et al. Analysis of the wheat and Puccinia triticinia (leaf rust) proteomes during a susceptible host-pathogen interaction [J]. Proteomics, 2006, 6:1897-1907.
    [185]李林.蛋白质组学的进展[J].生物化学生物物理进展, 2000, 27(3):227-230.
    [186]Cygi S P, Crothals G L, Zhang Y N, et al. Evaluation of two-dimensional gel electrophoresis based proteome analysis technology[J].Proceeding of the National Academy Science, 2000, 97(17): 9390-9395.
    [187]陈主初,梁宋平.肿瘤蛋白质组学[M].湖南:湖南科技出版社, 2002.
    [188]何瑞峰,丁毅,张剑锋,等.植物叶片蛋白质双向电泳技术的改进与优化[J].遗传, 2000,22(5):319-321.
    [189]李海波.大豆质核互作雄性不育系和保持系间的蛋白质的比较研究[D]. 2004,南京农业大学硕士学位论文.
    [190]王智析.小麦叶锈菌侵染对不同抗病性小麦品种的生理生化差异[M].植物抗性生理研究.山东:山东科技出版社, 1991:173-178.
    [191]廖翔,应天翼,黄留玉,等.蛋白质组学研究的双向电泳技术[J].生物技术通讯, 2003, 14(6):522-524.
    [192]Gorg A, Obermaier C, Bougth C. The current state of two-dimension electrophoresis with immobilized pH gradients[J]. Electrophoresis, 2000, 21(6):1037-1053.
    [193]朱宏. T型小麦细胞质雄性不育和可育株总水溶性差异蛋白质研究[D]. 2003,东北农业大学博士学位论文.
    [194]朱宏,马旭俊,马兴宏,等.小麦叶片蛋白质的双向电泳分析[J].哈尔滨师范大学自然科学学报, 2001, 17(1):98-101.
    [195]许克新,王云川.双向电泳及质谱分析与蛋白质组研究[J].第四军医大学学报, 2002, 23(22):2017-2022.
    [196]Ogurl T, Takahata I, Katsuta K, et al. Proteome analysis of rat hippocampal neurons by multiple large gel two-dimensional electrophoresis[J]. Proteomics, 2002, 2(6):666-672.
    [197]Tonella L, Hoogland C, Binz P, et al. New perspectives in the Escherichia coli proteome investigation[J]. Proteomics, 2001, 1(3):409-423.
    [198]Ohsawa K, Ebata N. Silver stain for detecting 10-femtogram quantities of protein after polyacrylamide gel electrophoresis[J]. Annual Biochemistry, 1983, 135:409-415.
    [199]Candiano G, Bruschi M, Musante L, et al. Blue silver:a very sensitive colloidal Coomassie G-250 staining for proteome analysis[J]. Electrophoresis, 2004, 25:1327-1333.
    [200]Blum H, Beier H, Gross H J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels[J]. Electrophoresis, 1987, 8:93-99.
    [201]Hess D, Covey T C, Winz R, et al. Analytical and micropreparatine peptide mapping by high performance liquid chromatography/electrospray mass spectrometry of proteins purified by gel electrophoresis[J]. Protein Science, 1993, 2:1342-1351.
    [202]Levine A, Tennaken R, Dixon R et al. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response[J]. Cell, 1994, 79(4):583-593.
    [203]Brennan T. Involvement of hydrogen peroxide in the regulation of senescence in pear[J]. plant Physiol, 1977, 59:411-416.
    [204]刘伟霞,潘映红.适用于小麦叶片蛋白质组分析的样品制备方法[J].中国农业科学2007, 40(10):2169-2176.
    [205]韩广业,李淑芹,唐崇钦,等.光合放氧复合物结构及其放氧机理的研究[J].化学进展2004,16(2):184-195.
    [206]江力,曹树青,张荣铣.过氧化氢对烟草光合功能衰退的影响[J].浙江大学学报(理学版) 2006, 33(5):578-581.
    [207]祁艳,刘刚,侯春燕,等.小麦与叶锈菌互作过程中的H2O2与HR[J].分子细胞生物学报, 2008, 41(4):245-254.
    [208]Berger S, Benediktyova Z, Matous K, et al. Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis:differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana [J]. Journal of Experiment Botany, 2007, 58(4):797-806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700