用户名: 密码: 验证码:
大坝地震反应数据场可视化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管近年来对可视化的研究已有了很大的突破,但可视化的方法中还有许多问题有待于人们去解决,比如如何提高体绘制速度、如何动态地显示数据场可视化图像等,这些问题的解决,会进一步扩大可视化的应用领域和范畴。在大坝地震反应分析中,所常用的后处理软件的可视化功能主要是二维显示,三维的可视化功能非常有限,只能显示表面的应力分布和位移变化,无法显示大坝内部场值分布的变化过程,没有达到理想的可视化效果。
     本文充分考虑了大坝地震反应数据场的特点,以大坝地震反应数据场的可视化方法研究为主要内容,以研制开发大坝地震反应可视化系统为最终目的,提出了几种可行性强的数据场可视化方法。其具体研究内容如下:
     (1)、基于St.Andrew单元剖分的基本思想,对定义在四节点非正规化网格上的地震反应数据进行等值线抽取,并以多种颜色绘制出计曲线。采用扫描线方法,计算出断面上像素点的场值及对应的颜色值,绘制出颜色连续变化的场值云图,使人们清楚地了解大坝地震反应中指定断面的场值分布。
     (2)、为了使人们了解大坝地震反应整体应力分布情况,提出多层断面云图显示方法,将大坝多层断面的场值云图通过轴测投影变换后显示在一个画面里,并使其光强叠加,透过前一个断面可看到后一个断面的场值分布。该方法既能显示大坝单个断面的应力分布,又能观察和比较大坝各个断面的应力情况,生成方法简单,易于推广,为体数据的三维可视提供了简单可行的途径。
     (3)、为了弥补传统体绘制静止画面不能明确判断场值集中部位的不足,提出一种快速体绘制算法,针对大坝地震反应有限元计算数据场,根据每个单元法线与视线夹角最小的表面来选择剖切方向,将单元剖切成多个四边形面后,对单元的绘制顺序进行合理排序,利用OpenGL图形库函数进行颜色融合,再将各个单元依次叠加,从而生成了三维数据场的体绘制图。该方法大大提高了体绘制速度,实现了从不同视点动态观察体绘制图,可以清楚地分析场值集中部位。
     (4)、为了动态地显示大坝地震反应数据场的整体变化情况,本文提出了基于网格、表面、体绘制和多断面的数据场三维动态可视方法,并给出了位移数据场的几种动态可视方法,可以立体地反映出三维数据场的整体数据分布,实现大规模数据场实时动态可视,使人们及时准确地了解大坝地震反应过程,正确地做出决策。
     (5)、举例说明了分形的IFS方法;推导出Koch曲线的具体迭代算式;给出了
    
    由分形插值曲面生成地形图的具体方法;提出了在同一递归深度取相同随机量的方法
    解决中点变位法中的裂缝问题,实现了用三角形中点变位法和四边形中点变位法绘制
    场景中的山形,从而用连续四边形面片构造出了库区山形及河道,用分形曲面构造出
    了河床,逼真地全景显示了可视化场景。
     可视化是涉及到计算机图形学、图像处理、计算机辅助设计、计算机视觉及人机
    交互技术等多个领域的交叉学科,可视化在土木工程中的应用又会涉及到土木工程中
    的许多实际工程问题,因此要达到完善大坝地震反应可视化方法及研制开发大坝地震
    反应可视化系统的目标,还有大量艰苦的工作要做。
The study on Scientific Visualization has great achievement recent years, but there are many questions in methods of Visualization which are waiting to be solved, such as how to enhance the speed of volume rendering, how to show the data field visualization images dynamically. Solving these questions will extend the application fields of Visualization. In analysis of dam seismic response, the main visualization function of post treatment software mostly used is 2D display. The 3D visualization function is very limited, which only show the surface stress distribution and surface displacement changes, can not show the changing process of field value distribution inside dam, and not reach the satisfactory level of visualization.
    This dissertation fully considers the special feature of dam seismic response data, the study of visualization method for dam seismic response data is as this paper's main content, research and development of dam seismic response visualization system is as this paper's last aim, this paper presents several feasible methods of data visualization. The main contents studied in this dissertation may be summarized as follows:
    (1) Based on the basis thought of St.Andrew in finite element subdivision, draws off contours in dam seismic response data which is defined on four-node irregular nets, and draws out the integer curves by colors. Using scanning line method, calculates the field value of image element on dam section and relative color value, draws out the color contour which colors change continually. The section field value distribution of dam seismic response can be seen clearly.
    (2) Presents a visualization method-multiple section color contour display, which
    can not only display the stress diagram of single dam section, but also make the stress diagram on several dam section be showed and be compare. This method is a simple and efficient method of volume data visualization.
    (3) The concentrative part of field value can't be judged exactly on the static picture of classical volume rendering. In order to remedy this kind of shortage, this paper presents a quick volume rendering method, for the finite element data field of dam seismic response, choices the slicing direction relying on the element surface which normal line has the smallest included angle with the view direction, slices elements to many quadrilaterals, blends the colors of these quadrilaterals by using OpenGL blending technology, and then
    
    
    superimposes all elements one by one. This method accelerates the speed of volume rendering, thus, we can observe dynamic pictures of volume rendering and analyzes the concentrative part of field value clearly.
    (4) The data of dam seismic response is changeable by time. In order to visualize this kind of data, this paper presents several 3D dynamic visualizing methods based on neU surface, volume rendering and multiple-section. By these methods, the field value's distribution of whole dam can be showed clearly, dynamic rendering for large volume data can be achieved, people can understand the process of dam seismic response promptly and exactly and make correct decision.
    (5) Explains the fractal IPS method by example, deduces the actual iterative formulas, gives the method of generating terrain map by fractal interpolating surface, presents a method of getting same random parameter at the same depth of recursion, which method can solve the cleft in midpoint deflection method. Draws out mountain shape of visualization scene by triangle midpoint deflection method and quadrilateral midpoint deflection method. Then constructs the mountain shape and stream channel of reservoir field by continuous quadrilateral chips, and constructs channel bed by fractal surface, shows the whole visualizing scene truly.
    Visualization is a interdiscipline which relates to Computer Graphics, Image Processing, Computer Aided Design, Computer Visual Sense, People and Computer Interactive Technology, etc. The application of visualization in civil engineering also touches many real engineering prob
引文
[1] McCormick B H,DeFanti T A.Brown M D .Visualization in Scientific Computing. Computer Graphics, 1987,21(6) : 1-14
    [2] T.T.Elvins. A Survey of Algorithms for Volume Visualization. Computer Graphics, 1992,26(3) : 194-201
    [3] C.Barillot. Surface and Volume Rendering Techniques to Display 3-D Data. IEEE Eng. in Medicine and Biology, 1993,12(1) :111-119
    [4] A.Kaufman.etc.. Research Issues in Volume Visualization. IEEE CG&A, 1994,14(2) :63-67
    [5] J.Wilhelms and A.V.Gelder. A Coherent Projection Approach for Direct Volume Rendering. Computer Graphics, 1991,25(4) :275-284
    [6] A. Kaufman(Ed.). Scientific Visualization: Advances and Challenges. IEEE Computer Society Press, 1994.
    [7] 石教英,蔡文立.科学计算可视化算法与系统.科学出版社,1996
    [8] Jirathearanat Suwat, Vazquez Victor.Etc. Virtual processing-application of rapid prototyping for visualization of metal forming processes. Journal of Materials Processing Technology, 2000,98(1) :116-124
    [9] Bauchau O.A., Bottasso C.L., Nikishkov Y.G. Modeling rotorcraft dynamics with finite element multibody procedures. Mathematical and Computer Modelling, 2001,33(10/11) :1113-1117
    [10] Koh Wonryull, McCormick Bruce H. Organization and visualization of brain tissue volume data. Neurocomputing, 2001 .June: 1679-1685
    [11] Koh Wonryull, McCormick Bruce H. Distributed, web-based microstructure database for brain tissue. Neurocomputing, 2000,June: 1065-1071
    [12] Ertl T., Westermann R., Grosso R.. Multiresolution and hierarchical methods for the visualization of volume data. Future Generation Computer Systems, 1999,15(1) :31-42
    [13] Westermann R., Ertl T. Distributed volume visualization: A step towards integrated data analysis and image synthesis. Parallel Computing, 1997,23(7) :927-941
    [14] Tricoche X., Wischgoll T., Etc. Topology tracking for the visualization of time-dependent two-dimensional flows. Computers and Graphics, 2002,26(2) :249-257
    [15] Gro"ller Eduard, Lo"ffelmann Helwig, Etc. Visualization of dynamical systems. Future Generation Computer Systems, 1999,15(1) :75-86
    [16] Post Frits H., de Leeuw Wim C., Etc. Global, geometric, and feature-based techniques for vector field visualization. Future Generation Computer Systems, 1999,15(1) :87-98
    [17] Marion-Poty V, Lefer Wilfrid. A wavelet decomposition scheme and compression method for streamline-based vector field visualizations. Computers and Graphics, 2002,26(6) :899-906
    
    
    [18] Tgnfors Harald. Visualization of FE-data, interactively and on video. Advances in Engineering Software, 1999,30(9-11):753~762
    [19] Cerrolaza M., Aparicio N. A simple hidden surface algorithm for finite and boundary elements postprocessing. Engineering Analysis with Boundary Elements, 1995, 15(1):51~66
    [20] Khoei Amir R. PCS_SUT: a finite element software for simulation of powder forming processes. Journal of Materials Processing Technology, 2002,(125-126):602~607
    [21] Khoei Amir R. An integrated software environment for finite element simulation of powder compaction processes. Journal of Materials Processing Technology, 2002,(130-131 ): 168~174
    [22] 周勇,唐泽圣.适应于体绘制技术的三维有限元网格剖分.计算机学报,1995,18(5):339~350
    [23] 周勇,唐泽圣.通过区域块投影方法直接绘制三维数据场.计算机辅助设计与图形学学报,1996.8(3):161~168
    [24] 任继成,刘慎权.非规则数据场并行体绘制算法.计算机学报,1998,21(9):813~818
    [25] 李斌,梁训东,刘慎权.用图象平面分割方法实现非规则数据场体绘制.计算机辅助设计与图形学学报,1997,9(1):1~8
    [26] 李斌,梁训东,刘慎权.利用相关性进行非规则数据场体绘制.计算机研究与发展.1997,34(11:866~871
    [27] 王文成,吴恩华.用于体绘制的可变模板法.计算机学报,1997,20(7):592~599
    [28] 董峰,蔡文立,石教英.基于空间分割的三维不规则数据场的体绘制算法.计算机辅助设计与图形学学报.1997,9(3):241~248
    [29] 彭延军,石教英.基于边界体素的Shear-warp SplattJng体绘制算法. 计算机工程与应用.2002,(13):13~16
    [30] 杨晓松,原仓周等.基于scan-buffer三维不规则数据场的直接体绘制技术.大连理工人学学报,2000,40(2):198~202
    [31] 杨晓松,顾元宪,李云鹏,关振群.有限元网格体绘制中的剖切算法.中国图象图形学报,2002,7(1):54~62
    [32] 胡于进,吴俊.有限元模型中等值面的快速体绘制算法.计算力学学报,2000,17(3):320~325
    [33] 袁政强,祝家麟,白绍良,李英民.用面向对象的方法作有限元计算结果的可视化.重庆大学学报,2001,24(5):29~32
    [34] 朱宽宁,梁艳萍.电磁场有限元后处理中矢量场的可视化.电机与控制学报,2002,6(1):39~42
    [35] 袁景凌,钟珞,楼梦麟.有限元分析结果的三维可视化.武汉理工大学学报,2001,23(3):15~18
    [36] 王乐天,谢永慧,安宁,孟庆集.汽轮机叶片三维有限元分析后处理.西安交通大学学报,1997,31(12):33~38
    [37] A.Wallin. Constructing Isosurfaces from CT Data. IEEE CG&A, 1991,11(6):28~33
    [38] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution 3D Surface Construction
    
    Algorithm. Computer Graphics, 1987, 21(4): 163~170
    [39] G. T. Herman. H. K. Liu. Three-Dimensional Display of Human Organs from Computed Tomograms. Computer Graphics Image Processing, 1979,(9)
    [40] D. Meyers. S. Skinner. and K. Sloan. Surfaces from contours. ACM Transactions on Graphics, 1992,11(3):228~258
    [41] B. Sinclair. Etc.. Complex Contour Organization for Surface Reconstruction. Computer and Graphics, 1989,13(3):311~319
    [42] 贾艾晨,韩国城,魏小鹏.大坝地震反应数据多层断面云图显示.大连理工大学学报,2001,41(3):372~375
    [43] 管伟光,马颂得.体视化技术及其应用.电子工业出版社,1998
    [44] 贾艾晨,魏小鹏,韩国城.数据场体视化方法综述.大连大学学报,2000,21(2):1~6
    [45] 唐泽圣等.三维数据场可视化.清华大学出版社,2002
    [46] 唐荣锡,汪嘉业,彭群生,汪国昭等.计算机图形学教程.北京:科学出版社,2000
    [47] 唐果,赵晓东,汪元美.体数据可视化的加速光线投射算法.计算机辅助设计与图形学学报,1998,10(4):295~301
    [48] Levoy M. Display of Surfaces from Volume Data. IEEE Computer Graphics and Application, 1988,8(3):29~37
    [49] Levoy M. Volume Rendering by Adaptive Refinement. UNC Technical Report 88030, June 1988
    [50] Drebin R A, Carpenter L, Hanrahan P. Volume Rendering. Computer Graphics, 1988, 22(4):65~74
    [51] Porter T. Compositing Digital Images. Computer Graphics, 1984, 18(3): 253~259
    [52] Levoy M. Efficient Ray Tracing of Volume Data. ACM Transactions on Graphics, 1990, 9(3) :245~261
    [53] 唐泽圣.用图象空间为序的体绘制技术显示三维数据场.计算机学报,1994,17(11):801~808
    [54] 周璐,李晓梅.空间相关脚印方法:一种快速体绘制方法.计算机辅助设计与图形学学报,1998,10(1):80~86
    [55] Westover L. Footprint Evaluation for Volume Rendering. Computer Graphics, 1990,24(4):367~376
    [56] Wilhelms J, Gelder V. A Coherent Projection Approach for Direct Volume Rendering. Computer Graphics, 1991,25(4):275~281
    [57] 李斌,梁训东,刘慎权.图形硬件辅助的快速数据场体绘制方法.计算机辅助设计与图形学学报,1997,9(2):130~135
    [58] 李斌,梁训东,刘慎权.一种三维规则数据场的特征可视化方法.计算机学报,1997,20(7):584~591
    [59] 郭钧锋.基于微机的三维真实感浓淡绘制方法研究.计算机学报,1997,20(12):1105~1111
    [60] Malcolm S. A Survey of Contouring Methods. Computer Graphics Forum, 1986,(5): 325~340
    
    
    [61] 范彦斌,杨彭基.有限元分析计算结果的计算机图形可视化显示.计算机辅助设计与图形学学报,1995,7(1):11~16
    [62] 刘永军,李宏男.用VB画二维高阶等参单元彩色云图.计算机应用,2001,21(8):135~137
    [63] 刘永军,李宏男,林皋.一种画高阶等参单元彩色云图的新方法.计算机工程与应用.2001,37(9):47~48
    [64] 章勤,李品,张继顺.一种基于二次等参单元的等值线图生成算法.小型微型计算机系统,2002,23(8):992~994
    [65] 谢春,马兰,彭颖红.有限元计算结果的可视化处理.计算机辅助设计与图形学学报,2002,12(2):81~84
    [66] 刘永军,李宏男,林皋.画应力场云图的一种简单有效的方法.计算机工程,2002,28(3):124~125
    [67] 刘永军,李宏男,林皋.用VB画二维有限元数据场彩色云图.计算机应刚研究.2001,18(5):102~119
    [68] 肖专文,龚晓楠.岩体开挖与充填有限元计算结果的可视化研究.工程力学,2000,17(1):41~46
    [69] 蒋红斐,蒲浩,詹振炎.铁路线路三维设计模型建立方法的研究.铁道学报,2000,22(4):73~76
    [70] 彭静,河原能久.丁坝群近体流动结构的可视化实验研究.水利学报,2000,(3):42~45
    [71] 施永辉,黄曦,王超.基于AutoCAD的结构分析可视化.合肥工业大学学报,2001,24(4):584~586
    [72] 李培振,何志军,殷杰,等.R.C.框架抗震鉴定与加固可视化程序的开发.工业建筑,2001,31(10):68~71
    [73] 刘晓燕,康凯,贾永英.室外供暖管网设计可视化模拟系统.大庆石油学院学报,2002,26(4):104~118
    [74] 倪强,唐家祥等.计算机仿真技术在地震及结构震动分析中的应用.计算机应用研究,1998,(3):47~50
    [75] 倪强,唐家祥.钢筋混凝土框架结构倒塌的计算机仿真研究.华中理工大学学报,1999,27(8):49~51
    [76] 杨克俭,刘舒燕等.三峡滑坡仿真系统中的关键技术.计算机仿真,1999,16(2):1~5
    [77] 黄润秋,范留明,柴贺军.岩体结构二维可视化模型及其应用研究.地质灾害与环境保护,2000,11(4):341~345
    [78] 周单,李中伟,孙晓乎,等.基于Delphi的土石坝渗流稳定分析软件开发研究.华北水利水电学院学报,2002,23(1):11~13
    [79] 刘亚莲,李永见,茜平一.土工有限元中弹塑性分析的实现.重庆大学学报,2002,25(6):106~108
    [80] 杨建,杨建宏.工程地质综合分析技术的开发和应用研究.水力发电.2001,(8):34~35
    [81] 吴炜煜,任爱珠.多媒体计算机辅助技术在土木工程领域的新进展.土木工程学报,2000,33(1):1~4
    
    
    [82] 任德记,田斌,李洋波.虚拟现实技术及其在工程建设中的应用研究.三峡大学学报,2002,24(2):139~142
    [83] 赵文广,李仲学,李翠平.面向工程可视化仿真的VC++,OpenGL与3DS集成技术.北京科技大学学报,2001,23(6):563~565
    [84] 沈祖炎,孙飞飞等.土木工程与计算机仿真.计算机仿真,1998,15(1):38~41
    [85] 梁民,刘珍平等.虚拟现实在水坝系统中的实现.计算机应用,1999,19(8):43~45
    [86] 吴炜煜,张士刚.建筑工程多媒体仿真环境设计技术研究.中国图象图形学报,1997,2(10):740~743
    [87] 亢景富,胡玉明,冯乃谦.小浪底排沙洞出口闸室仿真模型试验研究.水利学报,1998,(2):57~61
    [88] 徐捷,屈昌华,李未显.岩石水泥灌浆工程可视化技术的探讨与实践.大坝观测与土工测试,2001,25(6):49~51
    [89] 秦杰,黄承逵,黄达海,伏义淑.三峡大坝混凝土施工实时仿真计算.大连理工大学学报,2002,42(3):359~365
    [90] 陈莉静,陈尧隆,何劲.碾压混凝土坝温度场和温度应力仿真计算可视化系统研究.红水河,2001,20(2):57~61
    [91] 吴庆鸣,陈东.混凝土大坝浇筑安排计算机仿真求解.人民长江,2000,31(5):41~43
    [92] 彭仪普,刘文熙.分形地形模拟研究.长沙铁道学院学报,2001,19(4):95~98
    [93] 齐敏,郝重阳,佟明安.三维地形生成及实时显示技术研究进展.中国图象图形学报,2000,5(4):269~275
    [94] 齐敏,郝重阳,佟明安.基于分形技术的多分辨率三维地景建模方法研究.中国图象图形学报,2000,5(7):568~572
    [95] 李长洪.松散岩体的分形特征.北京科技大学学报,2001,23(4):296~298
    [96] 张友静,张元教,姚琪.三峡—葛洲坝区间水环境决策支持系统的开发.河海大学学报,2001,29(2):87~90
    [97] 周振红,方朝阳,李步娟,张晓林,等.葛洲坝船闸安全信息管理系统软件开发.武汉大学学报,2001,34(4):44~47
    [98] 袁宝远,吕建红,刘大安,等.边坡监测信息可视化查询分析系统及其应用.工程地质学报,1999,7(4):355~360
    [99] 窦明,李重荣,王陶.汉江水质预警系统研究.人民长江,2002,33(11):38~42
    [100] R. Avila. Towards a Comprehensive Volume Visualization System. Proceedings of Visualization'92. Boston, 1992
    [101] L. J. Brewster. Interactive Surgical Planning. IEEE CG&A, 1984
    [102] 吴炜煜,于巍,李华.基于结构计算数据挖掘的可视化系统研究.系统仿真学报,2002,14(8):1015~1018
    
    
    [103] 杨吉新,陈定方.一种应力图生成方法.计算机工程与应用,2002,(]6):113~114
    [104] 宗全兵,简文彬,熊传祥,李月莲.基于AcDb数据库的有限元程序及其后处理.福州大学学报,2002,30(6):802~805
    [105] 陈莉静,陈尧隆,何劲.碾压混凝土坝温度场和温度应力仿真计算可视化系统研究.红水河,2001,20(2):57~61
    [106] 陈利海,葛培琪,程建辉.机械密封温度场的可视化计算.流体机械,2001,29(5):28~31
    [107] 朱胜昌,郭列.有限元计算的可视化系统.中国造船,1997,(3):66~73
    [108] 谭林森,张帅普.有限元后处理可视化系统的设计.华中科技大学学报.1997,25(7):72~74
    [109] 王小同,潘永仁,肖汝诚,范立础.桥梁工程控制可视化软件的基本框架.同济大学学报,1997,25(2):206~211
    [110] 唐伏良,张向明,茅及愚,刘令勋.科学计算可视化的研究现状利发展趋势.计算机应用,1997,17(3):8~10
    [111] 唐泽圣,孙廷奎,邓俊辉.科学计算可视化理论与应用研究进展.清华大学学报,2001,41(4/5):199~202
    [112] 王维江,张俊霞.数据可视化技术研究的新进展.计算机时代,2002,(5):4~6
    [113] 唐泽圣.可视化及虚拟现实技术的新发展.计算机世界,]999,25(C):1~2
    [114] 刘勇奎,周晓敏.虚拟现实技术和科学计算可视化.中国图象图形学报,2000,5(9):795~798
    [115] 朱绍文,项安波.虚拟现实技术及其应用概况.计算机应用与软件,1998,15(6):59~61
    [116] 汪成为.灵境技术与人机和谐仿真环境.计算机研究与发展,1997,34(1):1~12
    [117] 王维平,胡小峰,沙基昌.灵境技术及其在仿真中的应用展望.系统仿真学报,1995,7(4):56~62
    [118] 贾艾晨,魏小鹏,韩国城.基于L-System的花边图案设计,辽宁省工程图学学会论文集,1997年1月:25~28
    [119] 贾艾晨,魏小鹏,韩国城.适于图案造型设计的分形表达,全国图像图形科技大会论文集,1998年5月:275~277
    [120] 齐东旭,分形及其计算机生成,科学出版社,1994
    [121] M F. Barnsley, R L. Devaney, B B. Mandelbrot, The Science of Fractal Images, Springer-Verlag, 1995
    [122] 刁宝成,焦永利等.计算机图形学.高等教育出版社,1999
    [123] 陈莉,彭群生.基于分形的流场采样方法.计算机学报,1997,20(7):616~622
    [124] 郝小琴.森林景物的三维迭代函数系统建模技术的研究.计算机学报,1999,22(7):768~733
    [125] 陈为,基于分维图形的研究及其应用.计算机应用与软件,1997,14(3):1~8
    [126] 张全伙.树和植物的计算机图像研究.计算机应用研究,1996,(5):51~54
    [127] 董士海,张晖.Fractal图形学.计算机辅助设计与图形学学报,1990,(1):69~73
    [128] 蔡袁强,钱磊,凌道盛,吴世明.钱塘江防洪堤地震液化及稳定分析.水利学报,2001,(1):57~61
    [129] 陈飞熊,李宁等.黑河土石坝的地震响应和液化分析.水利学报,2002,(2):22~26
    
    
    [130] 崔玉柱,周元德,张楚汉等.坝肩岩体地震残余变形对小湾拱坝安全度影响.水利水运工程学报,2001,(3):14~17
    [131] 杜修力,王进廷.动水压力及其对坝体地震反应影响的研究进展.水利学报,2001,(7):13~21
    [132] 林皋,陈健云.混凝土大坝的抗震安全评价.水利学报,2001.(2):8~15
    [133] 李宁,陈飞熊,姜福基,等.膨胀流变性围岩隧洞预制钢筋混凝土衬砌稳定性分析.岩石力学与工程学报,2000,19(6):732~735

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700