用户名: 密码: 验证码:
荧光原位杂交在尿路上皮癌及前列腺癌中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的评价FISH用于诊断泌尿系尿路上皮癌的临床应用价值。
     方法收集北京协和医院泌尿外科尿路上皮癌患者共241例,其中膀胱尿路上皮癌183例,上尿路上皮癌58例,行FISH检查及尿细胞学检查。同时以健康志愿者20例,建立本实验室FISH的正常阈值,以非尿路上皮癌患者40例为对照。FISH探针采用随机引物法标记3,7,17号染色体着丝粒及9p21(p16)区带。结果1、以健康志愿者建立FISH正常阈值。2、FISH对于膀胱尿路上皮癌敏感性共为85.4%(145/158),特异性为90%(36/40)。在低级别尿路上皮癌与高级别之间敏感性有统计学差异(P=0.002);非肌层浸润性尿路上皮癌与肌层浸润性之间无统计学差异(P=0.487)。细胞学检查敏感性为41.1%(65/158),特异性为92.5%(37/40)。3、FISH;对于UUC-UT的敏感性高于尿细胞学检查(P=0.0001);两者阳性预测值无明显差异(P=0.94),阴性预测值则有统计学差异(P=0.02)。两者对于非肌层浸润性UUC-UT患者两者检查分别是71.1%和24.4%(P     结论1、FISH法诊断尿路上皮癌灵敏度比尿脱落细胞学高、特异性相似,是一种较为理想的无创性检查方法。2、FISH结果显示其敏感性与尿路上皮癌病理分级具有相关性,并且随着病理分级的增加敏感性增加;与临床分期无相关性。3、在膀胱尿路上皮癌术后随访中由于肿瘤临床分期较早,尿细胞学检查的敏感性更低,相比较而言FISH检查仍具有较高的敏感性和特异性,适合术后随访工作。4、p16杂合性缺失丢失出现频率明显低于其他三组探针,可能与其正常阈值较高有关。
     目的:1、评价在会阴模板定位下行经会阴前列腺穿刺活检术有效性及安全性;2、应用FISH技术检测前列腺活检组织中TMPRSS2基因与ETS家族基因ERG、ETV1、ETV4之间融合的表达情况,进而评价FISH诊断早期前列腺癌的可行性。
     方法:1、选择我院437例接受经直肠超声引导下模板定位经会阴前列腺穿刺活检术患者。年龄平均70.4±14.35岁(33-86岁)。PSA 0.2-5000ng/ml,平均80.3±12.96ng/ml。前列腺体积10-200ml,平均57.6±14.72ml。2、采用随机法合成FISH探针:TMPRSS2与ERG、ETV1、ETV4融合基因。(1)在模板定位下经会阴前列腺分区穿刺活检术行穿刺活检,病理确定前列腺癌患者40例,为实验组,应用FISH技术检查前列腺癌患者组织中TMPRSS2-ERG、TMPRSS2-ETV1和TMPRSS2-ETV4融合基因。良性前列腺增生患者20例,为对照组。(2)分析融合基因与前列腺癌组织生物学特性中Gleason评分、前列腺体积、临床分期和PSA水平的关系。
     结果:1、将直肠超声下前列腺分为11各区,每区穿刺1-4针,每例平均18.6(11-44)针。活检阳性率38.5%(168/437)。2、活检率与前列腺穿刺相关参数之间关系:(1)与分区关系:不考虑PSA水平时,1-11区阳性检出率无统计学差异,P=0.16。当PSA<20 ng/ml时,前列腺11区的检出率为47.9%,高于其他区,P<0.05;(2)与前列腺体积关系:阳性检出率与前列腺体积成负相关;(3)与PSA水平关系:当PSA>4ng/ml时,阳性检出率与PSA水平呈正相关,PSA<4ng/ml时,阳性检出率与PSA水平无相关性;(4)与前列腺前后区关系:前列腺前区(1、2、9、10)与后区(4、5、6、7)阳性检出率比较无统计学差异,P=0.45。3、穿刺1周内肉眼血尿发生率为29.7%(130/437),尿潴留发生率为1.1%(5/437),无严重感染及直肠感染等并发症。4、FISH用于前列腺癌诊断中的40例前列腺癌患者阳性率为80%(32/40),其中TMPRSS2-ERG探针为52.5%(21/40), TMPRSS2-ETV1为22.5%(9/40),TMPRSS2-ETV4为5%(2/40)。三组探针中有一组阳性者,其余两组即为阴性,无重复阳性患者。5.FISH结果与前列腺癌生物学特性关系:FISH阴性组与阳性组Gleason评分无统计学差异,P=0.874。FISH阴性组与阳性组PSA无统计学差异,P=0.141。FISH阴性组与阳性组临床分期无统计学差异,P>0.05。实验组淋巴结pN0为35例,pN1-2为5例,FISH阴性组与阳性组与淋巴结转移无统计学差异,P>0.05。根治性前列腺癌11例,切除后切缘情况:切缘阴性为8例,阳性为3例,FISH阴性组与阳性组切缘阳性与否无统计学差异,P>0.05。
     结论:1、模板定位下经会阴前列腺分区穿刺活检阳性率较高,并与前列腺体积、血清PSA水平高具有相关性。2、当PSA<20 ng/ml时,11区的肿瘤检出率较高。3、模板定位下经会阴前列腺分区穿刺安全性高,手术并发症低。4、FISH三组探针可以检测出前列腺癌组织中的TMPRSS2-ERG和TMPRSS2-ETV1以及TMPRSS2-ETV4融合基因,出现频率以TMPRSS2-ERG最高。FISHT阳性组与阴性组与前列腺癌生物学特性,如Gleason分级、前列腺体积、临床分期和PSA水平之间无统计学差异。5、FISH检测前列腺癌TMPRSS2-ERG和TMPRSS2-ETV1以及TMPRSS2-ETV4融合基因有望成为早期诊断前列腺癌的一个新的有力手段。
Objectives:To evaluate the clinical utility of a Multiprobe FISH (fluorescence in situ hybridization, FISH) Assay in Voided Urine Specimens for the detection of Urothelial carcinomas (UC) comparing the results with those afforded by urinary cytology. Methods:Voided urine specimens from 241 patients who had Urothelial carcinomas,183 patients with bladder cancer and 58 consecutive patients with UUT(upper urinary trac) UC and 40 healthy controls were analyzed by means of cytology and FISH. FISH was performed using a mixture of fluorescent labeler DNA probes for the centromeric regions of chromosomes 3,7, and 17 and 9p21 region.
     Results 1.The normal range of FISH was blind by 20 health volunteers.2. Overall sensitivity of FISH for bladder cancer was 85.4%(145/158) and specificities of FISH was 90%(36/40). There was significantly difference between low grade and high grade tumors (P=0.002). However, there was no significantly difference between non and muscle-invasive bladder cancer (P=0.487). Urinary cytology affords an overall sensitivities of 41.1% (65/158) and specificities of 92.5%(37/40). Overall sensitivity of FISH was significantly higher than that of urine cytology (P= 0.0001). The positive values was no significantly of difference between the urine cytology and FISH(P=0.94), and the negative predictive values was significantly (P=0.02). The sensitivities of FISH and cytology were 71.1% and 24.4%(P<0.0001) in non muscle-invasive UUT, and were 81.8% and 48.9%(P=0.016) in muscle-invasive UUT. The sensitivities were 50% and 12.5%(P=0.027) in low grade cancers and 87.0% and 44.4%(P<0.01) in high grade tumors.Specificities for both FISH and cytology were similar results P=0.548. Of 58 patients with UUT UC, polysomies of chromosome 3,7 and 17 were observed in 52.3%,56.9% and 35.7%, respectively, and loss of the p16 gene in 27.3%.
     Conclusion:1. FISH assay of chromosomes 3,7,9, and 17 performed on exfoliated cells from voided urine specimens has greater sensitivity than cytology for detecting UUT-UC whilst maintaining a similar specificity.2. The sensitivities of FISH is significantly correlated to pathologic grade of UC, and With the increase in sensitivity to increased pathological grade. There is no correlated between the sensitivities of FISH and tumors stage.3. FISH has higher sensitivity for recurrent UC, and it could be useful for monitoring in the follow-up after surgery.4. The aberrations of chromosomes p16 is lower than of 3,7,17 chromosomes, and one of causes clould is relatively strict of normal range.
     Objective 1. To assess the feasibility and advantage of Systematic transperineal ultrasound guided template prostate biopsy.2. We analyzed genetic rearrangements between TMPRSS2 and ETS (ERG, ETV1 and ETV4) in prostate cancer, and evaluated the clinical utility of in patients treated with prostate biopsy detecting PCa by FISH (Fluorescence in situ hybridization), which of the probes of TMPRSS2-ERG, ETV1 and ETV4.
     Methods 1. In a prospective study, a total of 437 patients (33-86year old,mean age 70.4±14.35) who met the inclusion criteria underwent 11 regions systematic transperineal ultrasound guided template prostate biopsy. The median PSA level was 80.3±12.9612.96 ng/ml (range 0.2-5000ng/ml) and the mean prostate volume was 57.6±14.72ml (range 10-200ml).2. FISH was performed using a mixture of fluorescent labeler DNA probes for the TMPRSS2-ERG, ETV1 and ETV4 fusion. (1) 40 patients were identified by prostate pathology,who met the inclusion criteria underwent 11 regions systematic transperineal ultrasound guided template prostate biopsy. They was Experimental group and 20 patients of benign prostatic hyperplasia controls were analyzed by means of FISH. (2) We analyzed the fusion gene and the biological features of prostate cancer Gleason score, prostate volume, pTNM stage and PSA Levels.
     Results 1. Prostate cancer was detected in 168 of 486 (38.5%).2. Prostate needle biopsy rate and the parameters relationship:(1) Relationship with the areas:the positive rate of 1-11 areas was no significant difference, P=0.16. The mean positives for the cancer of regions 1-10 and region 11 (theapical region) were 35.6%vs.47.9% in patients whose PSA<20 ng/ml (P<0.05); (2)and prostate volume relationship:The positive rate was negatively correlated with prostate volume; (3) and PSA level of relationship:When PSA> 4ng/ml, the positive detection rate was positively correlated with PSA level, PSA<4ng/ml, the positive detection rate of PSA levels were not related; (4) The positives for cancer contained within the anterior (1,2,9,10) and posterior parts (4,5,6,7) were no insignificantly (P>0.05) in all patients. Incidence of gross in hematuria 29.7%(130/437), urinary retention rate 1.1%(5/437) after puncture 1 week, and no serious complication occurred during the procedure.3. In 40 patients, the prostate cancer positive rate of 80%(32/40) by FISH, in which TMPRSS2-ERG probe was 52.5%(21/40), TMPRSS2-ETV1 was 22.5%(9/40), TMPRSS2-ETV45%(2/40). Three probes in a positive, and the remaining two shall be negative. No repeat positive patients.4. The relationship between biological characteristics of prostate cancer and FISH:No significant association between the presence of the fusion gene and any clinical feature, such as Gleason score, prostate volume, pTNM stage and PSA Levels.
     Conclusions 1. Systematic transperineal ultrasound guided template prostate biopsy is accurate, and there is relevance between the rate of positive and Prostate volume, serum PSA level.2. Prostate carcinoma foci are more frequently localized in the apical region in patients with PSA<20 ng/ml.3. Systematic transperineal ultrasound guided template prostate biopsy has no serious complication occurred during the procedure.4. FISH probes can detect the fusion gene of prostate cancer in TMPRSS2-ERG, TMPRSS2-ETV1 and TMPRSS2-ETV4. There is are no significant difference between positive and negative group of FISH and the biological characteristics of prostate cancer, such as Gleason grade, prostate volume, clinical stage and the PSA level.5. FISH is expected to become a new powerful tool in early diagnosis of prostate cancer.
引文
1. Oosterlinck W, Lobel B, Jakse G, et al. Guidelines on bladder cancer. Eur Urol,2002,41:10-12.
    2. Sengupta S, Blute ML. The management of superficial transitional cell carcinoma of the bladder. Urology,2006,67:48-54.
    3. Lourdes M, Mercedes MA, Maria JR, et al. Clinical Utility of Fluorescent in situ Hybridization for the Surveillance of Bladder Cancer Patients Treated with Bacillus Calmette-Gue'rin Therapy. European urology,2007, 52:752-759.
    4. Bas WG, Henk G, Theo H. Cytology and Urinary Markers for the Diagnosis of Bladder Cancer. European Urology,2009,8:536-541.
    5. Schlomer BJ, Ho R, Sagalowsky A, et al. Prospective validation of the clinical usefulness of reflex fluorescence in situ hybridization assay in patients with atypical cytology for the detection of urothelial carcinoma of the bladder. J Urol,2010,183:62-67.
    6. Pinkel D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA, 1986,83:2934-2938.
    7. Stamouli MI, Panani AD, Ferti AD, et al. Detection of genetic alterations in primary bladder carcinoma with dual-color and multiplex fluorescence in situ hybridization. Cancer Genet Cytogenet,2004,149:107-113.
    8. Schulten HJ, Panani AD, Ferti AD, et al. Cytogenetic characterization of complexkaryotypes in seven established melanoma cell lines by multiplex fluorescence in situhybridization and DAPI banding. Cancer Genet Cytogenet,2002,133:134-141.
    9. Schrock E, du Manoir S, Veldman T, et al. Multicolor spectral karyotyping of humanchromosomes. Science,1996,273:494-497.
    10. Gunawan B, Mirzaie M, Schulten HJ, et al. Molecular cytogenetic analysis of twoprimary squamous cell carcinomas of the lung using multicolor fluorescence in situhybridization. Virchows Arch,2001,439:85-89.
    11. Kucheria K, Jobanputra V, Talwar R, et al. Human molecular cytogenetics: diagnosis, prognosis, and disease management. Teratog Carcinog Mutagen, 2003, Suppl:225-233.
    12. Kuzniacka A, Mertens F, Strombeck B, et al. Combined binary ratio label ingfluorescence in situ hybridization analysis of chordoma. Cancer
    Genet Cytogenet,2004,151:178-181.
    13. Ferti AD, Stamouli MJ, Panani AD, et al. Molecular cytogenetic analysis of breastcancer:a combined multicolor fluorescence in situ hybridization and G-banding studyof uncultured tumor cells. Cancer Genet Cytogenet,2004,149:28-37.
    14. Van Roy N, Van Limbergen H, Vandesompele J, et al. Combined M-FISH and CGHanalysis allows comprehensive description of genetic alterations in neuroblastoma celllines. Genes Chromosomes Cancer,2001,32:126-135.
    15. Haddad FS. The FISH test for the diagnosis, surveillance, and prognosis of transitional cell carcinoma of the bladder. Med Liban,2008, 56:230-232.
    16. Lokeshwar VB, Soloway MS. Current bladder tumor tests does their projected utility fulfill clinical necessity? J Urol,2001,165: 1067-1077.
    17. Lokeshwar VB, Habuchi T, Grossman HB, et al. Bladder tumor markers beyond cytology:international consensus panel on bladder tumor markers. UROLOGY,2005,66(Suppl6A):35-63.
    18. Inoue T, Nasu Y, Tsushima T, et al. Chromosomal numerical aberrations of exfoliated cells in the urine detected by fluorescence in situ hybridization:clinical implication for the detection of bladder cancer. Urol Res,2000,28:57-61.
    19. Boman H, Hedelin H, Holmang, S. Four bladder tumor markers have a disappointingly low sensitivity for small size and low grade recurrence. Urine,2002,167:80-83.
    20. Bas WG, van Rhi jn, Henk G van der Poel, et al. Urine markers for bladder cancer surveillance:A systematic review. Eur Urol,2005,47:736-748.
    21. Halling KC, King W, Sokolova IA, et al. A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J Urol,2000,164:1768-1775.
    22. Bubendorf L, Grilli B, Sauter G, Mihatsch MJ, Gasser TC, Dalquen P. Multiprobe FISH for enhanced detection of bladder cancer in voided urine specimens and bladder washings. Am J Clin Pathol,2001,116:79-86.
    23. Marl'n-Aguilera M, Mengual L, Ribal MJ, et al. Utility of fluorescence in situ hybridization as a non-invasive technique in the diagnosis of upper urinary tract urothelial carcinoma. Eur Urol,2007,51:409-415.
    24. Cajulis RS, Haines III GK, Frias-Hidvegi D, McVary K. Interphase cytogenetics as an adjunct in the cytodiagnosis of urinary bladder carcinoma. A comparative study of cytology, flow cytometry and interphase cytogenetics in bladder washes. Anal Quant Cytol Histol,1994, 16:1-10.
    25. Pycha A, Mian C, Haitel A, Hofbauer J, Wiener H, Marberger M. Fluorescence in situ hybridization identifies more aggressive types of primarily noninvasive (stage pTa) bladder cancer. J Urol,1997,157:2116-2119.
    26. Zhang FF, Arber DA, Wilson TG, Kawachi MH, Slovak ML. Toward the validation of aneusomy detection by fluorescence in situ hybridization in bladder cancer:comparative analysis with cytology, cytogenetics, and clinical features predicts recurrence and defines clinical testing limitations. Clin Cancer Res,1997,3:2317-2328.
    27. Wheeless LL, Reeder JE, Han R, et al. Bladder irrigation specimens assayed by fluorescence in situ hybridization to interphase nuclei. Cytometry,1994,17:319-326.
    28. Meloni AM, Peier AM, Haddad FS, et al. A new approach in the diagnosis and follow-up of bladder cancer FISH analysis of urine, bladder washings, and tumors. Cancer Genet Cytogenet,1993,71:105-118.
    29. Sokolova IA, Halling KC, Jenkins RB, et al. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J Mol Diagn,2000,2:116-123.
    30. Laudadio J, Keane T E, Reeves H M, et al. Fluorescence in situ hybridization for detecting transitional cell carcinoma:implications for clinical practice. BJU Int,2005,96:1280-1285.
    31. Jones J S. DNA-based molecular cytology for bladder cancer surveillance. Urology,2006,67(3 Suppl 1):35-47.
    32. Waldman FM, Carroll PR, Kerschmann R, et al. Centromeric copynumber of chromosome 7 is strongly correlated with tumor grade and labeling index in human bladder cancer. Cancer Res,1991,51:3807-3813.
    33. Olumi AF, Tsai YC, Nichols PW, et al. Allelic loss of chromosome 17p distinguishes high-grade from lowgrade transitional cell carcinomas of the bladder. Cancer Res,1990,50:7081-7083.
    34. Ribal MJ, Alcaraz A, Mengual L, et al. Chromosomal highpolysomies predict tumour progression in T1 transitional cell carcinoma of the bladder. Eur
    Urol,2004,45:593-599.
    35. Sarosdy MF, Schellhammer P, Bokinsky G, et al. Clinical evaluation of a multi-target fluorescent in situ hybridization assay for detection of bladder cancer. J Urol,2002,168:1950-1954.
    36. Veeramachaneni R, Nordberg ML, Shi R, Herrera GA, Turbat-Herrera EA. Evaluation of fluorescence in situ hybridization as an ancillary tool to urine cytology in diagnosing urothelial carcinoma. Diagn Cytopathol, 2003,28:301-307.
    37. Varella-Garcia M, Akduman B, Sunpaweravong P, Di Maria MV, Crawford ED. The UroVysion fluorescence in situ hybridization assay is an effective tool for monitoring recurrence of bladder cancer. Urol Oncol,2004, 22:16-19.
    38. Placer J, Espinet B, Salido M, Sole F, Gelabert-Mas A. Clinical utility of a multiprobe FISH assay in voided urine specimens for the detection of bladder cancer and its recurrences, compared with urinary cytology. Eur Urol,2002,42:547-552.
    39. Moonen PM, Merkx GF, Peelen P, Karthaus HF, Smeets DF, Witjes JA. UroVysion compared with cytology and quantitative cytology in the surveillance of non-muscle-invasive bladder cancer. Eur Urol,2007, 51:1275-1280.
    40. Mian C, Lodde M, Comploj E, et al. Liquid-based cytology as a tool for the performance of uCyt+and UroVysion Multicolour-FISH in the detection of urothelial carcinoma. Cytopathology,2003,14:338-342.
    41. Ishiwata S, Takahashi S, Homma Y, et al. Noninvasive detection and prediction of bladder cancer by fluorescence in situ hybridization analysis of exfoliated urothelial cells in voided urine. Urology,2001, 57:811-815.
    42. Dalquen P, Kleiber B, Grilli B, Herzog M, Bubendorf L, Oberholzer M. DNA image cytometry and fluorescence in situ hybridization for noninvasive detection of urothelial tumors in voided urine. Cancer,2002, 96:374-379.
    43. Brauers A, Buettner R, Jakse G. Second resection and prognosis of primary high-risk superficial bladder cancer:Is cystectomy often too early? J Urol,2001,165:808-810.
    44. Boman H, Hedelin H, Holmang, S. Four bladder tumor markers have a disappointingly low sensitivity for small size and low grade recurrence. Urine,2002,167:80-83.
    1.Oosterlinck W, Solsona E, van der Menjden AP, et al. EAU Guidelines on diagnosis and treatment of upper urinary tract transitional cell carcinoma. Eur Urol 2004,46:147-154
    2. Steffens J, Nagel R. Tumours of the renal pelvis and ureter. Observations in 170 patients. Br J Urol 1988,61:277-283.
    3. Kirkali Z, Tuzel E. Transitional cell carcinoma of the ureter and renal pelvis. Crit Rev Oncol Hematol 2003,47:155-169.
    4. Mills IW, Laniado ME, Patel A. The role of endoscopy in the management of patients with upper urinary tract transitional cell carcinoma. BJU Int 2001,87:150-162.
    5. Wiener HG, Mian C, Haitel A, Pycha A, Schatzl G, Marberger M. Can urine bound diagnostic tests replace cystoscopy in the management of bladder cancer? J Urol 1998,159:1876-1880.
    6.Schlomer BJ, Ho R, Sagalowsky A, et al. Prospective validation of the clinical usefulness of reflex fluorescence in situ hybridization assay in patients with atypical cytology for the detection of urothelial carcinoma of the bladder. J Urol,2010,183:62-67.
    7. Fadl-Elmula I, Gorunova L, Mandahl N, et al. Cytogenetic analysis of upper urinary tract transitional cell carcinomas. Cancer Genet Cytogenet 1999,115:123-127.
    8. Sokolova IA, Halling KC, Jenkins RB, et al. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J Mol Diagn 2000,2:116-123.
    9. Halling KC, King W, Sokolova IA, et al. A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J Urol 2000,164:1768-1775.
    10. Halling KC, King W, Sokolova IA, et al. A comparison of BTA stat, hemoglobin dipstick, telomerase and Vysis UroVysion assays for the detection of urothelial carcinoma in urine. J Urol 2002,167:2001-2006.
    11.Bubendorf L, Grilli B, Sauter G, Mihatsch MJ, Gasser TC, Dalquen P. Multiprobe FISH for enhanced detection of bladder cancer in voided urine specimens and bladder washings. Am J Clin Pathol 2001,116:79-86.
    12. Sarosdy MF, Schellhammer P, Bokinsky G, et al. Clinical evaluation of a multi-target fluorescent in situ ybridization assay for detection of bladder cancer. J Urol 2002,168:1950-1954.
    13. Placer J, Espinet B, Salido M, Sole'F, Gelabert-Mas A. Clinical utility of a multiprobe FISH assay in voided urine specimens for the detection of bladder cancer and its recurrences, compared with urinary cytology. Eur Urol 2002,42:547-552.
    14. Skacel M, Fahmy M, Brainard JA, et al. Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J Urol 2003,169:2101-5.
    15. Lopez-Beltran A, Sauter G, Gasser T, et al. World Health Organization. Classification of tumours. Pathology and genetics. Tumours of the urinary system and male genital organs. Lyon:IARC Press,2004.
    16. Sobin L, Wittekind CH. Urological tumours:bladder TNM Classification of Malignant Tumours.6th ed. New York:John Wiley & Sons,2002.
    17. Stewart GD, Bariol SV, Grigor KM, Tolley DA, McNeill SA. A comparison of the pathology of transitional cell carcinoma of the bladder and upper urinary tract. BJU Int 2005,95:791-793.
    18. Orsola A, Trias I, Ravento's CX, et al. Initial high-grade T1 urothelial cell carcinoma:feasibility and prognosticsignificance of lamina propria invasion microstaging (Tla/b/c) in BCG-treated and BCG-non-treated patients. Eur Urol 2005,48:231-238.
    19. Herr HW. The value of a second transurethral resection in evaluating patients with bladder tumors. J Urol 1999,162:74-76.
    20. Brauers A, Buettner R, Jakse G. Second resection and prognosis of primary high-risk superficial bladder cancer:Is cystectomy often too early? J Urol 2001,165:808-10.
    21.Riedl CR, Daniltchenko D, Koenig F, Simak R, Loening SA, PfluegerH. Fluorescence endoscopywith 5-aminolevulinic acid reduces early recurrence rate in superficial bladder cancer. J Urol 2001,165:1121-1123.
    22. Jones JS. DNA-based molecular cytology for bladder cancer surveillance. Urology 2006,67:35-45.
    23. Kipp BR, Karnes RJ, Brankley SM, et al. Monitoring intravesical therapy for superficial bladder cancer using fluorescence in situ hybridization. J Urol 2005,173:401-404.
    24. Friedrich MG, Toma MI, Hellstern A, et al. Comparison of multitarget fluorescence in situ hybridization in urine with other noninvasive tests for detecting bladder cancer. BJU Int 2003,92:911-914.
    25. Lodde M, Mian C, Wiener H, Haitel A, Pycha A, Marberger M. Detection of upper urinary tract transitional cell carcinoma with ImmunoCyt:a preliminary report. Urology 2001;58:362-366.
    26. Akkad T, Brunner A, Pallwein L, et al. Fluorescence in situ hybridization for detecting upper urinary tract tumors--a preliminary report. Urology,2007,70:753-757.
    27. Marin-Aguilera M, Mengual L, Ribal MJ. Utility of fluorescence in situ hybridization as a non-invasive technique in the diagnosis of upper urinary tract urothelial carcinoma. Eur Urol.2007,51:409-15; discussion 415. Epub 2006 Sep 8.
    28. Lokeshwar VB, Habuchi T, Grossman HB, et al. Bladder tumor markers beyond cytology:international consensus panel on bladder tumor markers. UROLOGY,2005,66 (Suppl6A):35-63.
    29. Haddad FS. The FISH test for the diagnosis, surveillance, and prognosis of transitional cell carcinoma of the bladder. Med Liban.2008, 56:230-232
    30. Ost M C。 Vanderbrink B A, Lee B R, et al. Endourologic treatment of upper urinary tract transitional cell carcinomaI-J]. Nat Clin Pract Urol,2005, 2:376-383.
    31. Ohnson G B, Grasso M U. Reteroscopic ma nagement ofupper urinary tract transitional cell carcinoma. Curt Opin Urol,2005,15:89-93
    32. Stewart G D, Bariol S V。 Grigor K M, et al. Comparisonof the pathology of transitional cell carcinoma of the bladderand upper urinary tract[J]. BJu Int,2005,95:791-793.
    33. Lancini V, Liatsikos E N, Bemardo N O, et al. Endourologic treatment of transitional cell carcinoma of the upper urinary tract [J]. Minerva Urol Nefrol,2000,52:17-28.
    34. Messing E. M., Catalona W. Urothelial tumors of the urinary tract Campbell's Urology.7th ed., pp.2327-2408.
    35. Iborra I, Solsona E, Casanova J, Ricos JV, Rubio J, Climent MA. Conservative elective treatment of upper urinary tract tumours:a multivariate analysis of prognostic factors for recurrence and progression. J Urol 2003:169:82-85.
    36. Jewett MA. Upper tract urothelial carcinoma. J Urol 2006,175:12-13.
    1. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol,2001, 2:533-543.
    2. Crawford ED. Epidemiology of prostate cancer. Urology,2003,62 (6 Suppl 1):3-12.
    3. Quinn M, Babb P. Patterns and trends in prostate cancer incidence, survival, revalence, and mortality. PartⅠ:international comparisons. BJU Int.2002,90:162-173.
    4. Gronberg H. Prostate cancer epidemiology. Lancet,2003,361:859-864.
    5. Gu FL, Xia TL, Kong XT. Preliminary study of the frequency of benign prostatic hyperplasia and prostatic cancer in China. Urology,1994, 44:688-691.
    6. Jemal A, Tiwari R, Murray T, et al. Cancer statistics,2004. CA Cancer J Clin,2004,54:8-29.
    7. Geenle RT, Hill-Harmon MB, Murray T, Thur M. Cancer statistics,2001, 51:1.
    8. Jones JS, Patel A, schoenfield L, et al. Magi-Galluzzi C. Saturation technique does not improve cancer detection as an initial prostate biopsy strategy. J Urol,2006,175:485-488.
    9. Stephen JJ, Mehmet O, Cratg ZD. Saturation prostate biopsy with periprostatic block can be performed in office.J Urol,2002, 168:2108-2110.
    10. Naughion CK, Smith DS, Humphrey PA, et al. Clinical and pathological tumor characteristics of prostate cancer as a function of the number of biopsy cores:a retrospectives study. Urology,1998,52:808-813.
    11. DE LA Taille A, Aantphon P,Salomon L, et al. Prospective evaluation of a 21-sample needle biopsy procedure designed to improve the prostate cancer detection rate. Urology,2003,61:1181-1186.
    12. Weigang Yan, Hanzhong Li, Yi Zhou et al. Prostate carcinoma spatial distribution patterns in Chinese men investigated with systematic transperineal ultrasound guided 11-region biopsyUrologic. Oncology,2009,27:520-524.
    13. Rabbani F, Stroumbakis N, Kava BR, et al. Incidence and clinical significance of false-negative sextant prostate biopsies. J Urol,1998, 159:1247-1250.
    14. Epstein JI, Walsh PC, Sauvageot J, et al. Use of repeat sextant and transition zone biopsies for assessing extent of prostate cancer. J Urol,1997,158:1886-1890.
    15. Eichler K, Hempel S, Wilby J, et al. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer:A systematic review. J Urol,2006,175:1605-1612.
    16. Wright JL, Ellis WJ. Improved prostate cancer detection with anterior apical prostate biopsies. Urol Oncol,2006,24:492-495.
    17. Bott SR, Young MP, Kellett MJ, et al. Contributors to the UCL Hospitals' Trust Radical Prostatectomy Database. Anterior prostate cancer:Is it more difficult to diagnosis? BJU Int,2002,89:886-889.
    18. Emiliozzi P, Corsetti A, Tassi B, et al. Best approach for prostate cancer detection:A prospective study on transperineal versus transrectal six-core prostate biopsy. Urology,2003,61:961-966.
    19. Vis AN, Boerma M0, Ciatto S, et al. Detection of prostate cancer:A comparative study of the diagnostic efficacy of sextant transrectal versus sextant transperineal biopsy. Urology,2000,56:617-621.
    20. Moran BJ, Braccioforte MH, Conterato DJ. Rebiopsy of the prostate using a stereotactic transperineal technique. J Urol,2006,176:1376-1381.
    21. Naughton CK, Miller DC, Mager DE, et al. A prospective randomized trial comparing 6 versus 12 prostate biopsy cores:impact on cancer detection. J Urol,2000,164:388-392.
    22.严维刚,李汉忠,周毅,等.超声引导下经会阴定位模板的前列腺饱和穿刺活检.中华泌尿外科杂志,2007,28:400-403.
    23. Igel TC, Knight MK, Young PR, et al. Systematic transperineal ultrasound guided template biopsy of the prostate in patients at high risk. J Urol, 2001,165:1575-1579.
    24. Breslow N, Chan CW, Dhom G, et al. Latent carcinoma of prostate at autopsy in seven areas. Int J Cancer,1977,20:680-688.
    25. Kabalin JN, McNeal JE, Price HM, et al. Unsuspected adenocarcinoma of the prostate in patients undergoing cystoprostatectomy for other causes: Incidence, histology, and morphometric observations. J Urol,1989, 141:1091-1094.
    26. Frimmel H, Egevad L, Bengtsson E, et al. Modeling prostate cancer distributions. Urology,1999,54:1028-1034.
    27. McNeal JE, Redwine EA, Freiha FS, et al. Zonal distribution of prostatic adenocarcinoma correlation with histologic pattern and direction of spread. Am J Surg Pathol,1988,12:897-906.
    28. McNeal JE. Normal histology of the prostate. Am J Surg Pathol,1988, 12:619-633.
    29. Chen ME, Johnston DA, Tang K, et al. Detailed mapping of prostate carcinoma foci:Biopsy strategy implications. Cancer,2000, 89:1800-1809.
    30. Takashima R, Egawa S, Kuwao S, et al. Anterior distribution of stage Tlc nonpalpable tumors in radical prostatectomy specimens. Urology,2002, 59:692-697.
    31. Furuno T, Demura T, Kaneta T, et al. Difference of cancer core distribution between first and repeat biopsy:in patients diagnosed by extensive transperineal ultrasound guided template prostate biopsy. Prostate,2004,58:76-81.
    32. Opell MB, Zeng J, Bauer JJ, et al. Investigating the distribution of prostate cancer using there-dimensional computer simulation. Prostate Cancer Prostatic Dis,2002,5:204-208.
    33. Taira AV, Merrick GS, Galbreath RW, et al. Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting. Prostate.Cancer Prostatic Dis,2010, 13:71-77.
    34. Novara G, Boscolo-Berto R, Lamon C, et al. Detection rate and factors predictive the presence of prostate cancer in patients undergoing ultrasonography-guided transperineal saturation biopsies of the prostate. BJU Int,2009, Oct 26. [Epub ahead of print]
    35. Onik G, Miessau M, Bostwick DG.. Three-dimensional prostate mapping biopsy has a potentially significant impact on prostate cancer management. J Clin Oncol,2009,27:4321-4326.
    36. Ficarra V, Novella G, Novara G, et al. The potential impact of prostate volume in the planning of optimal number of cores in the systematic transperineal prostate biopsy. Eur Urol,2005,48:932-937.
    37. Stewart CS, Leibovich BC, Weaver AL, et al. Prostate cancer diagnosis using a saturation needle biopsy technique after previous negative sextant biopsies. J Urol,2001,166:86-92.
    38. Paul R, Scholer S, van Randenborgh H, et al. Morbidity of prostatic biopsy for different biopsy strategies:is there a relation to core number and sampling region? Eur Urol,2004,45:450-456.
    39. Naughton CK, Ornstein DK, Smith DS, et al. Pain and morbidity of transrectal ultrasound guided prostate biopsy:a prospective randomized trial of 6 versus 12 cores. J Urol,2000,163:168-171.
    1. Vergho DC, Heine K, Wolff JM. The role of PSA in diagnosis of prostate cancer and its recurrence. Patholog,2005,26:473-478.
    2. Emiliozzi P, Longhi S, Scarpone P, et al. The value of a single biopsy with 12 transperineal cores for detecting prostate cancer in patients with elevated prostate specific antigen. J Urol,2001,166:845-850.
    3. Catalona WJ, Partin AW, Finlay JA, et al. Use of percentage of free prostate-specific antigen to identify men at high risk of prostate cancer when PSA levels are 2.5 to 4 ng/ml and digital rectal examination is not suspicious for prostate cancer:an alternative model. J Urology,1999, 54:220-224.
    4. Roehl KA, Antenor JA, Catalona WJ. Robustness of free prostate specific antigen measurements to reduce unnecessary biopsies in the 2.6 to 4.0 ng/ml range. J Urol,2002,168:922-925.
    5. Afar DE, Vivanco I, Hubert RS, et al. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res,2001,61:1686-1692.
    6. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science,2005, 310644-648.
    7. Tomlins SA, Mehra R, Rhodes DR, et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res,2006, 66:3396-3400.
    8. Laxman B, Tomins SA, Mehra R, et al. Noninvasive Detection of TMPRSS2: ERG Fusion Transcripts in the Urine of Men with PmstateCancer. Neoplasia, 2006,8:885-888.
    9. Soller MJ, lsaksson M, Elfring P, et al. Confinnation of the high Frequency of the MPRSS2/ERG Fusion Gene in Prostate Cancer. Genes Chromosomes Cancer,2006,45:717-719.
    10. Perner S, Mosquera J-M, Demichelis F, et al. TMPRSS2-ERG fusion prostate cancer:an early molecular event associated with invasion. Am J Surg Pathol,2007,31:882-888.
    11. Mehra R, Tomlins SA, Shen R, et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod Pathol,2007,20:538-544.
    12. Quinn M, Babb P. Patterns and trends in prostate cancer incidence, survival, prevalence and mortality. PartⅠ:international comparisons. BJU Int,2002,90:162-173.
    13. Gleason DF. Veterans administration cooperative urological research group. Histological grading and clinical staging of prostatic carcinoma. In Tannenbaum Med:Urological Pathology:The Prostate. Philadelphia, Lea & Febiger,1977,171-197.
    14. Zhigang Z, Wenlv S. Prostate stem cell antigen (PSCA) expression in human prostate cancer tissues and its potential role in prostate carcinogenesis and progression of prostate cancer. World J Surg Oncol, 2004,2:13.
    15. Jernal A, Siegel R, Ward R, et al. Cancer statistics,2008. CA Cancer J Clin,2008,58:71-98.
    16. Thompson IM, Emst JJ, Gangai MP, et al. Adenocarcinoma of the prostate: results of routine urological screening. J Urol,1984,132:690-692.
    17. Zhou M, Shah R, Shen R, Rubin MA. Basal cell cocktail (34betaE12+p63) improves the detection of prostate basal cells. Am J Surg Pathol,2003, 27:365-371.
    18. Shah Rajal R, Zhou Ming. Comparison of the basal cell speckic marker, 34BetaE12 and p63, in the diagnosis of prostate cancer. Am J Surg Pathol, 2002,26:1161-1168.
    19. Afar DE, Vivanco I, White JT, et al. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res,2001,61:1686-1692.
    20. Jacquinet E, Rao GV, Zhengming W, et al. Cloning and characterization of the cDNA and gene for human epitheliasin. Eur J Biochem,2001,268: 2687-2699.
    21. Rubio-Briones J, Fernandez-Serra A, Calatrava A, et al. Clinical implications of TMPRSS2-ERG gene fusion expression in patients with prostate cancer treated with radical prostatectomy. J Urol,2010, 183:2054-2061.
    22. Lucas JM, True L, Hawley S, et al. The androgen-regulated type Ⅱ serine protease TMPRSS2 is differentially expressed and mislocalized in prostate adenocarcinoma. J Pathol,2008,215:118-125.
    23. Seth A and Watson DK. ETS transcription factors and their emerging roles in human cancer. Eur J Cancer,2005,41:2462-2478.
    24. Camuzeaux B, Spfiet C, Heliot L, et al. Imagng Erg and Jun transc fipfion factor interaction in living cells using fluorescence resonance energy transfer analyses. Biochem Biophys Res Commun,2005,332:1107-1114.
    25. Zhu B and Kyprianou N. Transforming growth factOr beta and prostate cancer. Cancer Treat Res,2005,126:157-173.
    26. Yoshimoto M, Joshua AM, Chilton-MacNeill S, et al. Three-Color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia,2006,8:465-469.
    27. Tu JJ, Rohan S, Kao J et al. Gene fusions between TMPRSS2 and ETS family genes in prostate cancer:frequency and transcript variant analysis by RT-PCR and FISH on paraffin-embedded tissues. Mod Pathol,2007 20:921-928.
    28. Tomlins SA, Bjartell A, Chinnaiyan AM et al. ETS gene fusions in prostate cancer:from discovery to daily clinical practice. Eur Urol,2009, 56:275-286.
    29. Wang J, Cai Y, Yu W, et al. Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res, 2008,68:8516-8524.
    30. Petrovics G, Liu A, Shaheduzzaman S, et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene, 2005,24:3847-3852.
    31. Rajput AB, Miller MA, De Luca A, et al. Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J Clin Pathol,2007,60:1238-1243.
    32. Cecile R, Juliette H, Xavier C, et al. Detection of the TMPRSS2-ETS fusion gene in prostate carcinomas:retrospective analysis of 55 formalin-fixed and paraffin-embedded samples with clinical data. Cancer Genetics and Cytogenetics,2008,183:21-27.
    33. Lapointe J, Kim YH, Miller MA, et al. A variant TMPRSS2 i soform and ERG fusion product in prostate cancer with implications for molecular diagnosis. Mod Pathol,2007,20:467-473.
    34.夏同礼,董杰昌,张军.前列腺癌穿刺与切除标本Gleason评分比较.中华医学杂志,2002,82:1604-1605.
    35. Gopalan A, Leversha MA, Satagopan JM, et al. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res,2009,69:1400-1406.
    36. Darnel AD, Lafargue CJ, Vollmer RT, et al. TMPRSS2-ERG fusion is frequently observed in gleason pattern 3 prostate cancer in a canadian cohort. Cancer Biol Ther,2009,8:1-6.
    37. Nam RK, Sugar L, Wang Z, et al. Expression of TMPRSS2 ERG Gene Fusion in Prostate Cancer Cells is an Important Prognostic Factor for Cancer Progression. Cancer,2007,6:40-45.
    38. Cerveira N, Ribeiro FR, Peixoto A, et al. TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosome copy number changes in prostate carcinomas and paired HGPIN lesions. Neoplasia,2006,8:826-832.
    1. Pinkel D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA, 1986,83:2934-2938.
    2. Stamouli MI, Panani AD, Ferti AD, et al. Detection of genetic alterations in primary bladder carcinoma with dual-color and multiplex fluorescence in situ hybridization. Cancer Genet Cytogenet,2004,149:107-113.
    3. Schulten HJ, Panani AD, Ferti AD, et al. Cytogenetic characterization of complexkaryotypes in seven established melanoma cell lines by multiplex fluorescence in situhybridization and DAPI banding. Cancer Genet Cytogenet,2002,133:134-141.
    4. Schrock E, du Manoir S, Veldman T, et al. Multicolor spectral karyotyping of humanchromosomes. Science,1996,273:494-497.
    5. Gunawan B, Mirzaie M, Schulten HJ, et al. Molecular cytogenetic analysis of twoprimary squamous cell carcinomas of the lung using multicolor fluorescence in situhybridization. Virchows Arch,2001,439:85-89.
    6. Kucheria K, Jobanputra V, Talwar R, et al. Human molecular cytogenetics: diagnosis, prognosis, and disease management. Teratog Carcinog Mutagen, 2003, Suppl:225-233.
    7. Kuzniacka A. Mertens F, Strombeck B, et al. Combined binary ratio labelingfluorescence in situ hybridization analysis of chordoma. Cancer Genet Cytogenet,2004,151:178-181.
    8. Ferti AD, Stamouli MJ, Panani AD, et al. Molecular cytogenetic analysis of breastcancer:a combined multicolor fluorescence in situ hybridization and G-banding studyof uncultured tumor cells. Cancer Genet Cytogenet,2004,149:28-37.
    9. Van Roy N, Van Limbergen H, Vandesompele J, et al. Combined M-FISH and CGHanalysis allows comprehensive description of genetic alterations in neuroblastoma celllines. Genes Chromosomes Cancer,2001,32:126-135.
    10. Schrock E, du Manoir S, Veldman T, et al. Multicolor spectral karyotyping of human chromosomes. Science,1996.273:494-497.
    11. Jain AN, Chin K, Borresen-Dale AL, et al. Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival. Proc Natl Acad Sci USA,2001,98:7952-7957.
    12. Koo SH, Kwon KC, Shin SY, et al. Genetic alterations of gastric cancer: comparative genomic hybridization and fluorescence In situ hybridization studies. Cancer Genet Cytogenet,2000,117:97-103.
    13. Wong MP, Fung LF, Wang E, et al. Chromosomal aberrations of primary lung adenocarcinomas in nonsmokers. Cancer,2003,97:1263-1370.
    14. Rigola MA, Casadevall C, Bernues M, et al. Analysis of kidney tumors by comparative genomic hybridization and conventional cytogenetics. Cancer Genet Cytogenet,2002,137:49-53.
    15. Yen CC, Chen YJ, Chen JT, et al. Comparative genomic hybridization of esophageal squamous cell carcinoma:correlations between chromosomal aberrations and disease progression/prognosis. Cancer,2001, 92:2769-2777.
    16. Pollack JR, Perou CM, Alizadeh AA, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet,1999,23:41-46.
    17. Solinas-Toldo S, Lampel S, Stilgenbauer S, et al. Matrix-based comparative genomic hybridization:biochips to screen for genomic imbalances. Genes Chromosomes Cancer,1997,20:399-407.
    18. Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet,1998,20:207-211.
    19. Urban AE, Korbel JO, Selzer R, et al. High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. Proc Natl-Acad Sci U S A,2006,103:4534-4539.
    20. Hosoya N, Sanada M, Nannya Y, et al. Genomewide screening of DNA copy number changes in chronic myelogenous leukemia with the use of high-resolution array-based comparative genomic hybridization. Genes Chromosomes Cancer,2006,45:482-494.
    21. Morrison C, Radmacher M, Mohammed N, et al. MYC amplification and polysomy 8 in chondrosarcoma:array comparative genomic hybridization, fluorescent in situ hybridization, and association with outcome. J Clin Oncol,2005,23:9369-9376.
    22. Hughes S, Damato BE, Giddings I, et al. Microarray comparative genomic hybridisation analysis of intraocular uveal melanomas identifies distinctive imbalances ociated with loss of chromosome 3. Br J Cancer,
    2005,93:1191-1196.
    23. Ichimura K, Mungall AJ, Fiegler H, et al. Small regions of overlapping deletions on6q26 in human astrocytic tumours identified using chromosome 6 tile path array-CGH. Oncogene,2006,25:1261-1271.
    24. Heiskanen M, Kallioniemi O, Palotie A, et al. Fiber-FISH:experiences and a refined protocol. Engineering,1996,12:179-184.
    25. Fransz PF, Alonso-Blanco C, Liharska TB, et al. High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J,1996,9:421-430.
    26. Zhao L, Kantarjian HM, VanOort J, et al. Detection of residual proliferating leukemiccells by fluorescence insitu hybridizationin CML patientsin completere mission after interferon treatment. Leukemia, 1993,7:168.
    27. Laudadio J, Keane TE, Reeves HM, et al. Fluorescence in situ hybridization for detecting transitional cell carcinoma:implications for clinical practice. BJU Int,2005,96:1280-1285.
    28.张业贵,毕新刚,韩亚玲,等.多色荧光原位杂交在膀胱尿路上皮癌诊断中的应用,癌症,2007,26:189-193.
    29. Kononen J, Bubendorf L, Kallioniemi A, et al. Tissue microarrys for high-throughput molecular profiling of tumor specimens. Nat Med, 1998,4:844-847.
    30. Moch H, Kononen J, Kallioniemi A, et al. Tissue microarrys:what will they bring to molecular and anatmic pathology. Adv Mol Pathol, 2001,8:14-20.
    31. Bubendorf L, Kononen J, Koivisto P, et al. Survey of genen amplifications during prostate cancer progression by high throughout fluorescence insitu hybridiztion on tissue microarrys. Cancer Res,1999,59:803-806.
    32.鹿伟,成玉霞,孙青等.组织芯片原位杂交技术的应用体会.诊断病理学杂志,2006,13:153.
    1. Vergho DC, Heine K, Wolff JM. The role of PSA in diagnosis of prostate cancer and its recurrence. Patholog,2005,26:473-478.
    2. American cancer society. Cancer facts and figures 2003. Atlanta, GA: American Cancer Society,2001,48-51.
    3. Thompson IM, Emst JJ, Gangai MP, et al. Adenocarcinoma of the prostate: results of routine urological screening. J Urol,1984,132:690-692.
    4. Glod LM. In:Advances in internal medicine[M]. Vol 45. St. Lo uis, Mo: Mosby Inc.; 2000. Mettlin C, et al. Cancer,1993,72:11701-1708.
    5. T. A. Stamey, Preoperative serum prostate-specific antigen (PSA) below 10 microg/1 predicts neither the presence of prostate cancer nor the rate of postoperative PSA failure, Clin. Chem,2001,47:631-634.
    6. S. D. Mikolajczyk, Y. Song, J. R. Wong, R. S. Matson, H. G. Rittenhouse, Are multiple markers the future of prostate cancer diagnostics? Biochem. 2004,37:519-528.
    7. Etzioni R, Cha R, Cowen ME. Serial prostate specific antigen screening for pro state cancer:a computer model evaluates competing strategies. J Urol,1999,162(3 Pt 1):741-748.
    8. Xiao Z, Adam BL, Cazaros LH, et al. Quantitation of prostate specific membrane antigen by a novel protein biochip immunoassay discriminates from malignant prostate disease. Cancer Res,2001,61:6029-6033.
    9. Esteller, CpG island hypermethylation and tumor suppressor genes:a booming present, a brighter future. Oncogene,2002,21:5427-5440.
    10. S.B. Baylin, W.Y. Chen, Aberrant gene silencing in tumor progression: Implications for control of cancer, Cold Spring Harb. Symp. Quant. Biol, 2005,70:427-433.
    11. Maruyama, S. Toyooka, K.O. Toyooka, et al., Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Cancer Res,2002,8:514-519.
    12. Jeronimo, R. Henrique, P.F. Campos, et al. Endothelin B receptor gene hypermethylation in prostate adenocarcinoma. Pathol,2003,56:52-55.
    13. Woodson, J. Gillespie, J. Hanson, et al., Heterogeneous gene methylation patterns among pre-invasive and cancerous lesions of the prostate:a histopathologic study of whole mount prostate specimens. Prostate,2004,60:25-31.
    14. Tokumaru, S.V. Harden, D.I. Sun, K. Yamashita, J.I. Epstein, D. Sidransky, Optimal use of a panel of methylation markers with GSTP1 hypermethylation in the diagnosis of prostate adenocarcinoma. Cancer Res, 2004,10:5518-5522.
    15. Singal, L. Ferdinand, I.M. Reis, J. J. Schlesselman, Methylation of multiple genes in prostate cancer and the relationship with clinicopathological features of disease. Onco,2004,12:631-637.
    16. Jeronimo, R. Henrique, M.0. Hoque, et al. A quantitative promoter methylation profile of prostate cancer. Cancer Res,2004,10:8472-8478.
    17. Enokida, H. Shiina, S. Urakami, et al., Multigene methylation analysis for detection and staging of prostate cancer. Cancer Res, 2005,11:6582-6588.
    18. Bastian, G. S. Palapattu, X. Lin, et al. Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Cancer Res,2005,11:4037-4043.
    19. Kumar-Sinha, D. R. Rhodes, J. Yu, A. M. Chinnaiyan, Prostate cancer biomarkers:a current perspective, Expert Rev. Mol. Diagn, 2003,3:459-470.
    20. Huppi, G. V. Chandramouli, Molecular profiling of prostate cancer. Urol,2004,5:45-51.
    21. Nelson, Predicting prostate cancer behavior using transcript profiles. J Urol,2004,172:S28-S32, discussion S33.
    22. Kopper, J. Timar, Genomics of prostate cancer:Is there anything to "translate"? Pathol Oncol,2005,11:197-203.
    23. Hessels, G.W. Verhaegh, J. A. Schalken, J. A. Witjes, Applicability of biomarkers in the early diagnosis of prostate cancer. Expert Rev Mol Diagn,2004,4:513-526.
    24. Gelmann,O. J. Semmes, Expression of genes and proteins specific for prostate cancer. J Urol.2004,172:23-26, discussion S26-27.
    25. Ahmed, Microarray RNA transcriptional profiling:Part Ⅰ. platforms, experimental design and standardization. Expert Rev Mol. Diagn,2006, 6:535-550.
    26. Schmidt, S. Fuessel, R. Koch, et al. Quantitative multigene expression profiling of primary prostate cancer. Prostate,2006,66:1521-1534
    27. Petrovics, A. Liu, S. Shaheduzzaman, et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene, 2005,24:3847-3852.
    28. Groskopf, S. M. Aubin, I. L. Deras, et al. Aptima PCA3 molecular urine test: Development of a method to aid in the diagnosis of prostate cancer. Chem,2006,52:1089-1095.
    29. Hessels, J.M. Klein Gunnewiek, I. van Oort, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol,2003,44:8-15, discussion 15-16.
    30. Schaid, The complex genetic epidemiology of prostate cancer. Hum Mol Genet,2004,13:R103-R121.
    31. Schaid, J. C. Guenther, G. B. Christensen, et al. Comparison of microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancersusceptibility loci. Am. J Hum Genet, 2004,75:948-965.
    32. Slager, K. E. Zarfas, W. M. Brown, et al. Genome-wide linkage scan for prostate cancer aggressiveness loci using families from the university of Michigan prostate cancer genetics project. Prostate, 2006,66:173-179.
    33. Hsing, A. P. Chokkalingam, Prostate cancer epidemiology. Front Biosci, 2006,11:1388-1413.
    34. Mattick, I.V. Makunin, Non-coding RNA. Hum Mol Genet,2006,15:17-29.
    35. Calin, C.M. Croce, MicroRNA-cancer connection:the beginning of a new tale. Cancer Res,2006,66:7390-7394.
    36. Carthew, Gene regulation by microRNAs, Curr. Opin Genet Dev. 2006,16:203-208.
    37. Iorio, M. Ferracin, C. G. Liu, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res,2005,65:7065-7070.
    38. Rowley JD. Chromosome translocations:dangerous liaisons revisited. Nat Rev Cancer,2001,1:245-250.
    39. Rabbitts TH. Chromosomal translocations in human cancer. Nature,1994, 372:143-149.
    40. Rowley JD. Letter:A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature,1973,243:290-293.
    41. De Klein A, van Kessel AG, Grosveld G, et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature,1982,300:765-767.
    42. Bussemakers, A. van Bokhoven, G. W. Verhaegh, et al. highly overexpressed in prostate cancer. Cancer Res,1999,59:5975-5979.
    43. Petrovics, A. Liu, S. Shaheduzzaman, et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 2005,24:3847-3852.
    44. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science,2005, 310:644-648.
    45. Seth A and Watson DK. ETS transcription factors and their emerging roles in human cancer. Eur J Cancer,2005,41:2462-2478.
    46. Camuzeaux B, Spfiet C, Heliot L, et al. Imagng Erg and Jun transc fipfion factor interaction in living cells using fluorescence resonance energy transfer analyses. Biochem Biophys Res Commun,2005,332:1107-1114.
    47. Zhu B and Kyprianou N. Transforming growth factOr beta and prostate cancer. Cancer Treat Res,2005,126:157-173.
    48. Tomlins SA, Rhodes DR, Pemer S, et al. Recurrent fusion of TM. PRSS2 and ETS transcription factor genes in prostate cancer. Science,2005, 310:644-648.
    49. Shand, Randi L. Gelmann, Edward P, et al. Molecular biology of prostate-cancer pathogenesis. Lippincott Williams & Wilkins,2006, 16:123-131.
    50. Lapointe A. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Nail Acad Sci USA,2004,101:811-816.
    51. Glinsky GV, Glinskii AB, Stephenson AJ, et al. Gene expression pmfiling predicts clinical outcome of prostate cancer. Invest,2004,113:913-923.
    52. Muno Cerveira, Franclim R Ribeiro, Ana Peixoto. et al. TMPRSs2-ERG Gene Fusion Causing ERG Overexpression Precedes Chromosome Copy Number Changes in Prostate Carcinomas and Paired HGPIN Lesions. Neoplasia, 2006,8:826-832.
    53. Pemer S, Demichelis F, Beroukhim R, et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res,2006,66:8337-8341.
    54. Laxman B, Tom; ins SA, Mehra R, et al. Noninvasive Detection of TMPRSS2: ERG Fusion Transcripts in the Urine of Men with PmstateCancer. Neoplasia, 2006,8:885-888.
    55. Soller MJ, lsaksson M, Elfring P, et al. Conf innation of the tligh Frequency of the MPRSS2/ERG Fusion Gene in Prostate Cancer. Genes Chromosomes Cancer,2006,45:717-719.
    56. Yoshimoto M, Joshua AM. MacNeill sc, et al. Three-Color FISH Analysis of TMPRSS2/ERG Fusions in Prostate Cancer Indicates That Genomic Microd eletion of Chromosome 21 Is Associated with Rear-rangement. Neoplasi, 2006,8:465-469.
    57. Sun C, Dobi A, Mohamed A, et al. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene,2008,40:5348-5353.
    58. Wang J, Cai Y, Ren C, et al. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res, 2006,66:8347-8351.
    59. Carver BS, Tran J, Chen Z, et al. ETS rearrangements and prostate cancer initiation. Nature,2009,448:595-599.
    60. Petrovics G, Liu A, Shaheduzzaman S, et al. Frequent overexpression of ETS-related gene-1(ERG1)in prostate cancer transcriptome. Oncogene, 2005,24:3847-3852.
    61. Wang J, Cai Y, Yu W, et al. Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res, 2008,68:8516-8524.
    62. Petrovics G, Liu A, Shaheduzzaman S, et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene, 2005,24:3847-3852.
    63. Perner S, Demichelis F, Beroukhim R, et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res,2006,66:8337-8341.
    64. Gopalan A, Leversha MA, Satagopan JM, et al. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res,2009,69:1400-1406.
    65. Darnel AD, Lafargue CJ, Vollmer RT, et al. TMPRSS2-ERG fusion is frequently observed in gleason pattern 3 prostate cancer in a canadian cohort. Cancer Biol Ther,2009,8:1-6.
    66. Nam RK, Sugar L, Wang Z, et al. Expression of TMPRSS2 ERG Gene Fusion in Prostate Cancer Cells is an Important Prognostic Factor for Cancer Progression. Cancer,2007,6:40-45.
    67. Cerveira N, Ribeiro FR, Peixoto A, et al. TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosome copy number changes in prostate carcinomas and paired HGPIN lesions. Neoplasia,2006,8:826-832.
    68. Jiangling J Tu, Rohan S, Kao J, et al. Gene fusions between TMPRSS2 and ETS family genes in prostate cancer:frequency and transcript variant analysis by RT-PCR and FISH on paraffin-embedded tissues. Modern Pathology,2007,20:921-928.
    69. Iljin K, Wolf M, Edgren H, et al. TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res,2006, 66:10242-10246.
    70. Bjorkman M, Iljin K, Halonen P. Defining the molecular action of HDAC inhibitors and synergism with androgen deprivation in ERG-positiveprostate cancer. Int J Cancer,2008,123:2774-2781.
    71. Laxman B, Tomlins SA, Mehra R, et al. Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia,2006,8:885-888.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700