用户名: 密码: 验证码:
净化黄磷尾气部分变换制合成气催化过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过深度净化后的黄磷尾气是一种极佳的碳一化工原料气,利用其富含高浓度CO(>85%)的特点,若能将其通过CO水气变换反应制得高质量的合成气(H2和CO),再用成熟的CO催化加氢技术来生产甲醇,即可减少污染又可实现废物资源回收利用。本文针对黄磷尾气CO变换制甲醇合成气的关键问题,在课题组前期研究基础上,设计制作了一套适合含高浓度CO净化黄磷尾气变换制氢的小试装置,在模拟净化后黄磷尾气为原料气的条件下,对适合高浓度CO变换的B112型工业催化剂的活性影响因素、工艺条件、本征动力学和催化剂PH3中毒等方面进行了系统研究。主要研究成果如下:
     (1)选取影响催化剂活性的主要影响因素温度、汽气比及空速作为研究对象,采用单因素实验方法进行实验,考察了温度350-530℃、汽气比0.6-3.3和空速1000~3100 h-1范围内各种操作条件变化对CO变换率的影响规律。实验结果表明在高浓度CO变换反应过程中,由于发生副反应存在一个最佳温度;水蒸气造成催化剂暂时失活,存在一个最佳汽气比;在变换工艺条件下,空速越小,越有利于反应的充分进行。对失活前后的催化剂进行SEM、XPS和XRD表征分析,得出催化剂失活的主要原因是催化剂活性中心被积碳所覆盖。
     (2)采用均匀实验设计方法,对变换工艺条件进行深入研究,对实验结果建模分析,并进行反复实验论证,最终确定含高浓度CO净化黄磷尾气变换制氢的最佳工艺条件。通过回归分析,得到影响因素贡献率由大到小顺序为:反应温度>空速>汽气比>C02含量。根据实验结果并结合实际确定最佳工艺条件为:反应温度490℃,空速1000 h-1,汽气比2.5,CO2含量1%,在此条件下,CO变换率大于89%,并能满足催化剂高活性和长寿命的要求,变换率大小可以以此为依据来进行精确调控。
     (3)在常压,温度350~450℃和反应器入口气体组成(摩尔分数)CO 0.75~0.95、CO2 0.01~0.10、H2 0.01~0.08,其余为N2的条件下,对高浓度变换催化剂的本征动力学特性进行了系统的实验研究。以目标函数估值法对实验数据进行非线性参数估值,建立了幂函数型高浓度CO变换催化剂常压本征动力学模型,该模型与实验数据吻合较好。
     (4)利用HSC Chemistry 5.0热力学计算软件及其附带的热力学数据库软件包,根据Gibbs自由能最小原理,从理论上推断达到平衡时催化剂的活性成分Fe304的PH3中毒过程中可能发生的反应及产物。得出反应生成的焦磷酸盐和积碳会覆盖在催化剂的表面造成催化剂的可逆中毒;而磷铁化合物则使催化剂活性中心被占据,造成其结构的破坏,导致不可逆中毒。
     (5)对高浓度CO变换催化剂进行PH3 5.12~955.41 mg/m3浓度的抗毒性实验和PH3 955.41 mg/m3浓度下中毒时间2-50 h的强制性中毒实验,并对强制中毒下的催化剂表面形态、元素组成、物相等进行SEM、XPS和XRD表征,分析其中毒机理。得到工业高浓度CO变换催化剂PH3中毒过程中,PH3的最高允许浓度为400.05 mg/m3,在此浓度以下催化剂活性会受到不同程度的影响,但经过一段时间稳定后,其活性仍能达到变换要求,相反会导致催化剂活性大幅下降;PH3中毒机理的研究结果表明:PH3会加速焦磷酸盐和积碳的产生并覆盖于催化剂的表面,因生成的键较弱,造成可逆性中毒;可溶性磷酸盐会进一步与铁基高温变换催化剂发生反应,生成非溶性的物相与磷铁化合物,使得催化剂活性中心被占据,造成其结构的永久破坏导致不可逆中毒。
Highly purified yellow phosphorus exhaust is excellent good source of Cl gas. Based on the high volume fraction of CO (>85%) and the technology of CO catalytic hydrogenation, the yellow phosphorus exhaust would be developed to directly produce methanol synthesis gas with appropriate ratio of H2/CO. It helps reduce air pollution and reuse resources. In order to prepare the synthesis gas for methanol from purified yellow phosphorus exhaust by water gas shift reaction based on previous work. The activity influencing factors including process conditions, intrinsic kinetics and catalyst poisoning of PH3 of B112 industrial catalyst were further studied under the condition that the purified yellow phosphorus exhaust is the material gas. The main conclusions are as follows:
     (1) Accoding to literature review we selected the catalytic activity factors: temperature, steam to gas ratio and space velocity as the object of study; used single-factor experimentwithtemperature 350~530℃, steam to gas ratio from 0.6 to 3.3 and space velocity 1000~3100 h-1 respectively to investigate the patterns of CO conversion rate. Obtained in high concentrations of CO shift reaction process of reaction rate due to the occurrence of side effects and there is an optimum temperature;due to water vapor will cause a temporary deactivation of the catalyst reasons there is an optimum steam-gas ratio; in changing technological conditions in, space velocity the smaller the reactants in the reactor where the longer the stay, the more favorable reaction to the full. Deactivation of the catalyst before and after the SEM, XPS and XRD characterization analysis resulted in a normal catalyst deactivation by carbon deposition on the catalyst active sites.
     (2) Study on highly concentrated CO tail gas of purification yellow phosphorus transformation process conditions with B112-type high-temperature shift catalyst based on test results of influnce factors. The results showed that affect its transformation efficiency of the factors in decreasing order as follows:reaction temperature, space velocity, steam to gas ratio, CO2 concentration. The uniform design was applied to optimize reaction conditions, and a regression equation was established to describe the influences of reaction temperature, space velocity, steam to gas ratio, and CO2 content on CO transformation efficiency. The calculation results of the regression equation agree well with the experimental data. Through optimized model and experimental verification, combined with industrial practices, the optimal process conditions for CO transformation efficiency is 88.9 % at 490℃, space velocity 1000h-l,steam to gas ratio and 1% CO2 content by uniform design. It maintains high catalytic activity and logevity requirements, based on which the changing rate can be accurately adjusted.
     (3)Under the atmospheric pressure, the temperature at (350~450℃), and the inlet gas fractions as CO 0.75~0.95, CO2 0.01~0.10, H2 0.01~0.08.The rest being N2, this research focuses on the intrinsic kinetics features of high concentration CO shift catalyst with the quartz glass tube reactor. By the use of objective function estimated value method, it nonlinear parameter estimated values the experimental data, and the power function model high concentration CO shift catalyst atmospheric pressure intrinsic kinetics is established. Results from parameter estimation showed high confidence level of the kinetic equations.
     (4)Using thermodynamics software HSC Chemistry 5.0 and its Database Software, based on the principle of Gibbs free energy minimum, we inferred theoretically that the compounds, spontaneity and reaction competitive force may produced during the poisoning process of the active constituent Fe3O4 of high concentration CO shift catalyst in PH3.It is observed that the generated pyrophosphate and carbon deposition will cover the outside of catalyst,so that it will bring about the reversible poisoning of catalyst because the phosphorus and iron compound made the active centers of the catalyst occupied, the structure was irreversibly destroyed poisoning.
     (5) The poison resistance experiment for high concentration CO shift catalyst in the concentration of PH3 5.12~955.41 mg/m3 and the coerciveness poisoning experiment in the concentration of PH3 955.41 mg/m3 in 2~50 h was conducted. We also present the characterizations of the surface morphology the elemental composition and phase of the enforcement poisoning catalyst by SEM、XPS and XRD, and the mechanism of its poisoning was analyzed. We found that conclude that in the poisoning process of industry high concentration CO shift the maximum allowable concentration of PH3 is 400.05mg/m3. The catalyst activity will be affected below the maximum concentration, but after a while, the catalyst activity will still meet the requirement while reducing the catalyst activity. The mechanism of PH3 poisoning is as following. First, PH3 poisoning will made pyrophosphate and carbon deposition cover the outside of catalyst and the reversible poisoning occurred out of the weakness of chemical bond. Second, the solvable phosphate and iron-based high temperature conversion catalyst will produce some insoluble phase and phosphorus & iron compound, and this made the active centers of the catalyst occupied, the structure destroyed and so that the irreversible poisoning occurred.
引文
[1]严平.从世界磷化工贸易来看国内黄磷行业面临的挑战[J].磷酸盐工业,2005,21(4):1-14.
    [2]陈善继.中国黄磷生产现状与可持续发展战略[J].无机盐工业,2005,37(11):1-3.
    [3]陈中明,武立新,魏玺群等.变温和变压吸附法从黄磷尾气净化回收一氧化碳[J].天然气化工,2001,26(4):24-26.
    [4]宁平,王学谦,吴满昌等.黄磷尾气碱洗-催化氧化净化[J].化学工程,2004,32(5):61-65.
    [5]曾之平.黄磷生产尾气净化现状与改进建议[J].无机盐工业,1992,31(5):28-31.
    [6]宁平,潘克昌,谢有畅等.黄磷尾气催化氧化净化的方法[P].发明专利,ZL02113667.X.
    [7]Ning P., Wang X. Q.. Purifying yellow phosphorus tail gas by catalytic oxidation[C]. Proceedings of JSPS-MOE Core University Program on Urban Environmental. Kurashiki, Japan, Oct.2-5,2002:68-70.
    [8]Zhantasov K. T.. Development of cleaning schemes for dust-gas flows from the processes of thermal treatment of phosphate-silicon and carbonate raw material[J]. Vestn. Minist. Nauki-Akak.Nauk Res.Kaz..1997,91(5),52-56.
    [9]Konttinen J. T., Zevenhoven C. A. P., Hupa M. M. Hot gas desulfurization with zinc titanate sorbents in a fluidized bed,2. Reactor model[J]. Ind. Eng. Chem. Res.,1997,36:2340-2348.
    [10]Konttinen J. T., Zevenhoven C. A. P., Hupa M. M.. Determination of sorbent particle conversion rate model parameters[J]. Ind. Eng. Chem. Res.,1997,36:2336-2341.
    [11]Glenn T. M., Drncan B.. Process and composition for purifying arsine, phosphine, ammomia and inert gases to remove Lewis acid and oxidant impurities therefrom[p]. U.S. Patent 5182088.
    [12]Leondaridis P., Vendel A. S.. Akthar T. Removal of gaseous hydrides[p]. U.S. Patent 4781900.
    [13]Munday T. F., Goldstein D., Walden J.. Removal of phosphine contaminant from carbon monoxide gas mixtures[P]. U.S. Patent 4185079.
    [14]Neumann P., von Linde F.. Opportunities for economical hydrogen supply[N]. Inform,2003, 14(5):313-315.
    [15]宁平,王学谦,陈梁.黄磷尾气净化制甲醇[J].磷酸盐工业,2006,1(3):3-8.
    [16]宁平,殷在飞.一种黄磷尾气部分变换制氢的方法[P].发明专利,2005100108407.
    [17]王家伦.黄磷尾气制甲醇项目调研报告[J].无机盐技术,2004,(4):41-42.
    [18]张建宇.一氧化碳变换催化剂的特性与选用[J].化工催化剂及甲醇技术,2001,(5):1-6.
    [19]Edwards M. A., Whittle D. M., Rhodes C., et al. Microstructural studies of the copper promoted iron oxide/chromia water-gas shift catalyst[J]. Phys. Chem. Chem. Phys.,2002, 1(4):3902-3908.
    [20]Ruettinger W., Ilinich O., Farrauto R. J.. A new generation of water gas shift catalysts for fuel cell applications[J]. Journal of Power Sources,2003,1(118):61-65.
    [21]魏玺群等.黄磷尾气净化回收新工艺探讨[J].化肥工业,2001,1(6):29-32.
    [22]建军等.变压吸附二氧化硅的实验研究[J].无机盐工业,2000(6):11-12.
    [23]游成树.黄磷炉气综合利用途径探索[J].贵州化工,1999,21(1):10-12.
    [24]杨云,张林勇,殷文华.黄磷尾气的净化及利用[J].气体净化,2003,3(4):129-133.
    [25]许松林,郑凯,徐世民.综合利用黄磷尾气生产二甲醚的可行性研究[J].化工技术经济,2003,21(4):33-35.
    [26]戴春皓.黄磷尾气变换制甲醇及新型催化剂研究[D]:[博士学位论文].昆明:昆理工大学,2009.
    [27]Kochloefl K. Handbook of Heterogeneous Catalysis[M]. Knozinger H and Weitkamp J. vol 4. In:G.Ertl, Wiley-VCH, Weinheim(1997):1831-1840.
    [28]Laniecki M, Malecka-Grycz M, Domka F. Applied Catalysis A:General.2000,196(2): 293-303.
    [29]李速延,周晓奇.CO变换催化剂的研究进展[J].煤化工,2007,4(2):31-34.
    [30]程远忠.一氧化碳变换工艺的选择与应用[J].化工设计通讯,1997,23(2):11-16.
    [31]段秀琴.一氧化碳变换工艺与节能[J].山西化工,2001,21(1):18-20.
    [32]张建宇,吕待清.一氧化碳变换工艺分析[J].化肥工业,2000,27(3):26-32.
    [33]Ertl G., Knoxinger H.. Weikamp J. Handbook of Heterogeneous Catalysis, Vol.4. Weiheim: Wiley-VCH,1997,1831.
    [34]朱长春,蔡新国.中低低变换工艺的应用[J].化学工业与工程技术,2003,24(3):45-47.
    [35]施俊鹏.中低低和全低变变换工艺的设计与选择[J].山西化工,2008,28(1):52-54.
    [36]冯桂晓,赵永富.全低变改中中低低变换工艺总结[J].化工设计通讯,2000,26(2) 59-60.
    [37]Barman S., Venkataraman N. V., et al.. Phase transitions in the anchored organic bilayers of long-chain alkyammonium lead iodides (CnH2n+1NH3)2PbI4, n=12,16,18. Phys. Chem. B..2003,107:1875-1883.
    [38]黄德明.合成氨生产工艺学[M].中国石化出版社.1989年9月第1版.
    [39]姜圣阶.合成氨工学[M].石油化学工业出版社,1978年7月第2版.
    [40]刘全生,张前程,马文平等.变换催化剂研究进展[J].化学进展,2005,17(3):389-398.
    [41]刘文砥,李金云,罗来涛.低汽气比条件下高温变换催化剂的研究及进展[J].江西化工,2003,21(2):118-121.
    [42]王长发,霍尚义.低水碳比高变催化剂ICI71-4物性研究[J].工业催化,1998,1:50-54.
    [43]赵镶.催化剂技术交流会论文选集[C].南京:联合催化剂公司,1990,6:27.
    [44]Huang Dinah C, Braden. High temperature shift catalyst and process for its manufacture:US, 4861745 [P].1989-07-18.
    [45]Colin R, Graham J H. Studies of the role of the copper promoter in the iron oxide/chromia high temperature water gas shift catalyst[J]. Phys. Chem. Chem. Phys.,2003,66(5): 2719-2723.
    [46]叶炳火,江莉龙,陈雅贞.浸渍法制备无铬CO高温变换催化剂[J].福州大学报,2003,31(2):234-237.
    [47]叶炳火,江莉龙,王毅腾.无铬CO高温变换催化剂的开发和应用研究[J].工业催化,2004,12(12):15-18.
    [48]李伟,牟占军,李建伟等.铁基无硫无铬型CO高温变换催化剂制备条件研究.工业催化,2004,12(9):18-21.
    [49]吕宏安,何观伟.FB123型高变催化剂的工业应用[J].小氮肥,2003,12:5-7.
    [50]欧晓佳,程极源.金属氧化物对低铬铁系催化剂结构和性能的影响[J].天然气化工,1998,23(6):12-16.
    [51]崔岩.LB型中温变换催化剂宏观动力学研究[J].河南农业大学学报,2003,37(3):290-292.
    [52]李建伟,白净宇,姚飞等.低汽气比LB型中温变换催化剂上水煤气变换反应的动力学研究[J].催化学报,2005,26(1):25-31.
    [53]赵志利,何观伟,霍尚义.高温变换催化剂发展方向[J].工业催化,1998,6(2):30-34.
    [54]张力峰,李建伟,陈标华.LB型中温变换催化剂本征动力学研究[J].北京化工大学学报, 2004,31(1):6-14.
    [55]周金超.LB型低汽气比高温变换催化剂的性能及其工业应用[J].化学工业与工程技术,2004,25(2):50-51.
    [56]魏灵朝,王福安,刘怡.LB型节能高温变换催化剂制备工艺研究[J].天然气化工,2006,31(2):11-15.
    [57]魏灵朝,刘怡,催卫星等.高温变换催化剂制备条件的神经网络优化[J].化学反应工程与工艺,2006,22(6):497-501.
    [58]Souza T R O, Brito S M O, Andrade H M C. Zeolite catalysts for the water gas shift reaction[J]. Applied Catalysis A:General.1999,178(1):7-15.
    [59]王长发,吴西宁,赵志利等.二氧化硅载铜催化剂物性结构对水煤气变换反应活性的影响[J].工业催化,1996,4(2):53-56.
    [60]Wn J G, Saito M. Improvement of stability of a Cu/ZnO/Al2O3 catalyst for the CO shift reaction[J]. Journal of Catalysis.2000,195(2):420-422.
    [61]Koryabkina N A, Phatak A A, Ruettinger W F, et al. Determination of kinetic parameters for the water-gas shift reaction on copper catalysts under realistic conditions for fuel cell applications[J]. Journal of Catalysis.2003,217:233-239.
    [62]村芳林,崔作林,张志琨等.负载型纳米非贵金属催化剂上一氧化碳的氧化[J].分子催化,1998,12(2):125-128.
    [63]余享濂,周莲风.SX-1型铜系高变催化剂的研究[J].石化技术与应用,1999,17(2):71-74.
    [64]李特木尔巴根,崔瑞敏,郭薇等.不同助剂对铜锰系变换催化剂活性的影响[J].应用科技,2006,33(4):62-64.
    [65]边平凤,林瑞,罗孟飞等.制备方法对CuO-Ce02混合氧化物的还原性能和氧化活性的影响[J].化学通报,1988,5(1):50-53.
    [66]Yue L, Qi F and Malia F. Low temperature water-gas shift reaction over Cu-and Ni-oladed cerium oxide catalysts [J]. Applied catalysis B environmental.2002,190(1):365-371.
    [67]李廷真,王东升,高俊等.铜基低水碳比型高温变换催化剂制备工艺条件的研究[J].内蒙古工业大学学报,2002,21(3):170-173.
    [68]Flytzani-Stephanopoulos, Xiao M, Maria Q. Activiry and stability of Cu-CeO2 catalysts in high temperature water gas shift for fuel-cell applications [J]. Industrial Engineering Chemistry Research,2004,36(3):3055-3062.
    [69]张颖鹤.低温水煤气变换催化剂的研究进展[J].安徽化工.2006,5:6-8.[70] Yamamoto N, Hashimoto B, Shibano H. The preparation of a new kind Cu-based catalyst for WGS:JP,63/77546[P].1988-11-09.
    [71]董献登,冯树波,梁瑞娥等.铜锰水煤气变换催化剂的研究[J].河北轻化工学院学报,1993,14(1):21.
    [72]冯树波,梁瑞娥,刘洪杰等.铜锰氧化物水煤气变换催化剂的研究[J].河北轻化工学院学报,1995,16(4):68-72.
    [73]Tanaka Y, Utaka T, Kikuchi R, et al. Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide[J]. Journal of Catalysis.2003,215(2): 271-278.
    [74]Shishido T, Nishimura S, Yoshinaga Y, et al. High sustainability of Cu-Al-Ox catalysts against daily start-up and shut-down (DSS)-like operation in the water-gas shift reaction[J]. Catalysis Communications.2009,10(7):1057-1061.
    [75]李选志,高俊文.LB205型CO低温变换催化剂的研制开发[J].气体净化,2005,5(4):108-110.
    [76]李选志,高俊文,王亚利等.LB205低温变换催化剂的研制开发[J].工业催化,2005,13(12):33-36.
    [77]史秀齐,张戈,林承顺等.低汽气比CO低温变换催化剂进展及B207的工业应用[J].化肥工业,2002,29(6):17-24.
    [78]李选志,韦孙昌.铜基一氧化碳低温变换催化剂的研究进展[J].大氮肥,2006,29(1):69-72.
    [79]John O F B, Edward K D, Arthur L H. Low-temperature copper-zinc shift reaction catalysis and methods for their preparation:US,3615217[P].1971-10-26.
    [80]康慧敏.低变铜系催化剂组成与物相对活性的影响[J].大氮肥,1989,12(1):29-32.
    [81]Yohei Tanaka. et al. CO removal from reformed fuel over Cu/ZaO/AlO3 catalysts prepared by impregnation and CO precipitation methods[J]. Applied Catalysis A:General,2003,238(01): 11-18.
    [82]Basinska A, Wiak W K, Goralski J, Domka F. The behaviour of Ru/Fe2O3 catalysts and Fe2O3 supports in the TPR and conditions[J].Applied Catalysis A:General.2000,190(1-2): 107-115.
    [83]刘春涛,史鹏飞,张菊香.Au/Fe2O3催化剂的制备及其对富氢气体中一氧化碳选择性氧化的催化性能[J].2004,25(9):697-701.
    [84]华金铭,郑起,林性贻等.水煤气变换催化剂研究新进展[J].分子催化,2004,18(1):68-80.
    [85]冯长根,樊国栋,刘霞.三效催化剂中促进剂氧化铈的作用研究进展[J].化工进展,2005,24(3):227-230.
    [86]Andreeva D. Idakiev V, Tabakova T, et al. Low-temperature water-gas shift reaction on Au/a-Fe2O3 catalyst. Applied Catalysis A:General.1996,134(2):275-283.
    [87]Andreeva D. Idakiev V, Tabakova T, et al. Low-temperature water-gas shift reaction over Au/CeO2 catalysts. Catalysis Today.2002,72(1-2):51-57.
    [88]Andreeva D, Ivanov I, Ilieva L, et al. Gold catalysts supported on ceria and ceria-alumina for water-gas shift reaction[J]. Applied Catalysis A:General.2006,302(1):127-132.
    [89]Boccuzzi F, Chiorino A, Manzoli M, et al. Ftir study of the low-temperature water-gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts[J]. Journal of Catalysis.1999,188(1):176-185.
    [90]Leppelt R, SchunacherB, Plzak V, et al. Kinetics and mechanism of the low-temperature water-gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere[J]. Journal of Catalysis.2006,244(2):137-152.
    [91]Qi F, Weber A, Flytzani-Stephanopoulos M. Nanostructured Au-CeO2 catalysts for low-temperature water-gas shift [J]. Catalysis Letters.2001,77(1-3):87-95.
    [92]Qi F, Kudriavtseva S, Saltsburg H, et al. Gold-ceria catalysts for low-temperature water-gas shift reaction[J]. Chemical Engineering Journal.2003,93(1):41-53.
    [93]Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2,Au/CeO2, and Au/Fe2O3 catalysts[J]. Catalysis Communications.2003,4(5):215-221.
    [94]Sakurai H, Akita T, Tsubota S, et al. Low-temperature activity of Au/CeO2 for water gas shift reacion, and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction[J]. Applied Catalysis A:General.2005,291(1-2):179-187.
    [95]Utaka T, Okanishi T, Takeguchi T, et al. Water gas shift reaction of reformed fuel over supported Ru catalysts[J]. Applied CatalysisA:General.2003,245(2):343-351.
    [96]Part J. Moon D J, Phillips C, et al. Molybdenum carbide catalysts for water-gas shift[J]. Catalysis Letters.2000,65(4):193-195.
    [97]Basinska A, Kepinski L, Domka F. The efect of support-on WGSR activity of Ruthenium catalysts[J]. Applied Catalysis A:General.1999,183:143-153.
    [98]Cai W. Wang F. Van Veen A C. Provendier H, et al. Autothermal reforming of ethanol for hydrogen production over an Rh/CeO2 catalyst[J].Catalysis Today.2008,138(3-4):152-156.
    [99]Sadi F, Duprez D, Gerard F, et al. Hydrogen formation in the reaction of steam with Rh/CeO2 catalyst:a tool for characterising reduced centres of ceria[J]. Journal of Catalysis.2003, 213(2):226-234.
    [100]Hosokawa S, Nogawa S, Taniguchi M, et al. Oxidation characteristics of Ru/CeO2 catalyst[J]. Applied Catalysis A:General.2005,288(1-2):67-73.
    [101]蒋晓原,周仁贤,毛建新等.Ce02在Pd/γ-Al2O3催化剂中的助剂作用[J].应用化学,1999,16(1):26-29.
    [102]Bitsch-Larsen A., DegesteinN J., Schmitd L D. Effect of sulfur in catalytic partial oxidation of methane over Rh-Ce coated foam monoliths[J]. Applied Catalysis B:Environmental, 2008,78:364-370.
    [103]Magali F, Jennifer M, Theodore K. Effect of temperature, steam-to-carbon ratio, and alkali metal additivies on improving the sulfur tolerance of a Rh/La-Al2O3 catalyst reforming gasoline for fuel cell applications[J]. Applied Catalysis A:General,2008,342:69-77.
    [104]谢永军,栗玉霞,赵世俊等.甲醇催化剂中毒原因分析[J].化工催化剂及甲醇技术,2006, (6):14.
    [105]谢永军,栗玉霞.甲醇催化剂中毒原因分析与改进[J].西部煤化工,2006(1):131.
    [106]Federica M, Patrizai C, Francesco P, et al. Bimetallic Pd-Au catalysts for benzaldehyde hydrogenation:Effects of preparation and of sulfur poisoning[J]. Catalysis Communications, 2008 (9):2353-2356.
    [107]Oudar J. Wise H.Decativiation and poisoning of catalysis[M]. New York:Marcel Dekker INC,1985:303.
    [108]Weng Duan, LI Jia, WU Xiaodong, et al.Promotional effect of potassium on soot oxidation activity and SO2-poisoning resistance of Cu/CeO2 Catalyst[J]. Catalyst Communications, 2008(9):1898-1901.
    [109]Quinn R, Mebrahtu T, Dahl T A, et al. The role of arsine in the deactivation of methanol synthesis catalysts[J]. Applied Catalysis A:General,2004,264(18):103-109.
    [110]田森林,宁平,殷在飞等.净化黄磷尾气部分变换制甲醇合成气中试研究[J].化学工程,2008,36(11):63-65.
    [111]纵秋云,宋淑群.高浓度CO变换气制甲醇问题的探讨及催化剂选型[J].煤化工,2007,130(3):41-63.
    [112]史克昕,任毕龙.影响一氧化碳变换率因素的浅析[J].小氮肥设计技术,2006,27(3):43.
    [113]刘全生,赵福军,牟占军等.铁系高变催化剂上水煤气变换反应本征动力学的研究[J].燃料化学学报,2004,32(2):190-194.
    [114]高丽娜,郭瓦力,刘佳禾.甲醇部分氧化制氢的热力学分析(Ⅰ)[J].沈阳化工学院学报:2007,21(2):91-95.
    [115]Roine Antti. HSC Chemistry 3.0 in Metallurgical Applications[C]. TMS Annual Meeting, Sulfide Smelting'98 Current and Future Practices.1998,49-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700