用户名: 密码: 验证码:
含Cu硅基铁电电容器集成过程中Ni-Al阻挡层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寻找性能良好的阻挡层来抑制Cu的扩散一直是Cu互连技术的关键,因此,研究阻挡层的失效机理对于提高互连可靠性具有重要的意义。采用射频磁控溅射技术构架Cu/Ni-Al/SiO2/Si、Cu/Ni-Al/Si、Cu/Ta/Ni-Al/Si异质结,并进行高真空退火.利用x射线衍射(XRD)、四探针电阻测试仪、原子力显微镜(AFM)和透射电子显微镜(TEM)对样品微结构、输运性质、表面形貌和界面进行了分析表征。结果表明,在750℃的高温退火后Cu/Ni-Al/SiO2/Si和Cu/Ni-Al/Si异质结内没有明显的反应和互扩散发生,Cu/Ta/Ni-Al/Si在高达800℃退火后仍然没有硅铜化合物出现,退火过程中Ni-Al一直保持非晶状态。超薄的Ni-Al(4.5 nm)和Ta(3 nm)/Ni-Al(3 nm)阻挡层表现出了良好的阻挡效果。
     从Fick第二定律和扩散方程入手,通过计算扩散激活能来研究Ni-Al的阻挡性能。Cu在Ni-Al中具有较大的扩散激活能(2.9 eV),表明Ni-Al对Cu的扩散起到了良好的阻挡效果。阻挡层微结构是影响Cu互连阻挡层性能的关键因素,非晶结构没有晶界存在,不能为Cu提供快速扩散路径。
     采用溶胶-凝胶(Sol-Gel)法在Cu/Ni-Al/Si异质结基础上集成Lao.5Sr0.5CoO3(LSCO) /Pb(ZrxTi1-x)O3(PZT)/La0.5Sr0.5CoO3(LSCO)铁电电容器。利用铁电测试仪对其铁电性能进行了研究,结果发现电容器有良好的电滞回线、较高的极化强度(28μC/cm2)、较小的矫顽电压(1.6 V)和较小的漏电流密度(104 A/cm2)。
It is crucial to find an appropriate diffusion barrier for Cu interconnection technology; therefore, it is very important for investigating the failure mechanism of the barrier layer in order to increase its reliability. The Cu/Ni-Al/SiO2/Si, Cu/Ni-Al/Si, and Cu/Ta/Ni-Al/Si heterostructure are prepared at room temperature by magnetron sputtering method and annealed in an ultra-high vacuum system. Sheet resistance, x-ray diffraction, atomic force microscopy and high resolution transmission electron microscopy are used to study the microstructures, transport properties, surface morphology and interfaces of the samples. It is found that no obvious reactions or interdiffusion occur in the Cu/Ni-Al/SiO2/Si and Cu/Ni-Al/Si samples annealed at 750℃, and no Cu silicide is observed for Cu/Ta/Ni-Al/Si samples annealed at 800℃. All the Ni-Al film of the samples keep amorphous. Both the Ni-Al(5 nm) and the Ta (3 nm)/Ni-Al (3 nm) bilayer films are excellent diffusion barrier for Cu metallization.
     Based on the diffusion equation and fick's second law, we calculated the activation energy to study the barrier properties. Ea for Ni-Al film is 2.9 eV, indicating Ni-Al film has good barrier property. The microstructure of the barrier materials impacts the performance of the barrier layer for Cu diffusion barrier. Amorphous Ni-Al film can be used as good barrier layer since it lacks grain boundaries, which can act as the high diffusivity path.
     La0.5 Sr0.5CoO3 (LSCO)/Pb(ZrxTi1-x)O3 (PZT)/La0.5Sr0.5CoO3 (LSCO) ferroelectric capacitor has been integrated on Cu/Ni-Al/Si substrate by combining Sol-Gel and magnetron sputtering methods. Ferroelectric properties are studied by a ferroelectric tester. It is found that the hysteresis loop is well saturated at 12V. Moreover, the capacitor has low coercive voltage, high remnant polarization, low leakage current density.
引文
[1]GMoore, VLSI:Some fundamental challenges[J]. IEEE Spectrum,1979,16:30
    [2]X.W.Lin, et al. Future interconnect technologies and copper metallization[J]. Solid State Technology, Oct 1998:63-79
    [3]Ruichen Liu, Chien-Shing Pai, Emilio Martinez. Interconnect Technology trend for microelectronics[J]. Solid-State Electronics,1999,43:1003-1009
    [4]International Technology Roadmap for Semiconductor-2002 Update, (Semiconductor Industry Association,2002), p.74
    [5]S. Rawal, D. P. Norton. Ge/HfNx diffusion barrier for Cu metallization on Si[J]. Appl. Phys. Lett., 2006,89:231914.
    [6]H.T.Liu and Z.Q.Wu, Physics,2001,30(12):757
    [7]P.Heng at al, International Symposium on VLSI TSA,1995, p.164.
    [8]Murarka S P. Advanced materials for future interconnections of the future need and strategy[J]. Microelectronic Engineering,1997,37(38):29-37
    [9]Kattelus H P, Marc A Nicolet. Diffusion Phenomena in thin films and microelectronic materials [J]. Materials Research Bulletin,1989,24(4):432-440
    [10]H.Treichel. Low Dielectric Constant Materials[J]. Journal of Electronic Materials,2001, 30(4):290-299
    [11]S.Vaidya, et al. Line width Dependence of electromigration in Evaporated Al-0.5Cu[J]. Appl.Phys.Lett.,1980,36:464
    [12]Shi-Qing Wang, Sailesh Suthar, and Christine Hoeflich, et al. Diffusion barrier properties of TiW between Si and Cu[J]. J. Appl. Phys.,1993,73(5):2301
    [13]Marc A Nieolet. Ternary amorphous metallic thin films as diffusion barriers for Cu metallization[J]. Applied Surface Science,1995,91(1-4):269-276
    [14]S. Rawal, E. Lambers, and D. P. Norton, et al. Comparative study of HfNx and Hf-Ge-N copper diffusion barriers on Ge[J]. J. Appl. Phys.,2006,100:063532
    [15]P. L. Pai, C. H. Ting. Selective electroless copper for VLSI[J]. Interconnection. IEEE Electron Device Lett.,1989(10):423.
    [16]Korczynski. E. Interconnect:the new frontier[J]. Solid State Technology,1998,41(9):83.
    [17]Ou K L. Integrity of Copper-hafnium, hafnium nitride and multilayered Amorphous-like hafnium nitride metallization under various thickness[J]. Micro-electronic Engineering,2006,83(2):312-318
    [18]Cllung H C, Liu C P. Effect of crystallinity and preferred orientation of Ta2N films on diffusion barrier properties for copper metallization[J]. Surface and Coatings Technology,2006,200(10):3122-3126
    [19]Lee Y K, Khin M L, Kim J, et al. Study of diffusion barrier Properties of ionized metal Plasma(IMP) deposited TaN between Cu and SiO2[J]. Materials Science in Semiconductor Processing,2000, 3(3):179-184
    [20]Petra A, Mikko R, Kai A, et al. The growth and diffusion barrier properties of atomic layer deposited NbNx thin films[J]. Thin Solid Films,2005,491(1-2):235-241
    [21]Chung H C, Liu C P. Effect of crystallinity and Preferred orientation of Ta2N films on diffusion barrier Properties for copper metallization [J]. Surface and Coatings Technology,2006,200(10):3122-3126
    [22]William N.Gill, Joel L. Plawsky. Design of diffusion barriers[J]. Thin Solid Films,2007, 515:4794-4800.
    [23]Prodyut Majumder, Christos G. Takoudis. Investigation on the diffusion barrier properties of sputtered Mo/W-N thin films in Cu interconnects[J]. Appl.Phys.Lett.,2007,91:162108
    [24]Joshua Pelleg, and G. Sade. Diffusion barrier properties of amorphous TiB2 for application in Cu metallization[J]. J. Appl. Phys.,2002,91(9):6099
    [25]Joon Seop Kwak, and Hong Koo Baik, et al. Improvement of Ta diffusion barrier performance in Cu metallization by insertion of a thin Zr layer into Ta film[J]. Appl.Phys.Lett.,1998,72(22):2832
    [26]Ying Wang, Fei Cao, and Yun-tao Liu, et al. Investigation of Zr-Si-N/Zr bilayered film as diffusion barrier for Cu ultralarge scale integration metallization[J]. Appl.Phys.Lett.,2008,92:032108
    [27]Soo-Hyun Kim, Ki Tae Nam,and Arindom Datta, et al. Failure mechanism of a multilayer(TiN/Al/TiN) diffusion barrier between copper and silicon[J]. J. Appl. Phys.,2002,92(9):5512
    [28]Soo-Hyun Kim, Su Suk Oh and Ki-Bum Kima, et al. Atomic-layer-deposited WNxCy thin films as diffusion barrier for copper metallization[J]. Appl. Phys. Lett.,2003,82:4486
    [29]L. C. Leu, D. P. Norton, and L/McElwee-White, et al. Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects[J]. Appl. Phys. Lett.,2008,92:111917
    [30]A. Gupta, H. Wang, and A. Kvit, et al. Effect of microstructure on diffusion of copper in TiN films[J]. J. Appl. Phys.,2003,93(9):5210
    [31]H. Ono. Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M=Cr, Ti, Nb, MO, Ta, W). Appl. Phys. Lett.,1994,64(12):1511
    [32]Tomi Laurila, Kejun Zeng, and Jorma K. Kivilahti, et al. TaC as a diffusion barrier between Si and Cu[J]. J. Appl. Phys.,2002,91(8):5391
    [33]S. Rawal, D. P. Norton, et al. Properties of Ta-Ge-(O)N as a diffusion barrier for Cu on Si[J]. Appl. Phys. Lett.,2007,90:051913
    [34]J. P. Chu, and C. H. Lin. Formation of reacted layer at the barrierless Cu(WN)/Si interface[J]. Appl. Phys. Lett.,2005,87:211902
    [35]Joon Seop Kwak, and Hong Koo Baik, et al. Effect of thin Ⅴ insertion layer into Ta film on the performance of Ta diffusion barrier in Cu metallization[J]. J. Appl. Phys.,1999,85(9):6898
    [36]Dong-Soo Yoon, and Hong Koo Baik, et al. Effect on thermal stability of a Cu/Ta/Si heterostructure of the incorporation of cerium oxide into the barrier[J]. J. Appl. Phys.,1998,83(12):8074
    [37]T.-Y. Lin, H.-Y. Cheng and T.-S. Chin, et al.5-nm-thick TaSiC amorphous films stable up to 750℃ as a diffusion barrier for copper metallization[J]. Appl. Phys. Lett.,2007,91:152908.
    [38]H. Jiang, T. J. Klemmer. J. A. Barnard. Epitaxial growth of Cu on Si by magnetron sputtering [J]. J. Vac. Sci. Technol.,1998:3376-3383.
    [39]G. C. Schwartz and P. M. Schaible, Reactive ion etching of copper films[J], J. Electrochem. Soc.,1983, 130:1777
    [40]B. J. Howard and C. Steinbruchel, Reactive ion etching of copper in SiCl{sub 4}-based plasmas[J], Appl. Phys. Lett,1991,59:914
    [41]W. L. Prater, E. L. Allen. Microstructural comparisons of ultrathin Cu films deposited by ion-beam and dc-magnetron sputtering[J]. J. Appl. Phys.,2005,97:093301.
    [42]M. B. Small and D. J. Pearson, On-Chip Wiring for VLSI:Status and Directions[J]. IBM J. Res. Develop.,34,858-867(1990).
    [43]Ling. Liu, Yue. Wang, Hao. Gong. Annealing effects of tantalum films on Si and SiO2/Si substrates in Various vacuums[J]. J. Appl. Phys.,2001,90(1):416-420.
    [44]M. Y. Yan, and K. N. Tu, et al. Confinement of electromigration induced void propagation in Cu interconnect by a buried Ta diffusion barrier layer[J]. Appl. Phys. Lett.,2005,87:261906-1
    [45]Karen Holloway, Peter M. Fryer, and Cyril Cabral, et al. Tantalum as a diffusion barrier between copper and silicon:Failure mechanism and effect of nitrogen additions[J]. J. Appl. Phys.,1992, 71(11):5433
    [46]J. P. Chu, C. H. Lin, and V. S. John. Cu films containing insoluble Ru and RuNx on barrierless si for excellent property improvements [J]. Appl. Phys. Lett.,2007,91:132109
    [47]H. Kim, C. Detavenier, O. Van der straten, et al. Robust TaNx diffusion barrier for Cu-interconnect technology with subnanometer thickness by metal-organic plasma-enhanced atomic layer deposition [J]. J. Appl. Phys.,2005,98:014308.
    [48]Tomi Laurila, Kejun Zeng, and Jorma K. Kivilahti, et al. Amorphous layer formation at the TaC/Cu interface in the Si/TaC/Cu metallization system[J]. Appl. Phys. Lett.,2002,80(6):938
    [49]Junghwan Sung, Dean M. Goedde, and Gregory S. Girolami, et al. Remote-plasma chemical vapor deposition of conformal ZrB2 films at low temperature:A promising diffusion barrier for ultralarge scale integrated electronics [J]. J. Appl. Phys.,2002,91(6):3904
    [50]R. Hubner. Effect of a Ta-Si-N diffusion barrier on the texture formation in thin Cu films[J]. J. Appl. Phys.,2007,101:093512
    [51]J.S. Fang, T.P. Hsu, and M.L. Ker, et al. Evaluation of properties of Ta-Ni amorphous thin film for copper metallization in integrated circuits [J]. J. Phys. Chem. Solids.,2007,07:046
    [52]J.S. Fang, T.P. Hsu, and G.S. Chen, et al. Crystallization and failure behavior of Ta-TM (TM=Fe, Co) nanostructured/amorphous diffusion barriers for copper metallization[J]. J. Elec. Mater.,2006, 35(1):15-21
    [53]Xin-Ping Qu, Jing-jing Tan, and Mi Zhou, et al. Improved barrier properties of ultrathin Ru film with TaN interlayer[J]. Appl. Phys. Lett.,2006,88:151912
    [54]Takenobu Yoshino, and Nobuhiro Hata, et al. Copper barrier properties of a low-dielectric-constant organocyclosiloxane prepared by plasma-enhanced polymerization[J]. Appl. Phys. Lett.,2007, 90:182111
    [55]Ki-Su Kim, Moon-Sang Lee, and Sung-Soo Yim, et al. Evaluation of integrity and barrier performance of atomic layer deposited WNxCy films on plasma enhanced chemical vapor deposited SiO2 for Cu metallization[J]. Appl. Phys. Lett.,2006,89:081913
    [56]S. M. Aouadi, and P. K. Shreeman, et al. Real-time spectroscopic ellipsometry study of ultrathin diffusion barriers for integrated circuits[J]. J. Appl. Phys.,2004,96(7):3949
    [57]T. N. Arunagiri, Y. Zhang, and O. Chyan, et al.5 nm ruthenium thin film as a directly plateable copper diffusion barrier[J]. Appl. Phys. Lett.,2005,86:083104
    [58]S. P. Murarka, J. Steigerwald, R. J. Gutmann, Inlaid copper multilevel interconnections using planarization by chemical-mechanical polishing[J], MRS Bull., vol.18, pp.46 (1993)
    [59]Jacksonrl, Broadbent, Cacoutist. Processing and integration of copper interconnects [J]. SST,1998,41(3):49253
    [60]Muller Ch, Menou N, Barrett R,et al.Nondestructive microstructural diagnostic of integrated ferroelectric capacitor arrays:Correlation with electrical characteristics [J]. J. Appl. Phys.,2006,99: 054504
    [61]Shim S I, Kim S I, Kim Y T,et al.Operation of single transistor type ferroelectric random access memory[J]. Electron. Lett.,2004,40(22):1397-1398.
    [62]Ryoo Sung-Nam, Yoon Soon-Gil, Kim Seung-Hyun, Improvement in ferroelectric properties of Pb(Zr0.35Ti0.65)O3 thin films using a Pb2Ru2O7-x conductive interfacial layer for ferroelectric random access memory application[J]. Appl. Phys. Lett.,2003,83(14):2880-2882.
    [63]Kojima Takashi, Sakai Tomohiro, Watanabe Takayuki. Large remanent polarization of (Bi,Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition[J]. Appl. Phys. Lett.,2002, 80(15):2746-2748.
    [64]Tian-Ling Ren, Hong-Jin Zhao, Li-Tian Liu, et al. Piezoelectric and ferroelectric films for microelectronic applications [J]. Materials Science and Engineering,2003, B99:159-163.
    [65]Kyoung-Tae Kim, Chang-Il Kim, Sung-Gap Lee. Ferroelectric properties of Pb(Zr,Ti)O3heterolayered thin films for FRAM applications[J]. Microelectronic Engineering,2003,66:662-669.
    [66]Malti Goel. Recent developments in electroceramics:MEMS applications for energy and environment[J]. Ceramics International,2004,30:1147-1154.
    [67]T. Delage, C. Champeaux, A. Catherinot et al. Epitaxial bilayers and trilayers of superconducting and high K materials grown by PLD for microwave applications [J]. Thin Solid Films,2004,453-454:273-278.
    [68]B. T. Liu, K. Maki, S. Aggarwal, et al. Low-temperature integration of lead-based ferroelectric capacitors on Si with diffusion barrier layer[J]. Appl. Phys. Lett.,2002,80(19):3599-3601.
    [69]B. T. Liu, K. Maki,R. Ramesh, et al. Epitaxial La-doped SrTiO3 on silicon:A conductive template for epitaxial ferroelectrics on silicon[J]. Appl. Phys. Lett.,2002,80(25):4801-4803.
    [70]K. Maki, B. T. Liu, H. Vu, V. Nagarajan, Controlling crystallization of Pb(Zr,Ti)O3 thin films on IrO2 electrodes at low temperature through interface engineering. Appl. Phys. Lett.,2003, 82(8):1263-1265.
    [71]Wu T J, TSAI D S. Structure and properties of PZT thin films on strontium ruthenate and calcium ruthenate electrodes [J]. Mater. Chem. Phys.,2004,85(1):88-95.
    [72]Meyer Rene, Waser Rainer, Prume Klaus, et al. Dynamic leakage current compensation in ferroelectric thin-film capacitor structures [J]. Appl. Phys. Lett.,2005,86:142907.
    [73]Ahn W. S., Jung W. W. Choi S. K. Ferroelectric properties and fatigue behavior of heteroepitaxial PbZr1-XTiXO3 thin film fabricated by hydrothermal epitaxy below Curie temperature [J]. J. Appl. Phys., 2006,99:014103.
    [74]Park Hongsik, Jung Juhwan, Min Dong-Ki, et al. Scanning resistive probe microscopy:Imaging ferroelectric domains[J]. Appl. Phys. Lett.,2004,84 (10):1734-1736.
    [75]O. Auciello, J.F. Scott and R. Ramesh. The Physics of Ferroelectric Memories[J]. Physics Today,1998, 51(7):22-27.
    [76]Wittmer M, Noser J, Melchoir H, Oxidation kinetics of TiN thin films [J]. J. Appl. Phys.,1981, 52(11):6659-6664.
    [77]S. Aggarwal, B. Nagaraj, I. G. Jenkins,et al. Correlation between oxidation resistance and crystallinity of Ti-Al as a barrier layer for high-density memories[J]. Acta Mater.,2000,48(13):3387-3394.
    [78]W. Fan, S. Saha, J. A. Carlisle,O. Auciello. Materials science and integration bases for fabrication of (BaXSr1-X)TiO3 thin film capacitors with layered Cu-based electrodes. J. Appl. Phys.,2003, 94(9):6192-6200.
    [79]O. Auciello, W. Fan, S. Saha. Hybrid titanium-aluminum oxide layer as alternative high-k gate dielectric for the next generation of complementary metal-oxide-semiconductor devices. [J] Appl. Phys. Lett.,2005,86:042904.
    [80]W. Fan, S. Saha, J. A. Carlisle,O. Auciello. Layered Cu-based electrode for high-dielectric constant oxide thin film-based devices[J]. Appl. Phys. Lett.,2003,82(9):1452-1454.
    [81]Angus. Kingon, Sudarsan. Srinivasan. Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications[J]. nature materials,2005,4:233-237.
    [82]Taeyun Kim, Jacqueline N. Hanson, Alexei Gruverman, and Angus I. kingon, et al. Ferroelectric behavior in nominally relaxor lead lanthanum zirconate titanate thin films prepared by chemical solution deposition on copper fiol[J]. Appl. Phys. Lett.,2006,88:262907
    [83]Chan R, Arunagiri T N, Zhang Y, Chyan O, Wallace R M, Kim M J, and Hurd T Q. Diffusion Studies of Copper on Ruthenium Thin Film [J]. Electrochem Solid-State Lett,2004,7:G154.
    [84]L. Damoc, E. Fonda, P. Le Fevre and A. Traverse. Structural characterization of Ni-Al(111) interface by surface x-ray absorption spectroscopy [J]. J. Appl. Phys.,2002,92(4):1862.
    [85]Yukihiro Kawabata, Nobukazu Fujimoto, Masato Yamamoto, Toshiro Nagoya and Megumu Nishida. Long-term corrosion resistance of Al-Ni-plated material and Al-plated material in molten carbonate environment [J]. J. Power Source,2000,86(1-2):324-328.
    [86]H. P. Ng and A. H. W. Ngan. Metal-to-insulator transition in sputter deposited 3Ni/Al thin films [J]. J. Appl. Phys.,2000,88(5):2609-2616.
    [87]B. T. Liu, C. S. Cheng, and F. Li, et al. Ni-Al diffusion barrier layer for integrating ferroelectric capacitors on Si [J]. Appl. Phys. Lett.,2006,88:252903.
    [88]Liu B T, Yan X B, and Zhang X, et al. Barrier performance of ultrathin Ni-Ti film for integrating ferroelectric capacitors on Si[J]. Appl. Phys. Lett.,2007,91:142908.
    [89]J. G. Wu, D. Q. Xiao, J. G. Zhu, J. L. Zhu, J. Z. Tan and Q. L. Zhang. Enhanced dielectric and ferroelectric properties of Pb(Zr0.8Ti0.2)O3/Pb(Zr0.2Ti0.8)O3 multilayered thin films prepared by rf magnetron sputtering. Appl. Phys. Lett.,2007,90:082902.
    [90]W. J. Leng, C. R. Yang, H. Ji, J. H. Zhang, J. L. Tang and H. W. Chen. Electrical and optical properties of lanthanum-modified lead zirconate titanate thin films by radio-frequency magnetron sputtering. J. Appl. Phys.,2006,100:106102.
    [91]Song Z X, Xu K W, Chen H. The Effect of nitrogen partial pressure on Zr-Si-N diffusion barrier [J]. Microelectronic Engineering,2004,71(1):28-33.
    [92]A. Kohn, and M. Eizenberg, et al. Copper grain boundary diffusion in electroless deposited cobalt based films and its influence on diffusion barrier integrity for copper metallization[J]. J. Appl. Phys., 2003,97(5):3015.
    [93]H. Kim, C. Lavoie, and M. Copel, et al. The physical properties of cubic plasma-enhanced atomic layer deposition TaN films[J]. J. Appl. Phys.,2004,95(10):5848.
    [94]Takeo Oku, Eiji Kawakami, and Masaki Uekubo, et al. Diffusion barrier property of TaN between Si and Cu[J]. Applied Surface Science,1996,99:265-272
    [95]H. Wang, Ashutosh Tiwari, and X. Zhang, et al. Copper diffusion characteristics in single-crystal and polycrystalline TaN[J]. Appl. Phys. Lett.,2002,81(8):1453.
    [96]Y. Wang, K. F. Wang, C. Zhu, T. Wei, J. S. Zhu and J.-M. Liu. Fatigue suppression of ferroelectric Pb1-xBax(Zr0.52Ti0.48)O3 thin films prepared by sol-gel method. J. Appl. Phys.,2007,101:046104.
    [97]S. R. Shannigrahi, X. Lim and F. E. H. Tay. Excimer UV-assisted rapid thermal annealing of PbLa(Zr,Ti)O3 thin films by a sol-gel deposition method. J. Appl. Phys.,2007,101:024107.
    [98]S. R. Shannigrahi, A. Huang, N. Chandrasekhar, D. Tripathy and A. O. Adeyeye. Sc modified multiferroic BiFeO3 thin films prepared through a sol-gel process. Appl. Phys. Lett.,2007,90:022901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700