用户名: 密码: 验证码:
心理应激对肝铁代谢的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁作为人体必需的微量元素,广泛参与体内的代谢过程,其含量下降可影响血红蛋白的合成,进而影响红细胞的形成,甚至引起贫血。世界卫生组织报道全世界患贫血人数高达20亿,引发贫血的主要原因是铁摄入不足,但我们的前期研究发现在膳食铁供给充足的情况下,心理应激可以降低血清铁浓度并影响红细胞生成。而产生这种影响的机制仍需进一步研究。
     肝脏是机体主要的铁贮存部位,同时在铁稳态的调节中起着中心和枢纽作用,铁调素等许多重要的铁代谢相关蛋白都是肝脏特异性合成分泌的。铁缺乏和铁过量对机体都将产生不良影响,因此,机体需要具有严格的铁调控机制,既可提供足量的铁来发挥其生理功能,又可防止因过量而产生铁毒性,从而维持体内和细胞内的铁平衡。铁过负荷可以在组织、细胞以及细胞器水平引起脂质过氧化,非蛋白结合铁能通过Fenton反应产生羟自由基,攻击细胞膜上的不饱和脂链,铁蛋白中的三价铁被还原成为二价铁离子引起脂质过氧化反应,在氧自由基的形成中起着重要作用。国内外许多临床研究发现,某些疾病与肝铁代谢异常有密切的联系,如慢性炎症性贫血、酒精性肝炎、肝硬化、遗传性血色素沉着病均发生了不同程度的肝铁代谢紊乱。IL-6是炎症状态下通过诱导肝脏分泌铁调素增加引起低铁血症的必要条件,相反地中海贫血的患者肝脏分泌铁调素减少,而在心理应激情况下,肝脏铁代谢在血清铁下降的同时发挥怎样的作用,肝脏铁代谢发生了哪些改变以及发生这些改变的分子机制研究未见报道。现代社会生活和学习工作的负担常常使人们处于心理应激状态。通过进一步研究阐明心理应激对肝铁代谢的影响,对于全面了解贫血产生的原因,完善贫血的预防和治疗措施具有积极的意义。
     第一部分:心理应激对肝铁浓度和氧化应激反应的影响
     目的:观察心理应激对肝脏铁含量和氧化应激反应的影响。
     方法:
     心理应激模型制作:雄性SD大鼠按体重随机分为空白对照组、心理应激组和足底电击组。采用Communication Box System制作心理应激大鼠模型,每日一次,持续时间每次30min,实验周期分别为1d,3d、7d和14d。
     指标测定:应用原子吸收法测定肝组织铁浓度;BPS法测定非蛋白结合铁浓度,Perl's法进行肝组织铁染色;应用酶联免疫法检测铁蛋白表达水平。
     图象分析及数据统计:实验数据用(x±s)表示,数据统计处理应用统计软件SPSS 12.0,统计方法采用方差分析。
     结果:
     1.心理应激对肝铁浓度的影响
     与对照组相比,7d和14d心理应激大鼠肝铁浓度,铁蛋白表达和非蛋白结合铁浓度均明显增加(P<0.05);心理应激组和足底电击组相比,没有显著性差异(P>0.05)。Perl's铁染色显示,与对照组比较,7d和14d心理应激组和足底电击组大鼠肝组织铁染色明显增加,铁沉积主要分布在肝细胞、内皮细胞和巨噬细胞。
     2.心理应激对氧化应激反应的影响
     与对照组相比,7天和14天心理应激组超氧化物歧化酶活性和丙二醛浓度明显升高(P<0.05)。心理应激组和足底电击组相比,没有显著性差异(P>0.05)。
     第二部分:心理应激影响肝铁代谢的分子机制
     目的:探讨心理应激影响肝脏铁获取和铁释放的分子调节机制。
     方法:
     指标测定方法:应用蛋白免疫印迹法检测铁调素(hepcidin)、膜铁转运蛋白(FP1)、转铁蛋白受体2(TfR2)蛋白表达;应用酶联免疫法检测转铁蛋白受体1表达水平。
     图象分析及数据统计:采用ImageJ图像分析系统进行灰度分析,实验数据用(x±s)表示,数据统计处理应用统计软件SPSS 12.0,统计方法采用方差分析和Pearson相关分析。
     结果:
     1.心理应激对肝脏铁代谢相关蛋白的影响
     与对照组相比,心理应激组3d后出现肝脏hepcidin和TFR2蛋白表达持续上调,FP1蛋白表达持续下调(P<0.05)。肝脏TfR1蛋白表达在7d和14d下调(P<0.05)。心理应激组和足底电击组相比,没有显著性差异(P>0.05)。
     2.心理应激大鼠肝铁浓度与hepcidin的关系
     肝脏hepcidin蛋白表达与肝脏铁浓度存在正相关(P<0.05)。Hepcidin升高先于肝铁浓度改变,提示心理应激诱导的肝脏hepcidin表达升高是引起机体铁代谢紊乱的重要原因。
     第三部分:心理应激大鼠hepcidin变化的调节因子研究
     目的:阐明IL-6-hepc轴在心理应激大鼠铁代谢紊乱中的作用。
     方法:
     实验动物处理:雄性SD大鼠按体重随机分为空白对照组、心理应激生理盐水组,足底电击生理盐水组,心理应激IL-6抗体组,足底电击IL-6抗体组。采用Communication Box System制作心理应激大鼠模型,每日一次,持续时间每次30min,实验周期分别为3d、7d。
     指标测定方法:应用原子吸收法测定血清铁和肝组织铁浓度;应用蛋白免疫印迹法检测肝铁调节机制中的重要调节蛋白hepcidin、FP1蛋白表达;应用酶联免疫法检测IL-6、TNF-α和IL-10表达水平。
     图象分析及数据统计:采用ImageJ图像分析系统进行灰度分析,实验数据用(x±s)表示,数据统计处理应用统计软件SPSS 12.0,统计方法采用方差分析和Pearson相关分析。
     结果:
     1.心理应激对细胞因子表达的影响
     与对照组相比,心理应激组3d开始出现肝脏IL-6和TNF-α蛋白表达持续升高(P<0.05),IL-10蛋白表达没有显著性差异(P>0.05)。大鼠肝脏IL-6与hepcidin蛋白表达密切相关(P<0.05)。
     2.IL-6抗体抑制心理应激大鼠IL-6表达上调
     与生理盐水组相比,心理应激IL-6抗体组大鼠血清IL-6表达水平明显降低(P<0.05),与对照组相比,心理应激IL-6抗体组和足底电击IL-6抗体组大鼠血清IL-6表达水平没有显著性差异(P>0.05)。
     3.IL-6抗体对心理应激大鼠铁分布的影响
     与生理盐水组相比,心理应激IL-6抗体组3d和7d血清铁浓度明显升高,7d肝铁浓度明显降低(P<0.05),与对照组相比,心理应激IL-6抗体组和足底电击IL-6抗体组3d和7d血清铁、7d肝铁浓度没有显著性差异(P>0.05)。
     4.IL-6抗体对心理应激大鼠肝脏铁代谢相关蛋白表达的影响
     与生理盐水组相比,心理应激IL-6抗体组大鼠肝脏hepcidin蛋白表达降低,FP1蛋白表达升高(P<0.05),与对照组相比,心理应激IL-6抗体组和足底电击IL-6抗体组大鼠肝脏hepcidin和FP1蛋白表达没有显著性差异(P>0.05)。
     结论:
     1.心理应激可导致肝脏铁储存升高和血清铁下降,肝脏以铁蛋白和含铁血黄素的形式储存铁增加;同时肝脏非蛋白结合铁浓度增加,并伴随脂质过氧化反应增强;随着应激时间延长,肝脏铁储存持续升高,血清铁浓度持续下降,肝铁浓度升高可能是血清铁浓度下降的原因之一。
     2.心理应激可诱导肝脏转铁蛋白受体2表达上调,而肝脏转铁蛋白受体1蛋白表达下调,提示心理应激条件下肝脏铁储存增加可能是通过转铁蛋白受体2摄取的;同时出现肝脏hepcidin蛋白表达上调与FP1表达下调,机体铁的循环再利用过程中巨噬细胞铁释放减少。
     3.肝脏hepcidin蛋白表达与肝铁浓度存在正相关,hepcidin表达上调先于肝铁浓度升高,提示心理应激所导致的肝脏hepcidin表达升高是引起了铁代谢的变化的原因;心理应激诱导IL-6和hepcidin蛋白表达持续上调,两者变化的时间和趋势一致,肝脏hepcidin与IL-6蛋白表达存在正相关。
     4.IL-6抗体使心理应激大鼠肝脏和血清铁分布趋于正常,并抑制应激大鼠肝脏hepcidin蛋白表达升高以及FP1蛋白表达的降低。IL-6-hepc轴是导致心理应激大鼠机体铁代谢紊乱的主要通路。
Iron is essential for DNA synthesis and key metabolic processes in living organisms. The levels of iron in cell must be delicately balanced, as iron loading leads to free radical damage by the Fenton reaction. Iron mal-regulation may be induced by infection and inflammation, the reasons of which need to be studied. A series of iron-regulatory proteins, including iron transporters and soluble mediators have been identified, which have greatly enhanced our understanding of iron metabolism. Hepcidin has been shown to play a central role in the regulation of iron metabolism. Hepcidin knockout mice develop iron overload in the liver, pancreas and heart, whereas mice overexpressing hepcidin display severe iron deficiency and anemia. Iron overload increases and iron deficiency decreases the expression of hepcidin in the liver. Hepcidin is also regulated by inflammatory signals. However, the role of hepcidin in psychological stress is unknown.
     Recently, the burden of social life and work is so heavy that people suffer psychological stress frequently, which is considered to be the causes of many disorders, such as hypertension, gastric ulcer, and hyperthermia. Our previous findings have demonstrated that repeated psychological stress exposure could decrease the serum iron level and inhibit erythropoiesis [6]. Because the liver plays a central role in iron metabolism, the hepatic transferrin receptors tend to be responsible for the systemic physiologic changes. The disturbance of iron metabolism is related with many diseases, such as iron deficiency anemia and chronic hepatitis. So it is important to investigate the effect of psychological stress on liver and to understand the molecular mechanisms under iron metabolism.
     Design and Methods
     Animals
     Sprague-Dawley (SD) rats, male, aged 10 weeks (Shanghai-BK Co., Ltd) were caged individually at room temperature and 55±5% humidity. They were feed on with a standard diet and tap water freely. After 7 d adaptation, the rats were randomized into two groups: the psychological stress group and the control group, each group of which was subdivided into 1 d group, 3 d group, 7 d group and 14 d group. Pieces from the right part of liver were rapidly dissected and snap-frozen. For anti-IL-6 antibody experiments, rats were either received normal sodium or anti-rat IL-6 monoclonal antibody(2μg /d, R&D Systems Inc, USA) by intraperitoneal injection daily before psychological stress exposure. All animal studies were in accordance with institutional animal care guidelines and were approved by the animal research committee at the Second Military Medicine University, Shanghai, China.
     Psychological stress exposure
     The communication box paradigm was used equipped with a grid floor composed of stainless steel rods. Plastic plates were placed on half of the grid floors for electric insulation. The rats (foot shock group) in compartments without plastic plates received foot shock without a warning signal. The rats (psychological stress group) in compartments with plastic plates did not receive foot shock, but received emotional stimuli from the rats in the foot shock group. All rats were exposed to the psychological stress for 30 min every morning, at 10:00-10:30. Compared with the stressed rats, the control rats were placed individually in the compartments with plastic plates and without exposure to any stress.
     Iron analysis
     Blood was sampled by retro-orbital phlebotomy into heparinized tubes before the rats were humanely killed. Quantification of serum and liver iron content was measured using a Varian SpectrAA-220G graphite furnace atomic absorption spectrophotometer, equipped with a GTA 110 atomizer, programmable sample dispenser, and deuterium background correction.
     ELISA and Western blot analysis
     Hepatic tissue was homogenized and lysed for ELISA and western blots. TFR1 and ferritin (R&D Systems Inc, USA) were analyzed using commercially available ELISA kits. Western blotting was performed with rabbit polyclonal anti-mouse TFR2 (Santa Cruz, Inc.). Identical samples were blotted with anti-β-actin (Sigma) polyclonal antibody to keep the amount of loading protein equal. Immunoreactive bands were detected by goat polyclonal anti-rabbit-HRP antibodies (Santa Cruz, Inc.).
     Measurement of superoxide dismutase (SOD) activity, malondialdehyde (MDA) and NTBI concentrations
     The thiobarbiruric acid (TBA) method was used to measure the liver MDA level with MDA-586 kit (Nanjing Jiancheng Bioengineering Institute). SOD activity was measured with kit-WST (Dojindo Laboratories). For NTBI determination, the liver tissue homogenates were analyzed using bathophenanthroline disulfonate (BPS) to chelate ferrous iron, thus forming a complex which could be analyzed with spectrophotometry. Commercially available BPS (4, 7-diphenyl-1,10-phenanthroline disulfonate) and ferrous ammonium sulfate [(NH4)2 Fe(SO4)2 ] of the highest purity (Sigma) were used in the measurement.
     Perl's staining
     Samples were fixed in aqueous formaldehyde solution (buffered 4% vol/vol) and were embedded in paraffin. The liver sections were stained with Perls' Prussian blue to assess the non-heme iron deposition.
     Statistical Analysis
     SPSS 12.0 software (SPSS institute, Chicago, IL, USA) was used for statistical analysis. Student's t-test was used to determine whether differences were statistically significant in groups. Data were expressed as (X|-)±SD. P <0.05 represents statistically significant difference.
     Results
     Psychological stress leads to hepatic iron accumulation
     Psychological stress exposure increased hepatic ferritin and decreased TFR1 expression as early as 7 days (p<0.05) in rats. No significant difference was detected on 3 day between control group and psychological stress group. On contrary, TFR2 expression was up-regulated by psychological stress exposure in liver as early as 3 days. As displayed in figure 2, we revealed that liver tissue SOD activity and MDA level in the psychological stress group were higher than that in control group (p<0.05); simultaneously, the hepatic NTBI levels in the psychological stress group were increased obviously compared to that in the control one (p<0.05). Control group and 3 days psychological stress group did not show iron overload, whereas at 7 and 14 days some iron deposition was observed, principally in hepatocytes and macrophages. Liver structure was normal.
     Cytokine and iron metabolism response to psychological stress
     IL-6 and TNF-αproduction increased since 3 days after psychological stress exposure in rat liver. There was no significant difference in levels of IL-10. Western blot analysis documented that rat liver displayed an up-regulation of hepcidin and down-regulation of ferroportin on 3 days and 7 days in response to psychological stress. Furthermore, rat duodenal displayed a down-regulation of ferroportin and apparent absorptivity of iron decreased on 3 days and 7 days in response to psychological stress.
     Anti-IL-6 antibody inhibits the effect of psychological stress on iron distribution and iron metabolism
     After rats received intraperitoneal injection of anti-rat IL-6 antibody, psychological stress exposure didn't significantly changed liver iron store or serum iron level on 3 days and 7 days compared with control group. Compared with NS-treated group, anti-rat IL-6 antibody significantly decreased liver iron store on 7 days and increased serum iron level of psychological stress rats on 3 days. Anti-rat IL-6 antibody down-regulated hepcidin and up-regulated ferroportin expression in liver induced by psychological stress on 3 days and 7 days.
     The present study suggests that psychological stress leads to hypoferremia, which is regulated by IL-6-hepcidin axis. Inhibition of iron absorption and increased liver iron store contribute to hypoferremia. The hepatic TFR2 was up-regulated by psychological stress in rats which may contribute to the increased hepatic iron accumulation as haemosiderin, ferritin and NTBI, and increasing products of lipid peroxidation. However, the mechanism that how the psychological stress induces iron mal-regulation still needs to be investigated.
引文
[1]钱忠明.铁代谢-基础与临床.北京:科学出版社.2000.1.
    
    [2] Miguel Arredondo,Marco T.Nunez. Iron and copper metabolism.Molecular Aspects of Medicine. 2005.26:313-327.
    
    [3] WHO/UNICEF/UNU. Iron deficiency anaemia: assessment, prevention, and control. Geneva, World Health Organization 2001 (WHO/NHD/01.3).
    
    [4] Beard JL, Hendricks MK, Perez EM, et al. Maternal iron deficiency anemia affects postpartum emotions and cognition. J Nutr 2005; 135: 267-72.
    
    [5] Sun JQ, Shen L, Wang HQ, et al. Study on iron deficiency and anemia with risk factors among children and adolescents in shanghai. Acta Nutrimenta Sinica 2005; 27: 284-7.
    
    [6] Porter JB. Practical management of iron overload. Br J Haematol 2001; 115: 239-52.
    
    [7] Furutani T, Hino K, Okuda M, et al. Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 2006; 130: 2087-98.
    
    [8] WHO/ UNICEF. Focusing on anaemia: towards an integrated approach for effective anaemia control. Geneva, World Health Organization 2004.
    
    [9] WHO/CDC. Assessing the iron status of populations. Geneva, World Health Organization 2004.
    
    [10] Kartikasari AE, Georgiou NA, Visseren FL, van Kats-Renaud H, van Asbeck BS, Marx JJ. Endothelial activation and induction of monocyte adhesion by nontransferrin-bound iron present in human sera. FASEB J. 2006; 20(2): 353-5.
    
    [11] Harrison-Findik DD, Schafer D, Klein E, etc.Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem. 2006 Aug 11; 281(32):22974-82.
    
    [12] Pietrangelo, A.Hereditary hemochromatosis-a new look at an old disease. N. Engl. J. Med. 2004. 350 (23):2383-2397.
    
    [13] Matthews KA, Katholi CR, McCreath H, Whooley MA Williams DR, Zhu S, Markovitz JH. Blood pressure reactivity to psychological stress predicts hypertension in the CARDIA study. Circulation. 2004; 110(1):74-8.
    
    [14] Singer R, Harker CT, Vander AJ, Kluger MJ. Hyperthermia induced by open-field stress is blocked by salicylate. Physiol Behav. 1986; 36(6): 1179-82.
    [15] Jones MP. The role of psychosocial factors in peptic ulcer disease: beyond Helicobacter pylori and NSAIDs. J Psychosom Res. 2006; 60(4): 407-12.
    [16] Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a Urinary Antimicrobial Peptide Synthesized in the Liver. J Biol Chem. 2001 Mar 16; 276(11):7806-10.
    [17] Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S, Gombart AF, Koeffler HP. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem. 1999; 274: 20826-32.
    [18] Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090-3.
    [19] Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004; 113: 1271-6.
    [20] Zhou D, Kusnecov AW, Shurin MR, et al. Exposure to physical and psychological stressors elevates plasma interleukin 6: relationship to the activation of hypothalamic-pituitary-adrenal axis. Endocrinology 1993; 133: 2523-30.
    
    [1] C.L. Wei, J. Zhou, X.Q. Huang, M. Li, Effect of psychological stress on serum iron and erythropoiesis, Int. J. Hematol. 2008 (accepted)
    
    [2] Harrison-Findik DD, Schafer D, Klein E, etc.Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem. 2006 Aug 11; 281(32):22974-82.
    
    [3] Pietrangelo A. Physiology of iron transport and the hemochromatosis gene. Am J Physiol Gastrointest Liver Physiol. 2002; 282: G403-14.
    
    [4] Furutani T, Hino K, Okuda M, et al. Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 2006; 130: 2087-98.
    
    [5]姜乾金.医学心理学[M].第3版.北京:人民卫生出版社,2002.75.
    
    [6] Wennlund A, Wahrenberg H, Hagstrom-Toft E, et al. Lipolytic and cardiac responses to various forms of stress in humans. Int J Sports Med. 1994, 15(7):408-13.
    
    [7] Chandramouli R, Sudhakar HH. Effects of GABA synthesis blockade in the analgesia induced by the physical and psychological stressors.Indian Journal of Pharmachology .1998,30(4):227-232
    
    [8] Armario A, Marti O, Valles A, et al. Long-term effects of a single exposure to immobilization on the hypothalamic-pituitary-adrenal axis: neurobiologic mechanisms. Ann N.Y. Acad Sci. 2004, 1018: 162-172.
    
    [9] Murray CD, Flynn J, Ratcliffe L, et al. Effect of acute physical and psychological stress on gut autonomic innervation in irritable bowel syndrome. Gastroenterology. 2004 Dec;127(6):1695-703.
    
    [10] Weiss JM. Effects of coping behavior in different warning signal conditions of stress pathology in rats. Comp Physiol Psychol, 1971,77(1): 1-4
    
    [11]严进,王春安,叶阿丽,等.躯体性和心理性应激对大鼠血浆皮质酮变化的影响.心理学报, 1991,4: 418420
    [12] Yutaka E, Katsuya Y, Yukiko F,et al. Changes of body temperature and plasma corticosterone level in rats during psychological stress induced by the communication box. Med Sci Monit.2001, 7(6): 1161-1165.
    [13] Ishikawa M, Hara C, Ohdo S, Ogawa N. Plasma corticosterone response of rats with sociopsychological stress in the communication box. Physiol Behav. 1992, 52: 475-480.
    [14] Nomura N, Maeda N, Kuratani K, Yamaguchi I. Sulpiride specifically attenuates psychological stress-induced gastric lesions in rodents. Jpn J Pharmacol. 1995, 68: 33-39.
    [15] Hotta M, Shibasaki T, Arai K, Demura H. Corticotrop in releasing factor receptor type 1 mediates emotional stress induced inhibition of food intake and behavioral changes in rats. Brain Res. 1999,823:221-225.
    [16] Ishikawa M, Ohdo S, Watanabe H, Hara C, Ogawa N. Alteration in circadian rhythm of plasma corticosterone in rats following social psychological stress induced by communication box. Physiol Behav. 1995,57: 41-47.
    [17] Ogawa N, Kuwahara K. Psychophysiology of emotioncommunication of emotion. Jpn J Psychosom Med. 1966, 6:352-357.
    [18] Ganz T. Hepcidin and its role in regulating systemic iron metabolism. Hematology Am Soc Hematol Educ Program. 2006;: 29-35, 507.
    [19] Wright TL, Brissot P, Ma WL, Weisiger RA. Characterization of non-transferrin bound iron clearance by rat liver. J Biol Chem 1986;261:10909-14.
    [20] Grootveld, M., Bell, J. D., Halliwell, B., Aruoma, O. I., Bomford, A., and Sadler, P. J. (1989) Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis.. J. Biol. Chem. 264,4417-4422
    [21] Craven CM, Alexander J, Eldridge M, Kushner JP, Bernstein S, Kaplan J. Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis. Proc Natl Acad Sci U S A. 1987 May; 84(10):3457-61.
    [22] Gehrke SG, Kulaksiz H, Herrmann T, Riedel HD, Bents K, Veltkamp C, Stremmel W. Expression of hepcidin in hereditary hemochromatosis: evidence for a regulation in response to the serum transferrin saturation and to non-transferrin-bound iron. Blood. 2003; 102: 371-6.
    
    [1]钱忠明.铁代谢-基础与临床.北京:科学出版社.2000.1.
    
    [2] Philpott CC. Molecular aspects of iron absorption: insights into the role of HFE in hemochromatosis. Hepatology. 2002; 35: 993-1001.
    
    [3] Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a Urinary Antimicrobial Peptide Synthesized in the Liver. J Biol Chem. 2001 Mar 16; 276(11):7806-10.
    [4] Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S, Gombart AF, Koeffler HP. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem. 1999; 274: 20826-32.
    [5] Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090-3.
    [6] Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002; 110:1037-1044.
    [7] Christine A.Swanson. Iron intake and regulation: implication for iron Deficiency and iron overload. Alcohol. 2003.30: 99-102.
    [8] Trinder D, Batey RG, Morgan EH, Baker E. Effect of cellular iron concentration on iron uptake by hepatocytes. Am J Physiol 1990; 259: 611-7.
    [9] Hentze MW. Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004; 117: 285-97.
    [10] Graham RM, Reutens GM, Herbison CE, Delima RD, Chua AC, Olynyk JK, Trinder D. Transferrin receptor 2 mediates uptake of transferrin-bound and non-transferrin-bound iron. J Hepatol. 2008; 48(2): 327-34.
    [11] C. Camaschella, A. Roetto, A. Cali, M. De Gobbi, G. Garozzo, M. Carella, N. Majorano, A. Totaro, P. Gasparini, The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22, Nat. Genet. 25 (2000) 14 - 15.
    [12] M.B. Johnson, C.A. Enns, Diferric transferrin regulates transferrin receptor 2 protein stability, Blood 104 (2004) 4287-4293.
    [13] Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S, Gombart AF, Koeffler HP. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem. 1999; 274: 20826-32.
    [14] Robb A, Wessling-Resnick M. Regulation of transferrin receptor 2 protein levels by transferrin. Blood. 2004; 104(13): 4294-9.
    [15] Fleming RE, Migas MC, Holden CC, Waheed A, Britton RS, Tomatsu S, Bacon BR, Sly WS. Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis. Proc Natl Acad Sci U S A. 2000; 97(5): 2214-9.
    [16] Shike H, Lauth X, Westerman ME, et al. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur J Biochem. 2002;269: 2232-2237.
    [17] Fleming RE, Sly WS. Hepcidin: a putative ironregulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc Natl Acad Sci U S A. 2001;98:8160-8162.
    [18] Ganz T .Hepcidin-a regulator of intestinal iron absorption and iron recycling by macrophages.Best Pract Res Clin Haematol.2005 Jun; 18(2): 171-182.
    [19] Anderson GJ,Frazer DM.Recent advances in intestinal iron transport.Curr Gastroenterol Rep.2005 Oct;7(5):365-372.
    [20] Pigeon C,Ilyin G,Courselaud B,et al.A new mouse liver-specific gene,encoding a protein homologous to human antimicrobial peptide hepcidin,is overexpressed during iron overload.J Biol Chem , 2001 Mar 16 276(11):7811 -7819.
    [21] Shike H, Lauth X, Westerman ME, et al. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur J Biochem. 2002;269: 2232-7.
    [22] Fleming RE, Sly WS. Hepcidin: a putative ironregulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc Natl Acad Sci U S A. 2001 ;98:8160-2.
    [23] Ganz T.Hepcidin--a peptide hormone at the interface of innate immunity and iron metabolism.Curr Top Microbiol Immunol. 2006;306:183-98.
    [24] Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its interaalization. Science 2004; 306: 2090-3.
    [25] Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C. Hepcidin is decreased in TFR2 hemochromatosis. Blood. 2005; 105: 1803-6.
    [26] Courselaud B, Pigeon C, Inoue Y, et al. C/EBPalpha regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism: cross-talk between C/EBP pathway and iron metabolism. J Biol Chem. 2002;277:41163-70.
    [27] Means RT Jr. The anaemia of infection. Baillieres Best Pract Res Clin Haematol. 2000; 13: 151-62.
    [28] Lee P, Peng H, Gelbart T, Wang L, Beutler E.Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci U S A. 2005 Feb 8; 102(6):1906-10.
    [29] Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004; 113: 1271-6.
    
    [1] Lee P, Peng H, Gelbart T, Wang L, Beutler E.Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci U S A. 2005 Feb 8; 102(6):1906-10.
    
    [2] Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004; 113: 1271-6.
    
    [3] M. U. Goebel, P. J. Mills, M. R. Irwin, M. G. Ziegler, Interleukin-6 and tumor necrosis factor-alpha production after acute psychological stress, exercise, and infused isoproterenol: differential effects and pathways, Psychosom. Med. 62 (2000) 591-598.
    
    [4] Zhou D, Kusnecov AW, Shurin MR, et al. Exposure to physical and psychological stressors elevates plasma interleukin 6: relationship to the activation of hypothalamic-pituitary-adrenal axis. Endocrinology 1993; 133: 2523-30.
    [5] Wegrzyn P, Jura J, Kupiec T, et al. A search for genes modulated by interleukin-6 alone or with interleukin-1beta in HepG2 cells using differential display analysis. Biochim Biophys Acta. 2006; 1762:319-328.
    [6] Guschin D, Rogers N, Briscoe J, et al. A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J. 1995; 14:1421 -9.
    [7] Birch HE, Schreiber G. Transcriptional regulation of plasma protein synthesis during inflammation. J Biol Chem. 1986;261:8077-80.
    [8] Alvarez-Hernandez X, Licéaga J, McKay IC, et al. Induction of hypoferremia and modulation of macrophage iron metabolism by tumor necrosis factor. Lab Invest 1989; 61: 319-22.
    [9] Drenth JP, Van Uum SH, Van Deuren M, Pesman GJ, Van der Ven-Jongekrijg J, Van der Meer J. Endurance run increases circulating IL-6 and IL-1ra but downregulates ex vivo TNF-a and IL-1b production. J Appl Physiol 1995;79:1497-503.
    [10] Connor TJ, et al. Depression, stress and immunological activation: the role of cytokines in depression disorder. Life Sci. 1998, 62(7): 583-587.
    [11] Izeboud CA, Monshouwer M, van Miert AS, Witkamp RF. The b-adrenoceptor agonist clenbuterol is a potent inhibitor of the LPS-induced production of TNF-a and IL-6 in vitro and in vivo. Inflamm Res 1999;48:497-502.
    [12] Liao J, Keiser JA, Scales WE, Kunkel SL, Kluger MJ. Role of epinephrine in TNF and IL-6 production from perfused isolated rat liver. Am J Physiol 1995;268:R896—901.
    [13] Nicolas G, Bennoun M, Devaux I, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A 2001; 98: 8780-5.
    [14] Kemna EH, Tjalsma H, Willems HL, et al. Hepcidin: from discovery to differential diagnosis. Haematologica 2008; 93: 90-7.
    [15] Nemeth E, Ganz T.Hepcidin and iron-loading anemias. Haematologica 2006; 91: 727-32.
    [16] Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 2002; 110: 1037-44.
    [17] Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 2003; 101: 2461-3.
    [18] Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood 2006; 108: 3204-9.
    [19] Lee P, Peng H, Gelbart T, et al. The IL-6- and lipopolysaccharide -induced transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobulin-deficient hepatocytes. Proc Natl Acad Sci U S A 2004; 101:9263-5.
    [20] Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and itsregulation. Biochem J. 2003;374:1-20.
    [21] Guschin D, Rogers N, Briscoe J, et al. A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J. 1995; 14:1421-9.
    [22] Ganz T. Hepcidin and its role in regulating systemic iron metabolism. Hematology Am Soc Hematol Educ Program. 2006;: 29-35.
    [23] Wegrzyn P, Jura J, Kupiec T, et al. A search for genes modulated by interleukin-6 alone or with interleukin-1 beta in HepG2 cells using differential display analysis. Biochim Biophys Acta. 2006; 1762:319-328.
    [24] Courselaud B, Pigeon C, Inoue Y, et al. C/EBPalpha regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism: cross-talk between C/EBP pathway and iron metabolism. J Biol Chem. 2002;277: 41163-70.
    [25] Nishimoto N, Kanakura Y, Aozasa K, et al. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 2005; 106: 2627-32.
    [26] Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C. Hepcidin is decreased in TFR2 hemochromatosis. Blood. 2005; 105: 1803-6.
    [27] Trikha M, Corringham R, Klein B, et al. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 2003; 9: 4653-65.
    [1] 钱忠明. 铁代谢-基础与临床. 北京: 科学出版社.2000.1.
    [2] Pietrangelo A. Physiology of iron transport and the hemochromatosis gene. Am J Physiol Gastrointest Liver Physiol. 2002; 282: G403-14.
    [3] Philpott CC. Molecular aspects of iron absorption: insights into the role of HFE in hemochromatosis. Hepatology. 2002; 35: 993-1001.
    [4] Christine A.Swanson. Iron intake and regulation: implication for iron Deficiency and iron overload. Alcohol. 2003.30: 99-102.
    [5] Trinder D, Batey RG, Morgan EH, Baker E. Effect of cellular iron concentration on iron uptake by hepatocytes. Am J Physiol 1990; 259: 611-7.
    [6] Graham RM, Reutens GM, Herbison CE, Delima RD, Chua AC, Olynyk JK, Trinder D. Transferrin receptor 2 mediates uptake of transferrin-bound and non-transferrin-bound iron. J Hepatol. 2008; 48(2): 327-34.
    [7] Le Gall JY,Jouanolle AM,Mosser J,et al.Human iron metabolism.Bull Acad Natl Med.2005 Nov;189(8):1635-47.
    [8] J Vm Zeben D, Bieger R, Vm Wenneekerke R K A et al. Evaluation of microcytosis using serum ferritinand red blood cell distribution. Eur. J. Haematol. 1991, 44; 106—9.
    [9] Skikne BS, Howe CH, Cook JD, et al. Serum transferrin receptor: a quantitative measure of tissue iron deficiency. Blood, 1990, 75: 1870-6.
    [10] Huebers HA, Begnin Y, potrakul P, et al. Intact transferring receptors in human plasma and their relation to erythrompoiesis. Blood, 1990, 75 : 102-7.
    [11] Ming Qian Z, Sheng Xiao D, Kiu Liao et al. Effect of different durations of exercise on transferrin—bound iron uptake by rat erythroblast. J Nutr Biochem 2002 Jm; 13(1): 47-54.
    [12] Beutler E, Hoffbrand AV, Cook JD. Iron deficiency and overload. Hematology Am Soc Hematol Educ Program 2003; 40-61.
    [13] Punnonen BK, lrjala K , Rajamaki A。 al. Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood. 1997.89(3): 1052-7.
    [14]Ponka P, Lok NC. The transferrin receptor: role in health and disease. J Biochem. 1999, 31 : 1111-2.
    [15] Khumalo H , Gomo ZAR , Moyo VM et, al. Serum transferrin receptors are decreased in the presence of iron overload. Clin Chem. 1998, 44(1) : 40-4.
    [16] Rolf Hinamann. Iron metabolism,Iron Deficiency and Amaemia. Sysmex Journal International. 2003.13(2):65-75.
    [17] Smith SM, Zwart SR, Block G, et al. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J Nutr 2005; 135(3): 437-43.
    [18] WHO/UNICEF/UNU. Iron deficiency anaemia: assessment, prevention, and control. Geneva, World Health Organization 2001 (WHO/NHD/01.3).
    [19] Porter JB. Practical management of iron overload. Br J Haematol 2001; 115: 239-52.
    [20] Furutani T, Hino K, Okuda M, et al. Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 2006; 130: 2087-98.
    [21] Beard JL, Hendricks MK, Perez EM, et al. Maternal iron deficiency anemia affects postpartum emotions and cognition. J Nutr 2005; 135: 267-72.
    [22] Sun JQ, Shen L, Wang HQ, et al. Study on iron deficiency and anemia with risk factors among children and adolescents in shanghai. Acta Nutrimenta Sinica 2005; 27: 284-7.
    [23] WHO/ UNICEF. Focusing on anaemia: towards an integrated approach for effective anaemia control. Geneva, World Health Organization 2004.
    [24] WHO/CDC. Assessing the iron status of populations. Geneva, World Health Organization 2004.
    [25] Harrison-Findik DD, Schafer D, Klein E, etc.Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem. 2006 Aug 11; 281(32):22974-82.
    [26] Xiao DS,HO KP,Qian ZM.Nitric oxide inhibition decreases bleomycin-detectable iron in spleen, bone marrow cells and heart but not in liver in exercise rats.Mol Cell Biochem, 2004, 260(1-2): 31-37.
    [27] Means RT Jr. The anaemia of infection. Baillieres Best Pract Res Clin Haematol. 2000; 13:151-162.
    [28] Lee GR. The anemia of chronic disease. Semin Hematol. 1983;20:61-80.
    [29] Jurado RL. Iron, infections and anemia of inflammation. Clin Infect Dis. 1997;25:888-895.
    [30] Weiss G. Iron and anemia of chronic disease. Kidney Int Suppl. 1999;69:S12-S17.
    [31] Torrance JD, Bothwell TH. Tissue iron stores. In: Cook JD, ed. Methods in Hematology. Vol 1. New York, NY: Churchill Livingstone Press; 1980:104-109.
    [32] Andrews NC. Iron homeostasis: insights from genetics and animal models. Nat Rev Genet. 2000; 1:208-217.
    [33] Nicolas G, Bennoun M, Devaux I, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A. 2001; 98:8780-8785.
    [34] Chen Y-T. Glycogen storage diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York, NY: McGraw-Hill; 2001:1521-51.
    [35] Harrison-Findik DD, Schafer D, Klein E, etc.Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem. 2006 Aug 11; 281 (32):22974-82.
    [36] Furutani T, Hino K, Okuda M, et al. Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 2006; 130: 2087-98.
    [37] Ramm GA, Ruddell RG. Hepatotoxicity of iron overload: mechanisms of iron-induced hepatic fibrogenesis. Semin Liver Dis. 2005; 25(4): 433-49.
    [38] Weiss G. Iron and immunity: a double-edged sword. Eur J Clin Invest. 2002; 32 Suppl 1: 70-8.
    [39] Walker EM Jr, Walker SM. Effects of iron overload on the immune system. Ann Clin Lab Sci. 2000; 30(4): 354-65.
    [40] Marx JJ. Iron and infection: competition between host and microbes for a precious element. Best Pract Res Clin Haematol. 2002; 15: 411-26.
    [41] Carriaga MT, Skikne BS, Finley B, et al. Serum transferrin receptor for the detection of iron deficiency in pregnancy. Am J Clin Nutr 1991; 54: 1077-81.
    [42] Skikne BS, Flowers CH, Cook JD. Serum transferrin receptor: a quantitative measure of tissue iron deficiency. Blood 1990; 75: 1870-6.
    [43] Piperno A, Sampietro M, D Alba R, Roffi L, Fargion S, Parma S, et al. Iron stores, response to interferon therapy, and effect of ion depletion in chronic hepatitis C. Liver 1996; 16: 248-54.
    [44] Olynyk J, Reddy R, Di Bisceglie, Jeffers L, Parker T, Radick J, et al. Hepatic iron concentration as a predictor of response to alfa interferon therapy in chronic hepatitis C. Gastroenterology 1995; 108: 1104-9.
    [45] Taetle R, Honeystt M. g-Interferon modulates human monocyte/macrophage transferrin receptor expression. Blood 1988; 71: 1590-5.
    [46] Loréal O, Chenoufi N, Turlin B, Haziza-Pigeon C, Robert JY, Lescoat G, et al. Effect of ursodeoxycholic acid on liver store and distribution in rat with normal or iron supplemented diet. Liver 1997; 17: 30-4.
    [47] Shiffman M, Hofman C, Luketic V, Sanyal A, Contos M, Mills S. Improved sustained response following treatment of chronic hepatitis C by gradual reduction in the interferon dose. Hepatology 1996;24: 21-6.
    [48] Andrews NC. Medical progress: disorders of iron metabolism. N Engl J Med. 1999; 341: 1986-95.
    [49] Means RT Jr. Advances in the anemia of chronic disease. Int J Hematol. 1999;70:7-12.
    [50] Nicolas G, Viatte L, Lou DQ, Bennoun M, Beaumont C, Kahn A, Andrews NC, Vaulont S. Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet 34: 97-101,2003.
    [51] Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a Urinary Antimicrobial Peptide Synthesized in the Liver. J Biol Chem. 2001 Mar 16; 276(11):7806-10.
    [52] Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S, Gombart AF, Koeffler HP. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem. 1999; 274: 20826-32.
    [53] Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090-3.
    [54] Shike H, Lauth X, Westerman ME, et al. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur J Biochem. 2002;269: 2232-7.
    [55] Fleming RE, Sly WS. Hepcidin: a putative ironregulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc Natl Acad Sci U S A. 2001 ;98:8160-2.
    [56] GanzT .Hepcidin--a regulator of intestinal iron absorption and iron recycling by macrophages.Best Pract Res Clin Haematol.2005 Jun;18(2):171-182.
    [57] Pigeon C,Ilyin G,Courselaud B,et al.A new mouse liver-specific gene,encoding a protein homologous to human antimicrobial peptide hepcidin,is overexpressed during iron overload.J Biol Chem,2001 Mar 16 276(11):7811-9.
    [58] Anderson GJ,Frazer DM.Recent advances in intestinal iron transport.Curr Gastroenterol Rep.2005 Oct;7(5):365-72.
    [59] Wallace DF,Summerville L,Lusby PE,Subramaniam VN.First phenotypic description of transferrin receptor 2 knockout mouse,and the role of hepcidin.Gut.2005 Jul;54(7):980-6.
    [60] Lee P, Peng H, Gelbart T, Wang L, Beutler E.Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci U S A. 2005 Feb 8; 102(6): 1906-10.
    [61] Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004; 113: 1271-6.
    [62] Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood 2006; 108: 3204-9.
    [63] Ganz T.Hepcidin--a peptide hormone at the interface of innate immunity and iron metabolism.Curr Top Microbiol Immunol. 2006; 306: 183-198.
    [64] Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002; 110: 1037-44.
    [1] WHO/UNICEF/UNU, Iron deficiency anaemia: assessment, prevention, and control, Geneva, World Health Organization (2001).
    [2] J. Q. Sun, L. Shen, H. Q. Wang, J. Y. Li, Y. J. Zhou, W. X. Gu, Study on iron deficiency and anemia with risk factors among children and adolescents in shanghai, Acta. Nutrimenta. Sinica. 27 (2005) 284-287.
    [3] WHO/ UNICEF, Focusing on anaemia: towards an integrated approach for effective anaemia control, Geneva, World Health Organization (2004).
    [4] C.L. Wei, J. Zhou, X.Q. Huang, M. Li, Effect of psychological stress on serum iron and erythropoiesis, Int. J. Hematol. (2008) (acceptted)
    [5] A. Donovan, A. Brownlie, Y. Zhou, J. Shepard, S. J. Pratt, J. Moynihan, B. H. Paw, A. Drejer, B. Barut, A. Zapata, T.C Law, C. Brugnara, S. E. Lux, G. S. Pinkus, J. L. Pinkus, P. D. Kingsley, J. Palis, M. D. Fleming, N. C. Andrews, L. I. Zon, Positional cloning of zebrafish ferroportinl identifies a conserved vertebrate iron exporter, Nature. 403 (2000) 776-781.
    [6] E.H. Kemna, H. Tjalsma, H.L. Willems, D. W. Swinkels, Hepcidin: from discovery to differential diagnosis, Haematologica. 93 (2008) 90-97.
    [7] G. Nicolas, M. Bennoun, I. Devaux, C. Beaumont, B. Grandchamp, A. Kahn, S. Vaulont, Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice, Proc. Natl. Acad. Sci. U S A. 98 (2001) 8780-8785.
    [8] G. Nicolas, M. Bennoun, A. Porteu, S. Mativet, C. Beaumont, B. Grandchamp, M. Sirito, M. Sawadogo, A. Kahn, S. Vaulont, Severe iron deficiency anemia in transgenic mice expressing liver hepcidin, Proc. Natl. Acad. Sci. U S A. 99 (2002) 4596-4601.
    [9] E. Nemeth, S. Rivera, V. Gabayan, C. Keller, S. Taudorf, B.K. Pedersen, T. Ganz, IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin, J. Clin. Invest 113 (2004) 1271-1276.
    [10] E. Nemeth, E.V. Valore, M. Territo, G. Schiller, A. Lichtenstein, T. Ganz, Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein, Blood 101 (2003) 2461-2463.
    [11] M. Funada, C. Hara, Differential effects of psychological stress on activation of the 5-hydroxytryptamine- and dopamine-containing neurons in the brain of freely moving rats, Brain. Res. 901(2001)247-251.
    [12] K. M. Erikson, D. J. Pinero, J. R. Connor, J. L. Beard, Regional brain iron, ferritin and transferrin concentrations during iron deficiency and iron repletion in developing rats, J. Nutr. 127 (1997)2030-2038.
    [13] D. Zhou, A.W. Kusnecov, M.R. Shurin, M. DePaoli, B.S. Rabin, Exposure to physical and psychological stressors elevates plasma interleukin 6: relationship to the activation of hypothalamic-pituitary-adrenal axis, Endocrinology. 133 (1993) 2523-2530.
    [14] Y. Endo, K. Shiraki, Behavior and body temperature in rats following chronic foot shock or psychological-stress exposure, Physiol. Behav. 71 (2000) 263-268.
    [15] Y. Endo, K. Yamauchi, Y. Fueta, M. Irie, Changes of body temperature and plasma corticosterone level in rats during psychological stress induced by the communication box, Med. Sci.Monit. 7(2001)1161-1165.
    [16] F. J. Navas, A. Cordova, Iron distribution in different tissues in rats following exercise, Biol. Trace. Elem. Res. 73 (2000) 259-268.
    [17] S. M. Smith, S. R. Zwart, G. Block, B. L. Rice, J. E. Davis-Street, The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station, J. Nutr. 135 (2005)437-443.
    [18] C. Woiciechowsky, B. Sch(o|¨)ning, J. Cobanov, W. R. Lanksch, H. D. Volk, W. D. D(o|¨)cke, Early IL-6 plasma concentrations correlate with severity of brain injury and pneumonia in brain-injured patients, J. Trauma. 52 (2002) 39-45.
    [19] F. Kimura, H. Shimizu, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, N. Mitsuhashi, S. Sawada, D. Takeuchi, S. Ambiru, M. Miyazaki, Increased plasma levels of IL-6 and IL-8 are associated with surgical site infection after pancreaticoduodenectomy, Pancreas. 32(2006)178-185.
    [20] M. U. Goebel, P. J. Mills, M. R. Irwin, M. G. Ziegler, Interleukin-6 and tumor necrosis factor-alpha production after acute psychological stress, exercise, and infused isoproterenol: differential effects and pathways, Psychosom. Med. 62 (2000) 591-598.
    [21] K. Kageyama, K. Hanada, Y. Iwasaki, S. Sakihara, T. Nigawara, J. Kasckow, T. Suda, Pituitary adenylate cyclase-activating polypeptide stimulates corticotropin-releasing factor, vasopressin and interleukin-6 gene transcription in hypothalamic 4B cells, J. Endocrinol. 195 (2007) 199-211.
    [22] G. B. Call, O. F. Husein, C. J. McIlmoil, A. Adams, R. A. Heckmann, A. M. Judd, Bovine adrenal cells secrete interleukin-6 and tumor necrosis factor in vitro, Gen. Comp. Endocrinol. 118 (2000)249-261.
    [23] J. P. Liuzzi, L. A. Lichten, S. Rivera, R. K. Blanchard, T. B. Aydemir, M. D. Knutson, T. Ganz, R. J. Cousins, Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response, Proc. Natl. Acad. Sci. U S A. 102 (2005) 6843-6848.
    [24] S. A. Yasin, A. Costa, M. L. Forsling, A. Grossman, Interleukin-1 beta and interleukin-6 stimulate neurohypophysial hormone release in vitro, J. Neuroendocrinol. 6 (1994) 179-184.
    [25] M. A. Salas, S. W. Evans, M. J. Levell, J. T. Whicher, Interleukin-6 and ACTH act synergistically to stimulate the release of corticosterone from adrenal gland cells, Clin. Exp. Immunol. 79(1990)470-473.
    [26] G.J. Anderson, D.M. Frazer, S.J.Wilkins, E.M. Becker, K.N. Millard, T.L. Murphy, A.T. McKie, C.D. Vulpe, Relationship between intestinal irontransporter expression, hepatic hepcidin levels and the control of iron absorption, Biochem. Soc. Trans. 30 (2002) 724-726.
    [27] E. Nemeth, M.S. Tuttle, J. Powelson, M.B. Vaughn, A. Donovan, D.M. Ward, T. Ganz, J. Kaplan, Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization, Science 306 (2004) 2090-2093.
    [28] M.V.V. Falzacappa, M.V. Spasic, R. Kessler, J. Stolte, M.W. Hentze, M.U. Muckenthaler, STAT-3 mediates hepatic hepcidin expression and its inflammatory stimulation, Blood 109 (2007) 353-358.
    [29] F. B. Sow, W. C. Florence, A. R. Satoskar, L. S. Schlesinger, B. S. Zwilling, W. P. Lafuse, Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis, J. Leukoc. Biol. 82 (2007) 934-945.
    [30] H. Kawabata, N. Tomosugi, J. Kanda, Y. Tanaka, K. Yoshizaki, T. Uchiyama, Anti-interleukin 6 receptor antibody tocilizumab reduces the level of serum hepcidin in patients with multicentric Castleman's disease, Haematologica. 92 (2007) 857-858.
    [31] M. Trikha, R. Corringham, B. Klein, J. F. Rossi, Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence, Clin. Cancer. Res. 9 (2003) 4653-4665.
    [32] D. S. Raj, Role of Interleukin-6 in the Anemia of Chronic Disease, Semin. Arthritis. Rheum. 11 (2008) (Epub ahead of print).
    [33] I. Theurl, V. Mattle, M. Seifert, M. Mariani, C. Marth, G. Weiss, Dysregulated monocyte iron homeostasis and erythropoietin formation in patients with anemia of chronic disease, Blood. 107 (2006)4142-4148.
    [34] G. Papanikolaou, M. Tzilianos, J.I. Christakis, D. Bogdanos, K. Tsimirika, J. MacFarlane, Y.P. Goldberg, N. Sakellaropoulos, T. Ganz, E. Nemeth, Hepcidin in iron overload disorders, Blood. 105(2005)4103-4105.
    [1] G. Weiss, Modification of iron regulation by the inflammatory response, Best. Pract. Res. Clin. Haematol. 18(2005)183-201.
    [2] R.L. Jurado, Iron, infections, and anemia of inflammation, Clin. Infect. Dis. 25 (1997) 888-895.
    [3] K.A. Matthews, C.R. Katholi, H. McCreath, M.A. Whooley, D.R. Williams,S. Zhu, J.H. Markovitz, Blood pressure reactivity to psychological stress predicts hypertension in the CARDIA study, Circulation. 110 (2004) 74-78.
    [4] R. Singer, C.T. Harker, A.J. Vander, M J. Kluger, Hyperthermia induced by open field stress is blocked by salicylate, Physiol. Behav. 36 (1986) 1179-1182.
    [5] M.P. Jones, The role of psychosocial factors in peptic ulcer disease: beyond Helicobacter pylori and NSAIDs, J. Psychosom. Res. 60 (2006) 407-412.
    [6] C.L. Wei, J. Zhou, X.Q. Huang, M. Li, Effect of psychological stress on serum iron and erythropoiesis, Int. J. Hematol. (acceptted)
    [7] A. Pietrangelo, Physiology of iron transport and the hernochromatosis gene, Am. J. Physiol. Gastrointest. Liver. Physiol. 282 (2002) 403-414.
    [8] G. Nicolas, M. Bennoun, A. Porteu, S. Mativet, C. Beaumont, B. Grandchamp, M. Sirito, M. Sawadogo, A. Kahn, S. Vaulont, Severe iron deficiency anemia in transgenic mice expressing liver hepcidin, Proc. Natl. Acad. Sci. U S A. 99 (2002) 4596-4601.
    [9] D. Zhou, A.W. Kusnecov, M.R. Shurin, M. DePaoli, B.S. Rabin, Exposure to physical and psychological stressors elevates plasma interleukin 6: relationship to the activation of hypothalamic-pituitary-adrenal axis, Endocrinology. 133 (1993) 2523-30.
    [10] K. S(a|¨)vman, U.A. Nilsson, M. Thoresen, I. Kjellmer, Non-protein-bound iron in brain interstitium of newborn pigs after hypoxia, Dev. Neurosci. 27 (2005) 176-84.
    [11] Y. Endo, K. Shiraki, Behavior and body temperature in rats following chronic foot shock or psychological-stress exposure, Physiol. Behav. 71 (2000) 263-268.
    [12] K. Matsumoto, K. Yobimoto, N.T. Huong, M. Abdel-Fattah, T. Van Hien, H. Watanabe, Psychological stress-induced enhancement of brain lipid peroxidation via nitric oxide systems and its modulation by anxiolytic and anxiogenic drugs in mice, Brain. Res. 839 (1999) 74-84.
    [13] D.D. Harrison-Findik, D. Schafer, E. Klein, N.A. Timchenko, H. Kulaksiz, D. Clemens, E. Fein, B. Andriopoulos, K. Pantopoulos, J. Gollan, Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression, J. Biol. Chem. 281 (2006) 22974-22982.
    [14] D. Trinder, R.G. Batey, E.H. Morgan, E. Baker, Effect of cellular iron concentration on iron uptake by hepatocytes, Am. J. Physiol. 259 (1990) 611-617.
    [15] H. Kawabata, R. Yang, T. Hirama, P.T. Vuong, S. Kawano, A.F. Gombart, H.P. Koeffler, Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family, J. Biol. Chem. 274 (1999) 20826-20832.
    [16] A. Robb, M. Wessling-Resnick, Regulation of transferrin receptor 2 protein levels by transferring, Blood. 104 (2004) 4294-4299.
    [17] R.E. Fleming, M.C. Migas, C.C. Holden, A. Waheed, R.S. Britton, S. Tomatsu, B.R. Bacon, W.S. Sly, Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis, Proc. Natl. Acad. Sci. U S A. 97 (2000) 2214-2219.
    [18] E. Nemeth, A. Roetto, G. Garozzo, T. Ganz, C. Camaschella, Hepcidin is decreased in TFR2 hemochromatosis, Blood. 105 (2005) 1803-1806.
    [19] M. Zhao, J.B. Chen, W.Y. Wang, C.L. Wei, L. Wang, L. Ma, H. Shen, M. Li, Psychological stress induces hypoferremia by IL-6-hepcidin axis in rats. (submitted)
    [20] R.M. Graham, G.M. Reutens, C.E. Herbison, R.D. Delima, A.C. Chua, J.K. Olynyk, D. Trinder, Transferrin receptor 2 mediates uptake of transferrin-bound and non-transferrin-bound iron, J. Hepatol. 48 (2008) 327-334.
    [21] R.M. Graham, E.H. Morgan, E. Baker, Characterisation of citrate and iron citrate uptake by cultured rat hepatocytes, J. Hepatol. 29 (1998) 603-613.
    [22] M.W. Hentze, M.U. Muckenthaler, N.C. Andrews, Balancing acts: molecular control of mammalian iron metabolism, Cell. 117 (2004) 285-297.
    [23] D.H. Lee, D.Y. Liu, D.R. Jacobs, H.R. Shin, K. Song, I.K. Lee, B. Kim, R.C. Hider, Common presence of non-transferrin-bound iron among patients with type 2 diabetes, Diabetes. Care. 29 (2006) 1090-1095.
    [24] J.M. Roob, G. Khoschsorur, A. Tiran, J.H. Horina, H. Holzer, B.M. Winklhofer-Roob, Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis, J. Am. Soc. Nephrol. 11 (2000) 539-549.
    [25] D.J. Messner, K.V. Kowdley, Neoplastic transformation of rat liver epithelial cells is enhanced by non-transferrin-bound iron, BMC. Gastroenterol.8 (2008) 2.
    [26] A.E. Kartikasari, N.A. Georgiou, F.L. Visseren, H. van Kats-Renaud, B.S. van Asbeck, J.J. Marx, Endothelial activation and induction of monocyte adhesion by nontransferrin-bound iron present in human sera, FASEB. J. 20 (2006) 353-355.
    [27] B.S. Zwilling, D.E. Kuhn, L. Wikoff, D. Brown, W. Lafuse, Role of iron in Nramp1-mediated inhibition of mycobacterial growth, Infect. Immun. 67 (1999) 1386-1392.
    [28] G. Weiss, Iron and immunity: a double-edged sword, Eur. J. Clin. Invest. 32 (2002) Suppl 1: 70-78.
    [29] E.M. Walker, S.M. Walker, Effects of iron overload on the immune system, Ann. Clin. Lab. Sci. 30 (2000) 354-365.
    [30] J.J. Marx, Iron and infection: competition between host and microbes for a precious element, Best. Pract. Res. Clin. Haematol. 15 (2002) 411-426.
    [31] G.A. Ramm, R.G. Ruddell, Hepatotoxicity of iron overload: mechanisms of iron-induced hepatic fibrogenesis, Semin. Liver. Dis. 25 (2005) 433-449.
    [32] T. Furutani, K. Hino, M. Okuda, T. Gondo, S. Nishina, A. Kitase, M. Korenaga, S.Y. Xiao, S.A. Weinman, S.M. Lemon, I. Sakaida, K. Okita, Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein, Gastroenterology. 130 (2006)2087-2098.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700