用户名: 密码: 验证码:
调节组织免疫微环境抑制高血压心肌肥厚和心脏纤维化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以心肌肥厚和心脏纤维化为特征的心脏异常重构是高血压心脏病的核心病理改变,是造成慢性心力衰竭的主要原因。除了神经-体液调节机制以外,免疫-炎症反应在高血压导致的心脏异常重构过程中发挥了关键作用。损伤相关模式分子(DAMPs)是组织细胞受到损伤因素刺激后以主动或被动方式释放到细胞外的一类物质,它们既能够通过模式识别受体激活先天免疫系统启动或促进炎症反应,又能够调节获得性免疫反应特别是Th1/Th2反应的极化方向影响炎症的转归。
     热休克蛋白70(HSP70)在细胞内可通过分子伴侣作用维持细胞稳念,而在细胞外则能发挥DAMPs分子作用参与炎症的发生发展。因此我们想知道在压力过负荷损伤因素的刺激下,心血管组织主动或被动释放的HSP70能否作为重要的DAMPs分子介导心脏组织免疫-炎症反应最终导致心脏异常重构的发生。通过对腹主动脉缩窄(AAC)诱导的小鼠高血压模型进行研究我们发现,在压力过负荷应激状态下,心脏组织中HSP70表达升高并异常地分布于心肌细胞膜表面,血液HSP70浓度亦显著升高。热休克蛋白转录因子抑制剂虽然可以降低血液HSP70水平,改善心肌细胞膜表面HSP70的异常分布,显著抑制AAC诱导心脏纤维化,但同时却增加高血压诱导的心肌肥厚,降低心脏收缩功能,而使用抗体功能性地阻断HSP70则能在不改变动物血流动力学的前提下显著地减轻高血压诱导的心肌肥厚和心脏纤维化。进一步的研究显示,HSP70表达、释放的减少或免疫功能的阻断可显著地降低高血压诱导的心脏组织中MCP-1表达的增加及巨噬细胞的浸润升高,抑制Th2型细胞因子TGF-β1的表达。功能性阻断HSP70对心脏的保护作用可能与其抑制心脏组织中MAPK信号的活化有关。上述结果提示,在血压过负荷的刺激下,心肌细胞内、细胞外HSP70对心肌肥厚产生不同的调节作用,而只有细胞外的HSP70可作为DAMPs分子诱导心脏组织处于Th2方向的免疫微环境,促进高血压心脏纤维化的形成。
     免疫—炎症反应介导内外源性致病因素引起的心血管组织纤维化和肥厚,调节异常改变的免疫—炎症反应可能是逆转心血管组织纤维化和肥厚的重要途径。卡介苗(BCG)是牛型结核杆菌经改造获得的安全有效的抗结核病疫苗,也是强大的Th1型免疫调节剂,我们发现BCG在不改变血流动力学前提下,显著减轻血压过负荷所致心脏肥厚和纤维化,这种心脏保护作用与其上调心脏组织中IFN-γ的表达,减少心脏组织2型巨噬细胞的浸润,调节心脏组织Th1/Th2平衡向Th1方向迁移有关,进一步研究发现BCG促进Th1反应的心脏保护作用可以被TLR4抑制剂而不能被DC-SIGN抑制剂所逆转,这说明TLR4信号系统的激活介导了BCG的心脏保护作用。本研究获得的结果有助于深入理解高血压心脏病发病过程中心脏异常重构的免疫病理学机制,为今后开发治疗心脏异常重构的疫苗提供了理论依据和研究线索。
Hypertension-induced chronic cardiac ventricular pressure overload leads to changes in myocardial structure and function that are referred to as myocardial remodeling, consisting of cardiomyocyte hypertrophy and cardiac fibrosis. Apart from the stimulation of neurohormones induced by hypertension, the activation of innate and adaptive immune responses participates in the pathogenesis of cardiovascular remodeling. Molecules of damage associated molecular patterns (DAMPs), which can be actively or passively released to extracellular space after initial damage induced by overload pressure, can ignite innate immune response by activating the pattern recognized receptors. Also this effect will modulate the development of adaptive immune response, especially the balance of Th1/Th2 immune responses which plays critical role in the pathogenesis of cardiac remodeling. We wondered if HSP70, which has been identified as an important molecule of DAMPs, could induce immune response in myocardium and participate in the pathogenesis of hypertension-induced cardiac hypertrophy and fibrosis. Our studies indicated that the sustained pressure overload enhanced the translocation of HSP70 to the membrane of cardiomyocyte and elevated the serum level of HSP70 in the murine model of abdominal aortic constriction (AAC). Inhibition of HSP70 expression by a specific HSP transcription inhibitor reduced the serum level of HSP70 and the abnormal distribution of HSP70 which caused an enhancement of myocardial hypertrophy but a regression of cardiac fibrosis induced by AAC. However, functional blockage of HSP70 by a specific anti-HSP70 antibody significantly attenuated pressure overload-induced cardiac hypertrophy and fibrosis with no changes in hemodynamics. These results indicated that intracellular or extracellular HSP70 mediated the different effects in the regulation of myocardial hypertrophy but only extracellular HSP70 mediated pressure overload-stimulated cardiac fibrosis. The cardiac protective effects of the anti-HSP70 antibody were largely attributed to its capability to block AAC-activated immune response in the heart, which was characterized by increasing infiltrating macrophages and increasing the expression of proinflammatory factor MCP-1 and profibrotic factor TGF-β1. Above results indicated that modulation of abnormal myocardium immune environment may be beneficial to alleviate the pressure overload-inducing cardiac remodeling. Indeed, we also found that BCG, a safe vaccine which strongly promotes Th1 immune response, could attenuate cardiac hypertrophy and fibrosis followed by AAC-induced pressure overload in murine models. BCG prevented cardiac hypertrophy by integrative activation of TLR4 signaling pathway to shift the balance of Th1/Th2 immune responses to Th1 dominant response in the myocardium. The mechanism of this cardiac protective effect was partially due to BCG-induced a decrease in the number of heart infiltrating M2- macrophages.
引文
[1].Bianchi,M.E.DAMPs,PAMPs and alarmins:all we need to know about danger[J].J Leukoc Biol,2007,81(1):1-5.
    [2].Bethke,K.,F.Staib,M.Distler,U.Schmitt,H.Jonuleit,A.H.Enk,P.R.Galle,and M.Heike.Different efficiency of heat shock proteins(HSP) to activate human monocytes and dendritic cells:superiority of HSP60[J].J Irnmunol,2002,169(11):6141-6148.
    [3].Vabulas,R.M.,P.Ahmad-Nejad,S.Ghose,C.J.Kirschning,R.D.Issels,and H.Wagner.HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway[J].J Biol Chem,2002,277(17):15107-15112.
    [4].Zanin-Zhorov,A.,L.Cahalon,G.Tal,R.Margalit,O.Lider,and I.R.Cohen.Heat shock protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 signaling[J].J Clin Invest,2006,116(7):2022-2032.
    [5].Ohno,M.,N.Kitabatake,and F.Tani.Functional region of mouse heat shock protein 72 for its binding to lymphoid neoplastic P388D1 cells[J].Mol Immunol,2007,44(9):2344-23 54.
    [6].Ulloa,L.,and D.Messmer.High-mobility group box 1(HMGB1) protein:friend and foe[J].Cytokine Growth Factor Rev,2006,17(3):189-201.
    [7].Foell,D.,M.Frosch,C.Sorg,and J.Roth.Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation[J].Clin Chim Acta,2004,344(1-2):37-51.
    [8].Peng,Y.,D.A.Martin,J.Kenkel,K.Zhang,C.A.Ogden,and K.B.Elkon.Innate and adaptive immune response to apoptotic cells[J].J Autoimmun,2007,29(4):303-309.
    [9]. Partida-Sanchez, S., L. Rivero-Nava, G. Shi, and F. E. Lund.CD38: an ecto-enzyme at the crossroads of innate and adaptive immune responses[J]. Adv Exp Med Biol,2007,590(171-183.
    [10]. Desrosiers, M. D., K. M. Cembrola, M. J. Fakir, L. A. Stephens, F. M. Jama, A.Shameli, W. Z. Mehal, P. Santamaria, and Y. Shi.Adenosine deamination sustains dendritic cell activation in inflammation[J]. J Immunol,2007,179(3):1884-1892.
    [11]. Shi, Y., J. E. Evans, and K. L. Rock.Molecular identification of a danger signal that alerts the immune system to dying cells[J]. Nature,2003,425(6957):516-521.
    [12]. Behrens, M. D., W. M. Wagner, C. J. Krco, C. L. Erskine, K. R. Kalli, J.Krempski, E. A. Gad, M. L. Disis, and K. L. Knutson.The endogenous danger signal, crystalline uric acid, signals for enhanced antibody immunity[J].Blood,2008,111(3):1472-1479.
    [13]. Di Virgilio, F.Purinergic mechanism in the immune system: A signal of danger for dendritic cells[J]. Purinergic Signal,2005,1(3):205-209.
    [14]. Mehta, V. B., J. Hart, and M. D. Wewers.ATP-stimulated release of interleukin (IL)-lbeta and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage[J]. J Biol Chem,2001,276(6):3820-3826.
    [15]. Suzuki, T., I. Hide, K. Ido, S. Kohsaka, K. Inoue, and Y. Nakata.Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia[J]. J Neurosci, 2004,24(1): 1 -7.
    [16]. la Sala, A., D. Ferrari, S. Corinti, A. Cavani, F. Di Virgilio, and G.Girolomoni.Extracellular ATP induces a distorted maturation of dendritic cells and inhibits their capacity to initiate Th1 responses[J]. J Immunol,2001,166(3):1611-1617.
    [17]. Kono, H., and K. L. Rock.How dying cells alert the immune system to danger[J].Nat Rev Immunol,2008,8(4):279-289.
    [18]. Scheibner, K. A., M. A. Lutz, S. Boodoo, M. J. Fenton, J. D. Powell, and M. R.Horton.Hyaluronan fragments act as an endogenous danger signal by engaging TLR2[J].J Immunol, 2006,177(2): 1272-1281.
    [19]. Jiang, D., J. Liang, J. Fan, S. Yu, S. Chen, Y. Luo, G. D. Prestwich, M. M.Mascarenhas, H. G. Garg, D. A. Quinn, R. J. Homer, D. R. Goldstein, R. Bucala, P.J. Lee, R. Medzhitov, and P. W. Noble.Regulation of lung injury and repair by Toll-like receptors and hyaluronan[J]. Nat Med,2005,11(11):1173-1179.
    [20]. Goldstein, R. S., M. Gallowitsch-Puerta, L. Yang, M. Rosas-Ballina, J. M. Huston,C. J. Czura, D. C. Lee, M. F. Ward, A. N. Bruchfeld, H. Wang, M. L. Lesser, A. L. Church, A. H. Litroff, A. E. Sama, and K. J. Tracey.Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia[J].Shock,2006,25(6):571-574.
    [21]. Tsung, A., J. R. Klune, X. Zhang, G. Jeyabalan, Z. Cao, X. Peng, D. B. Stolz, D.A. Geller, M. R. Rosengart, and T. R. Billiar.HMGBl release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling[J]. J Exp Med,2007,204(12):2913-2923.
    [22]. Rouhiainen, A., J. Kuja-Panula, E. Wilkman, J. Pakkanen, J. Stenfors, R. K.Tuominen, M. Lepantalo, O. Carpen, J. Parkkinen, and H. Rauvala.Regulation of monocyte migration by amphoterin (HMGB1)[J]. Blood, 2004,104(4): 1174-1182.
    [23]. Lancaster, G. I., and M. A. Febbraio.Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins[J]. J Biol Chem,2005,280(24):23349-23355.
    [24]. Kim, H. P., D. Morse, and A. M. Choi.Heat-shock proteins: new keys to the development of cytoprotective therapies[J]. Expert Opin Ther Targets, 2006,10(5):759-769.
    [25]. Tian, J., A. M. Avalos, S. Y. Mao, B. Chen, K. Senthil, H. Wu, P. Parroche, S.Drabic, D. Golenbock, C. Sirois, J. Hua, L. L. An, L. Audoly, G. La Rosa, A.Bierhaus, P. Naworth, A. Marshak-Rothstein, M. K. Crow, K. A. Fitzgerald, E.Latz, P. A. Kiener, and A. J. Coyle.Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE[J]. Nat Immunol,2007,8(5):487-496.
    [26]. Bierhaus, A., P. M. Humpert, M. Morcos, T. Wendt, T. Chavakis, B. Arnold, D. M.Stern, and P. P. Nawroth.Understanding RAGE, the receptor for advanced glycation end products[J].J Mol Med,2005,83(11):876-886.
    [27]. Hauet-Broere, F., L. Wieten, T. Guichelaar, S. Berlo, R. van der Zee, and W. Van Eden.Heat shock proteins induce T cell regulation of chronic inflammation[J].Ann Rheum Dis,2006,65 Suppl 3(iii65-68.
    [28]. Wang, Y., C. G. Kelly, J. T. Karttunen, T. Whittall, P. J. Lehner, L. Duncan, P.MacAry, J. S. Younson, M. Singh, W. Oehlmann, G. Cheng, L. Bergmeier, and T.Lehner.CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines[J]. Immunity,2001,15(6):971-983.
    [29]. Tao, Y, S. Nishikawa, M. Nomura, N. Kitabatake, and F. Tani.Biotinylation of heat shock protein 70 induces RANTES production in HEK293 cells in a CD40-independent pathway[J]. Biochem Biophys Res Commun,2005,338(2):700-709.
    [30]. Dumitriu, I. E., M. E. Bianchi, M. Bacci, A. A. Manfredi, and P.Rovere-Querini.The secretion of HMGB1 is required for the migration of maturing dendritic cells[J]. J Leukoc Biol,2007,81(1):84-91.
    [31]. Treutiger, C. J., G. E. Mullins, A. S. Johansson, A. Rouhiainen, H. M. Rauvala, H.Erlandsson-Harris, U. Andersson, H. Yang, K. J. Tracey, J. Andersson, and J. E.Palmblad.High mobility group 1 B-box mediates activation of human endothelium[J]. J Intern Med,2003,254(4):375-385.
    [32]. Ehlermann, P., K. Eggers, A. Bierhaus, P. Most, D. Weichenhan, J. Greten, P. P.Nawroth, H. A. Katus, and A. Remppis.Increased proinflammatory endothelial response to S100A8/A9 after preactivation through advanced glycation end products[J]. Cardiovasc Diabetol,2006,5{6.
    [33]. Zanin-Zhorov, A., R. Bruck, G. Tal, S. Oren, H. Aeed, R. Hershkoviz, I. R. Cohen,and O. Lider.Heat shock protein 60 inhibits Th1-mediated hepatitis model via innate regulation of Th1/Th2 transcription factors and cytokines[J]. J Immunol,2005,174(6):3227-3236.
    [34]. Palmblad, K., E. Sundberg, M. Diez, R. Soderling, A. C. Aveberger, U. Andersson,and H. E. Harris.Morphological characterization of intra-articular HMGB1 expression during the course of collagen-induced arthritis[J]. Arthritis Res Ther,2007,9(2):R35.
    [35]. Ostberg, T., H. Wahamaa, K. Palmblad, N. Ito, P. Stridh, M. Shoshan, M. T. Lotze,H. E. Harris, and U. Andersson.Oxaliplatin retains HMGB1 intranuclearly and ameliorates collagen type II-induced arthritis[J]. Arthritis Res Ther,2008,10(1):R1.
    [36]. Mullaly, S. C, and P. Kubes.Toll gates and traffic arteries: from endothelial TLR2 to atherosclerosis[J]. Circ Res,2004,95(7):657-659.
    [37]. Messmer, D., H. Yang, G. Telusma, F. Knoll, J. Li, B. Messmer, K. J. Tracey, and N. Chiorazzi.High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Thl polarization[J]. J Immunol.2004,173(1):307-313.
    [38]. Kalinina, N., A. Agrotis, Y. Antropova, G. DiVitto, P. Kanellakis, G. Kostolias, O.Ilyinskaya, E. Tararak, and A. Bobik.Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: role of activated macrophages and cytokines[J]. Arterioscler Thromb Vasc Biol,2004,24(12):2320-2325.
    
    [39]. Degryse, B., T. Bonaldi, P. Scaffidi, S. Muller, M. Resnati, F. Sanvito, G. Arrigoni,and M. E. Bianchi.The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells[J].J Cell Biol,2001,152(6):1197-1206.
    
    [40]. de Graaf, R., G. Kloppenburg, P. J. Kitslaar, C. A. Bruggeman, and F.Stassen.Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through Toll-like receptors 2 and 4[J]. Microbes Infect,2006,8(7):1859-1865.
    
    [41]. Hamada, N., T. Maeyama, T. Kawaguchi, M. Yoshimi, J. Fukumoto, M. Yamada,S. Yamada, K. Kuwano, and Y. Nakanishi.The Role of High Mobility Group box1 in Pulmonary Fibrosis[J]. Am J Respir Cell Mol Biol,2008.
    
    [42]. Limana, F., A. Germani, A. Zacheo, J. Kajstura, A. Di Carlo, G. Borsellino, O.Leoni, R. Palumbo, L. Battistini, R. Rastaldo, S. Muller, G. Pompilio, P. Anversa,M. E. Bianchi, and M. C. Capogrossi.Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation[J]. Circ Res,2005,97(8):e73-83.
    
    [43]. Chavakis, E., A. Hain, M. Vinci, G. Carmona, M. E. Bianchi, P. Vajkoczy, A. M.Zeiher, T. Chavakis, and S. Dimmeler.High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells[J]. Circ Res,2007,100(2):204-212.
    
    [44]. McMorran, B. J., S. A. Patat, J. B. Carlin, K. Grimwood, A. Jones, D. S.Armstrong, J. C. Galati, P. J. Cooper, C. A. Byrnes, P. W. Francis, C. F. Robertson,D. A. Hume, C. H. Borchers, C. E. Wainwright, and B. J. Wainwright.Novel neutrophil-derived proteins in bronchoalveolar lavage fluid indicate an exaggerated inflammatory response in pediatric cystic fibrosis patients[J]. Clin Chem,2007,53(10):1782-1791.
    
    [45]. Senolt, L., M. Grigorian, E. Lukanidin, B. Simmen, B. A. Michel, K. Pavelka, R.E. Gay, S. Gay, and M. Neidhart.S100A4 is expressed at site of invasion in rheumatoid arthritis synovium and modulates production of matrix metalloproteinases[J]. Ann Rheum Dis,2006,65(12):1645-1648.
    
    [46]. Yammani, R. R., C. S. Carlson, A. R. Bresnick, and R. F. Loeser.Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: Role of the receptor for advanced glycation end products[J]. Arthritis Rheum,2006,54(9):2901-2911.
    [47]. Schneider, M., J. L. Hansen, and S. P. Sheikh.S100A4: a common mediator of epithelial-mesenchymal transition, fibrosis and regeneration in diseases?[J]. J Mol Med,2008.
    
    [48]. Foell, D., T. Kucharzik, M. Kraft, T. Vogl, C. Sorg, W. Domschke, and J.Roth.Neutrophil derived human S100A12 (EN-RAGE) is strongly expressed during chronic active inflammatory bowel disease[J]. GW,2003,52(6):847-853.
    
    [49]. Schmidt, A. M, S. D. Yan, S. F. Yan, and D. M. Stern.The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses[J].J Clin Invest,2001,108(7):949-955.
    
    [50]. Hart, A. L., H. O. Al-Hassi, R. J. Rigby, S. J. Bell, A. V. Emmanuel, S. C. Knight,M. A. Kamm, and A. J. Stagg.Characteristics of intestinal dendritic cells in inflammatory bowel diseases[J]. Gastroenterology,2005,129(1):50-65.
    
    [51]. Debler, J., U. Schiemann, U. Seybold, T. Mussack, N. Landauer, R. Ladurner, and M. Gross.Heat-shock protein HSP70-2 genotypes in patients with Crohn's disease:a more severe clinical course with intestinal complications in presence of the PstI-polymorphism[J].Eur J Med Res 5,2003,8(3):120-124.
    
    [52]. Klausz, G., T. Molnar, F. Nagy, Z. Gyulai, K. Boda, J. Lonovics, and Y.Mandi.Polymorphism of the heat-shock protein gene Hsp70-2, but not polymorphisms of the IL-10 and CD14 genes, is associated with the outcome of Crohn's disease[J]. Scand J Gastroenterol,2005,40(10):1197-1204.
    
    [53]. Whittall, T., Y Wang, C. G. Kelly, R. Thompson, J. Sanderson, M. Lomer, S. Y.Soon, L. A. Bergmeier, M. Singh, and T. Lehner.Tumour necrosis factor-alpha production stimulated by heat shock protein 70 and its inhibition in circulating dendritic cells and cells eluted from mucosal tissues in Crohn's disease[J]. Clin Exp Immunol,2006,143(3):550-559.
    
    [54]. Quaglietta, L., A. te Velde, A. Staiano, R. Troncone, and D. W.Hommes.Functional consequences of NOD2/CARD15 mutations in Crohn disease[J]. J Pediatr Gastroenterol Mutr,2007,44(5):529-539.
    
    [55]. Rosenstiel, P., A. Till, and S. Schreiber.NOD-like receptors and human diseases[J].Microbes Infect,2007,9(5):648-657.
    
    [56]. Chen, Y, C. L. Langrish, B. McKenzie, B. Joyce-Shaikh, J. S. Stumhofer, T.McClanahan, W. Blumenschein, T. Churakovsa, J. Low, L. Presta, C. A. Hunter,R. A. Kastelein, and D. J. Cua.Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis[J]. J Clin Invest,2006,116(5):1317-1326.
    [57].Ghoreschi,K.,C.Weigert,and M.Rocken.Immunopathogenesis and role of T cells in psoriasis[J].Clin Dermatol,2007,25(6):574-580.
    [58].Boyman,O.,C.Conrad,C.Dudli,E.Kielhorn,B.J.Nickoloff,and F.O.Nestle.Activation of dendritic antigen-presenting cells expressing common heat shock protein receptor CD91 during induction of psoriasis[J].Br J Dermatol,2005,15 2(6):1211-1218.
    [59].Punzi,L.,M.Podswiadek,P.Sfriso,F.Oliviero,U.Fiocco,and S.Todesco.Pathogenetic and clinical rationale for TNF-blocking therapy in psoriatic arthritis[J].Autoimmun Rev,2007,6(8):524-528.
    [1]Foell D,Wittkowski H,Roth J.Mechanisms of disease:a 'DAMP' view of inflammatory arthritis[J].Nat Clin Pract Rheumatol,2007,3(7):382-390.
    [2]Lin L,Kim SC,Wang Yin,et al.HSP60 in heart failure:abnormal distribution and role in cardiac myocyte apoptosis[J].Am J Physiol Heart Circ Physiol,2007,293(4):2238-2247.
    [3]Robinson MB,Tidwell JL,Gould T,et al.Extracellular Heat Shock Protein 70:A Critical Component for Motoneuron Survival[J].J Neurosci,2005,25(42):9735-9745.
    [4]Clayton A,Turkes A,Navabi H,et al.Induction of heat shock proteins in B-cell exosomes[J].J Cell Sci,2005,118(16):3631-3638.
    [5]Davies EL,Bacelar MM,Marshall M J,et al.Heat shock proteins form part of a danger signal cascade in response to lipopolysaccharide and GroEL[J].Clinical &Experimental Immunology,2006,145(1):183-189.
    [6]Pido-Lopez J,Whittall T,Wang Y,et al.Stimulation of Cell Surface CCR5 and CD40 Molecules by Their Ligands or by HSP70 Up-Regulates APOBEC3G Expression in CD4+ T Cells and Dendritic Cells[J].J Immunol,2007,178(3):1671-1679.
    [7]Theriault JR,Adachi H,Calderwood SK.Role of Scavenger Receptors in the Binding and Internalization of Heat Shock Protein 70[J].J Immunol,2006,177(12):8604-8611.
    [8]Floto RA,MacAry PA,Boname JM,et al.Dendritic Cell Stimulation by Mycobacterial Hsp70 Is Mediated Through CCR5[J]. Science,2006,314(5798):454-458.
    [9] Roelofs MF, Boelens WC, Joosten LA, et al. Identification of Small Heat Shock Protein B8 (HSP22) as a Novel TLR4 Ligand and Potential Involvement in the Pathogenesis of Rheumatoid Arthritis[J]. J Immunol, 2006,176(11):7021-7027.
    [10] de Graaf R, Kloppenburg G, Kitslaar PJ, et al. Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through Toll-like receptors 2 and 4[J]. Microbes and Infection, 2006,8(7): 859-1865.
    [11] Svensson PA, Asea A, Englund MC, et al. Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages[J].Atherosclerosis, 2006,185(1):32-38.
    [12] van Puijvelde GH, van Es T, van Wanrooij EJ, et al. Induction of Oral Tolerance to HSP60 or an HSP60-Peptide Activates T Cell Regulation and Reduces Atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2007, 27 (12):2677-2683.
    [13] Ait-Oufella H, Salomon BL, Potteaux S, et al. Natural regulatory T cells control the development of atherosclerosis in mice[J]. Nat Med, 2006, 12(2):178-180.
    [14] Yang K, Li D, Luo M, et al. Generation of HSP60-specific regulatory T cell and effect on atherosclerosis[J]. Cellular Immunology, 2006,243(2):90-95.
    [15] Zanin-Zhorov A, Nussbaum G, Franitza S, et al. T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors[J]. FASEB J, 2003,17(1):1567-1590.
    [16] Zanin-Zhorov A, Bruck R, Tal G, et al. Heat Shock Protein 60 Inhibits Th1-Mediated Hepatitis Model via Innate Regulation of Thl/Th2 Transcription Factors and Cytokines[J]. J Immunol, 2005, 174(6):3227-3236.
    [17] Zanin-Zhorov A, Cahalon L, Tal G, et al. Heat shock protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 signaling[J]. J Clin Invest,2006,116(7): 2022-2032.
    [18] Dybdahl B, Slordahl SA, Waage A, et al. Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction[J]. Heart,2005,91(3): 299-304.
    [19] Fan GC, Ren X, Qian J, et al. Novel Cardioprotective Role of a Small Heat-Shock Protein, Hsp20, Against Ischemia/Reperfusion Injury[J].Circulation,2005,111 (14): 1792-1799.
    [20] Fan GC, Yuan Q, Song G, et al. Small Heat-Shock Protein Hsp20 Attenuates {beta}-Agonist-Mediated Cardiac Remodeling Through Apoptosis Signal-Regulating Kinase 1[J]. Circ Res, 2006, 99(11): 1233-1242.
    [21] Hase M, Depre C, Vatner SF, et al. H11 has dose-dependent and dual hypertrophic and proapoptotic functions in cardiac myocytes[J]. Biochem J,2005,388(pt2):475-483.
    [22] Sakamoto M, Minamino T, Toko H, et al. Upregulation of Heat Shock Transcription Factor 1 Plays a Critical Role in Adaptive Cardiac Hypertrophy[J]. Circ Res, 2006,99(12):1411-1418.
    [23] Kampinga HH, Henning RH, van Gelder IC, et.al. Beat shock proteins and atrial fibrillation[J]. Cell Stress Chaperones, 2007, 12(2):97-100.
    [24] Yang M, Tan H, Cheng L, et al. Expression of heat shock proteins in myocardium of patients with atrial fibrillation[J]. Cell Stress Chaperones, 2007,12(2):142-150.
    [25] Sakabe M, Shiroshita-Takeshita A, Maguy A, et al. Effects of a heat-shock protein inducer on the atrial fibrillation substrate caused by acute atrial ischemia[J].Cardiovasc Res, 2008(Epub ahead of print)
    [26] Brundel BJ, Shiroshita-Takeshita A, Qi X, et al. Induction of Heat Shock Response Protects the Heart Against Atrial Fibrillation[J]. Circ Res, 2006,99(12):1394-1402.
    [27] Oki Y, McLaughlin P, Fayad LE, et al. Experience with heat shock protein-peptide complex 96 vaccine therapy in patients with indolent non-Hodgkin lymphoma[J].Cancer, 2007,109(1): 77-83.
    [28] Belke DD, Gloss B, Hollander JM, et al. In vivo gene delivery of HSP70i by adenovirus and adeno-associated virus preserves contractile function in mouse heart following ischemia-reperfusion[J]. Am J Physiol Heart Circ Physiol,2006,291(6):H2905-2910.
    [1]. Mann, D. L., and M. R. Bristow.Mechanisms and models in heart failure: the biomechanical model and beyond[J]. Circulation,2005,111(21):2937-2949.
    
    [2]. Hunt, S. A., W. T. Abraham, M. H. Chin, A. M. Feldman, G. S. Francis, T. G.Ganiats, M. Jessup, M. A. Konstam, D. M. Mancini, K. Michl, J. A. Oates, P. S.Rahko, M. A. Silver, L. W. Stevenson, C. W. Yancy, E. M. Antman, S. C. Smith,Jr., C. D. Adams, J. L. Anderson, D. P. Faxon, V. Fuster, J. L. Halperin, L. F.Hiratzka, A. K. Jacobs, R. Nishimura, J. P. Ornato, R. L. Page, and B.Riegel.ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society[J].Circulation,2005,112(12):el54-235.
    
    [3]. Kuwahara, F., H. Kai, K. Tokuda, M. Takeya, A. Takeshita, K. Egashira, and T.Imaizumi.Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation?[J]. Hypertension,2004,43(4):739-745.
    
    [4]. Wynn, T. A.Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases[J]. J Clin Invest,2O07,117(3):524-529.
    
    [5]. Lotze, M. T., H. J. Zeh, A. Rubartelli, L. J. Sparvero, A. A. Amoscato, N. R.Washburn, M. E. Devera, X. Liang, M. Tor, and T. Billiar.The grateful dead:damage-associated molecular pattern molecules and reduction/oxidation regulate immunity[J]. Immunol Rev, 2007,220(60-81.
    
    [6]. Foell, D., H. Wittkowski, and J. Roth.Mechanisms of disease: a 'DAMP' view of inflammatory arthritis[J]. Nat Clin Pract Rheumatol,2007,3(7):382-390.
    
    [7]. Lotfi, R., J. J. Lee, and M. T. Lotze.Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors[J]. J Immunother,2007,30(1):16-28.
    
    [8]. Ha, T., Y. Li, F. Hua, J. Ma, X. Gao, J. Kelley, A. Zhao, G. E. Haddad, D. L.Williams, I. William Browder, R. L. Kao, and C. Li.Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload[J]. Cardiovasc Res,2005,68(2):224-234.
    [9]. Ha, T., F. Hua, Y. Li, J. Ma, X. Gao, J. Kelley, A. Zhao, G. E. Haddad, D. L.Williams, I. W. Browder, R. L. Kao, and C. Li.Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo[J]. Am J Physiol Heart Circ Physiol,2006,290(3):H985-994.
    
    [10]. Candido, R., J. M. Forbes, M. C. Thomas, V. Thallas, R. G. Dean, W. C. Burns, C.Tikellis, R. H. Ritchie, S. M. Twigg, M. E. Cooper, and L. M. Burrell.A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes[J]. Circ Res,2003,92(7):785-792.
    
    [11]. Yu, Q., K. Horak, and D. F. Larson.Role of T lymphocytes in hypertension-induced cardiac extracellular matrix remodeling[J].Hypertension,2006,48(1)-98-104.
    
    [12]. Asea, A.Stress proteins and initiation of immune response: chaperokine activity of hsp72[J].Exerc Immunol Rev,2005,11(34-45.
    
    [13]. Vabulas, R. M., P. Ahmad-Nejad, S. Ghose, C. J. Kirschning, R. D. Issels, and H.Wagner.HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway[J].J Biol Chem,2002,277(17):15107-15112.
    
    [14]. Roelofs, M. F., W. C. Boelens, L. A. Joosten, S. Abdollahi-Roodsaz, J. Geurts, L.U. Wunderink, B. W. Schreurs, W. B. van den Berg, and T. R.Radstake.Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis[J]. J Immunol, 2006,176(11 ):7021 -7027.
    
    [15]. van Eden, W., R. van der Zee, and B. Prakken.Heat-shock proteins induce T-cell regulation of chronic inflammation[J]. Nat Rev Immunol,2005,5(4):318-330.
    
    [16]. Molvarec, A., Z. Prohaszka, B. Nagy, J. Szalay, G. Fust, I. Karadi, and J. Rigo,Jr.Association of elevated serum heat-shock protein 70 concentration with transient hypertension of pregnancy, preeclampsia and superimposed preeclampsia: a case-control study[J]. J Hum Hypertens,2006,20(10):780-786.
    
    [17]. Pockley, A. G, A. Georgiades, T. Thulin, U. de Faire, and J. Frostegard.Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension[J]. Hypertension,2003,42(3):235-238.
    
    [18]. Moiseeva, O. M., S. S. Novoselov, E. A. Liasnikova, S. Ivanov, T. G. Ivanova,and E. V. Shliakhto.[Heat shock proteins 70 kD as a new marker of lesions to target organs in hypertension][J]. Vestn Ross Akad Med Nauk,2004,2):6-9.
    
    [19]. Jin, H., W. Li, R. Yang, A. Ogasawara, H. Lu, and N. F. Paoni.Inhibitory effects of interferon-gamma on myocardialhypertrophy[J].Cytokine,2005,31(6):405-414.
    [20]. Kumar V, Abbas AK, Fausto N. Robbins basic pathology[M]. Philadelphia Pennsylvania USA: WB Saunders, 2007: 966.
    [21]. Kai, H., F. Kuwahara, K. Tokuda, and T. Imaizumi.Diastolic dysfunction in hypertensive hearts: roles of perivascular inflammation and reactive myocardial fibrosis[J]. Hypertens Res,2005,28(6):483-490.
    [22]. van Empel, V. P., and L. J. De Windt.Myocyte hypertrophy and apoptosis: a balancing act[J]. Cardiovasc Res,2004,63(3):487-499.
    [23]. Dorn, G. W., 2nd, and T. Force.Protein kinase cascades in the regulation of cardiac hypertrophy[J]. J Clin Invest,2005,115(3):527-537.
    [24]. Bueno, O. F., L. J. De Windt, K. M. Tymitz, S. A. Witt, T. R. Kimball, R.Klevitsky, T. E. Hewett, S. P. Jones, D. J. Lefer, C. F. Peng, R. N. Kitsis, and J. D.Molkentin.The MEKl-ERKl/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice[J]. Embo J,2000,19(23):6341-6350.
    [25]. Taqueti, V. R., R. N. Mitchell, and A. H. Lichtman.Protecting the pump:controlling myocardial inflammatory responses[J]. Annu Rev Physiol,2006,68(67-95.
    [26]. Tzeng, H. P., J. Fan, J. G. Vallejo, J. W. Dong, X. Chen, S. R. Houser, and D. L.Mann.Negative inotropic effects of high-mobility group box 1 protein in isolated contracting cardiac myocytes[J]. Am J Physiol Heart Circ Physiol,2008,294(3):H1490-1496.
    [27]. Huang, Y., H. Yin, J. Han, B. Huang, J. Xu, F. Zheng, Z. Tan, M. Fang, L. Rui, D.Chen, S. Wang, X. Zheng, C. Y. Wang, and F. Gong.Extracellular hmgbl functions as an innate immune-mediator implicated in murine cardiac allograft acute rejection[J]. Am J Transplant,2007,7(4):799-808.
    [28]. Schneider, M., S. Kostin, C. C. Strom, M. Aplin, S. Lyngbaek, J. Theilade, M.Grigorian, C. B. Andersen, E. Lukanidin, J. Lerche Hansen, and S. P.Sheikh.S100A4 is upregulated in injured myocardium and promotes growth and survival of cardiac myocytes[J]. Cardiovasc Res,2007,75(1):40-50.
    [29]. Shamaei-Tousi, A., A. Steptoe, K. O'Donnell, J. Palmen, J. W. Stephens, S. J.Hurel, M. Marmot, K. Homer, F. D'Aiuto, A. R. Coates, S. E. Humphries, and B.Henderson.Plasma heat shock protein 60 and cardiovascular disease risk: the role of psychosocial, genetic, and biological factors[J]. Cell Stress Chaperones,2007,12(4):384-392.
    [30]. Giannessi, D., C. Colotti, M. Maltinti, S. Del Ry, C. Prontera, S. Turchi, A. Labbate, and D. Neglia.Circulating heat shock proteins and inflammatory markers in patients with idiopathic left ventricular dysfunction: their relationships with myocardial and micro vascular impairment[J]. Cell Stress Chaperones,2007,12(3):265-274.
    [31]. Xu, Q., T. W. Fawcett, R. Udelsman, and N. J. Holbrook.Activation of heat shock transcription factor 1 in rat aorta in response to high blood pressure[J].Hypertension,l996,28(1):53-57.
    [32]. Xu, Q., D. G. Li, N. J. Holbrook, and R. Udelsman.Acute hypertension induces heat-shock protein 70 gene expression in rat aorta[J].Circulation, 1995,92{5):1223-1229.
    [33]. Osterloh, A., and M. Breloer.Heat shock proteins: linking danger and pathogen recognition[J]. Med Microbiol Immunol,2008,197{1):1-8.
    [34]. Osterloh, A., U. Kalinke, S. Weiss, B. Fleischer, and M. Breloer.Synergistic and differential modulation of immune responses by Hsp60 and lipopolysaccharide[J].J Biol Chem,2007,282(7):46694680.
    [35]. Osterloh, A., F. Meier-Stiegen, A. Veit, B. Fleischer, A. von Bonin, and M.Breloer.Lipopolysaccharide-free heat shock protein 60 activates T cells[J]. J Biol Chem, 2004,279(46):47906-47911.
    [36]. Liu, B., J. Dai, H. Zheng, D. Stoilova, S. Sun, and Z. Li.Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases[J]. Proc Natl Acad Sci U S A2003,100(26):15824-15829.
    [37]. Lin, L., S. C. Kim, Y. Wang, S. Gupta, B. Davis, S. I. Simon, G. Torre-Amione,and A. A. Knowlton.HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis[J]. Am J Physiol Heart Circ Physiol,2007,293(4):H2238-2247.
    [38]. Koike, T., S. Uno, M. Ishizawa, H. Takahashi, K. Ikeda, S. Yokota, and M.Makishima.The heat shock protein inhibitor KNK437 induces neurite outgrowth in PC12 cells[J]. Neurosci Iett,2006,410(3):212-217.
    [39]. Baljinnyam, E., N. Hasebe, M. Morihira, K. Sumitomo, T. Matsusaka, T. Fujino, J.Fukuzawa, F. Ushikubi, and K. Kikuchi.Oral pretreatment with ebselen enhances heat shock protein 72 expression and reduces myocardial infarct size[J].Hypertens Res,2006,29(11):905-913.
    [40]. Ohno, M., N. Kitabatake, and F. Tani.Functional region of mouse heat shock protein 72 for its binding to lymphoid neoplastic P388D1 cells[J]. Mol Immunol,2007,44(9):2344-2354.
    [41].Zhang,H.,and W.Huang.Fusion proteins of Hsp70 with tumor-associated antigen acting as a potent tumor vaccine and the C-terminal peptide-binding domain of Hsp70 being essential in inducing antigen-independent anti-tumor response in vivo[J].Cell Stress Chaperones,2006,11(3):216-226.
    [42].Svensson,P.A.,A.Asea,M.C.Englund,M.A.Bausero,M.Jernas,O.Wiklund,B.G.Ohlsson,L.M.Carlsson,and B.Carlsson.Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages[J].Atherosclerosis,2006,185(1):32-38.
    [43].Calderwood,S.K.,J.Theriault,P.J.Gray,and J.Gong.Cell surface receptors for molecular chaperones[J].Methods,2007,43(3):199-206.
    [44].Pockley,A.G.,M.Muthana,and S.K.Calderwood.The dual immunoregulatory roles of stress proteins[J].Trends Biochem Sci,2008,33(2):71-79.
    [45].Wynn,T.A.Cellular and molecular mechanisms of fibrosis[J].J Pathol,2008,214(2):199-210.
    [46].Kim,Y.K.,J.Suarez,Y.Hu,P.M.McDonough,C.Boer,D.J.Dix,and W.H.Dillmann.Deletion of the inducible 70-kDa heat shock protein genes in mice impairs cardiac contractile function and calcium handling associated with hypertrophy[J].Circulation,2006,113(22):2589-2597.
    [1]. Gradman, A. H., and F. Alfayoumi.From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease[J]. Prog Cardiovasc Dis,2006,48(5):326-341.
    [2]. Brown, R. D., S. K. Ambler, M. D. Mitchell, and C. S. Long.The cardiac fibroblast: therapeutic target in myocardial remodeling and failure[J]. Annu Rev Pharmacol Toxicol,2005,45(657-687.
    [3]. Ha, T., Y. Li, F. Hua, J. Ma, X. Gao, J. Kelley, A. Zhao, G. E. Haddad, D. L.Williams, I. William Browder, R. L. Kao, and C. Li.Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload[J]. Cardiovasc Res,2005,68(2):224-234.
    [4]. Ha, T., F. Hua, Y. Li, J. Ma, X. Gao, J. Kelley, A. Zhao, G. E. Haddad, D. L.Williams, I. W. Browder, R. L. Kao, and C. Li.Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo[J]. Am J Physiol Heart Circ Physiol,2006,290(3):H985-994.
    [5]. Hoffman, E. S., R. E. Smith, and R. C. Renaud, Jr.From the analyst's couch:TLR-targeted therapeutics[J]. Nat Rev Drug Discov,2005,4(11):879-880.
    [6]. van Kooyk, Y, and T. B. Geijtenbeek.DC-SIGN: escape mechanism for pathogens[J]. Nat Rev Immunol,2003,3(9):697-709.
    [7]. Harada, K., I. Komuro, I. Shiojima, D. Hayashi, S. Kudoh, T. Mizuno, K. Kijima,H. Matsubara, T. Sugaya, K. Murakami, and Y. Yazaki.Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice[J].Circulation, 1998,97( 19): 1952-1959.
    [8]. Bachmann, M. F., and M. R. Dyer.Therapeutic vaccination for chronic diseases: a new class of drugs in sight[J]. Nat Rev Drug Discov,2004,3(1):81-88.
    [9]. Ready, T.Blood pressure vaccine shot down by safety concerns[J]. Nat Med,2005,11(12):1262.
    [10]. Taqueti, V. R., R. N. Mitchell, and A. H. Lichtman.Protecting the pump:controlling myocardial inflammatory responses[J]. Annu Rev Physiol,2006,68(67-95.
    [11]. Kuwahara, F., H. Kai, K. Tokuda, M. Takeya, A. Takeshita, K. Egashira, and T.Imaizumi.Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation[J]. Hypertension,2004,43(4):739-745.
    [12]. Hoebe, K., E. Janssen, and B. Beutler.The interface between innate and adaptive immunity[J]. Nat Immunol,2004,5(10):971-974.
    [13]. Wickelgren,I.Immunology.Targetingthetolls[J]. Science,2006,312(5771): 184-187.
    [14]. Higgins, D. P., S. Hemsley, and P. J. Canfield.Association of uterine and salpingeal fibrosis with chlamydial hsp60 and hsp10 antigen-specific antibodies in Chlamydia-infected koalas[J]. Clin Diagn Lab Immunol,2005,12(5):632-639.
    [15]. Yu, Q., K. Horak, and D. F. Larson.Role of T lymphocytes in hypertension-induced cardiac extracellular matrix remodeling[J].Hypertension,2006,48(1):98-104.
    [16]. Weber, K. T.From inflammation to fibrosis: a stiff stretch of highway[J].Hypertension,2004,43(4): 716-719.
    [17]. Boyd, J. H., S. Mathur, Y. Wang, R. M. Bateman, and K. R. Walley.Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response[J]. Cardiovasc Res,2006,72(3):384-393.
    [18]. Frantz, S., L. Kobzik, Y. D. Kim, R. Fukazawa, R. Medzhitov, R. T. Lee, and R. A.Kelly.Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium[J]. J Clin Invest, 1999,104(3):271-280.
    [19]. Binck, B. W., M. F. Tsen, M. Islas, D. J. White, R. A. Schultz, M. S. Willis, J. V.Garcia, J. W. Horton, and J. A. Thomas.Bone marrow-derived cells contribute to contractile dysfunction in endotoxic shock[J]. Am J Physiol Heart Circ Physiol,2005,288(2):H577-583.
    [20]. Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica.Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes[J]. Trends Immunol,2002,23(ll):549-555.
    [21]. Misson, P., S. van den Brule, V. Barbarin, D. Lison, and F. Huaux.Markers of macrophage differentiation in experimental silicosis[J]. J Leukoc Biol,2004,76(5):926-932.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700