用户名: 密码: 验证码:
纳米二硫化钼的制备及其理化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MoS_2作为窄带隙p型半导体材料在光电转换以及催化等领域具有重要的应用前景。其低维纳米结构的可控制备,正受到人们的高度关注,已成为纳米材料科学与技术领域的研究热点之一。本论文主要对在n型硅基底表面生长Ⅱ型MoS_2薄膜制成异质结,MoS_2纳米球花以及碳纤维表面包覆纳米SnO2(CFs/SnO2)的制备规律,及其电学、光学性质进行研究,获得了一些有意义的成果。
     首次在n型硅基底上以化学镀的Ni为MoS_2生长诱导层,利用化学池沉积法得到较好晶形的Ⅱ型MoS_2膜并制备出Ⅱ-MoS_2/Si(n)异质pn结。系统的研究了反应浓度,退火温度,退火时间,以及Ni诱导层对Ⅱ型MoS_2晶体生长的影响,并提出其生长机制。MoS_2薄膜的禁带宽度约为1.87eV。Ⅱ-MoS_2/Si(n)显示出优良的pn结特性。
     通过水热法合成出MoS_2纳米球花。调整前躯物浓度,反应温度,陈化时间,退火温度以及离子添加剂实现了对其形貌的的调控,并揭示其演化规律。研究了MoS_2纳米球花的紫外-可见光吸收特性以及热稳定性。
     利用低温液相沉淀法制备出核壳结构的CFs/SnO2复合材料,通过改变前驱物浓度实现了对壳层厚度的调控。研究了该复合材料的光致发光机制。
Layered type materials are known to have very anisotropic physical properties, for which MX2 films with type-II texture and crystallites are in extensive study for their potential in photovoltaic cells. Therefore, in this thesis, combining former work with innovation, type-II MoS_2 film was prepared by chemical bath deposition using a thin interlayer of Ni, which is deposited electrolessly on Si substrate. After that, work was carried out on their properties. Besides, MoS_2 also has potential in the filed of catalysis. MoS_2 with different morphologies have been prepared in this thesis to meet different commands. The as-obtained interesting results were listed as follows:
     Firstly, using a thin interlayer of Ni, which is deposited electrolessly, type-II MoS_2 film was prepared by chemical bath deposition on Si substrate. Effects of concentration of precursor, annealing temperature, annealing period, and the interlayer of Ni on the crystal growth were studied. By adjusting various parameters (concentration of precursor, annealing temperature, and annealing period) in the experiment, type-II MoS_2 film composed of hexagonal crystallite with the c axis of the crystallites perpendicular to the substrate was obtained. Best film was obtained after annealing at 850℃for 30min with 10-4M ammonium molybdate as precursor. Comparing with the MoS_2 film prepared without Ni interlayer, which has no definite orientation, mechanism was developed with emphasis on the growth of 2H-MoS_2 crystallites with the c axis of the crystallites perpendicular to the substrate. While the MoS_2 are growing in the annealing process, sulfur diffuses along the MoS_2 grains and reacts with the Ni layer. During this process, the Ni layer becomes more and more S-rich which continuously lower the melting point from 1453℃to eutectic point at 635℃. At temperature higher than 800℃, a liquid nickel sulfide film is formed that may act as a flux and thereby provides the film growth in the [0 0 2] direction, which is similar to the so-called surfactant-mediated expitay.
     Moreover, the observation of the A and B excitons in the reflective spectra is a clear evidence of the good crystalline quality of the films. The band gap optical reflection edge of MoS_2 is 665 nm, indicating the band gap of 1.87eV, which is well fitted to the solar spectrum, making possible the use of relatively inexpensive thin film technologies. The film could in principle be incorporated as the active electrode of photoelectrochemical solar cells. The film indicates carrier concentration of 2.49×1019 and corresponding mobility of 0.2502, respectively. In addition, effects of operating temperature and the crystallite on the I-V characteristics of p-MoS_2/n-Si diode were also studied, which shows characteristic of reverse tunneling diode. The p-n junction keeps a good characteristic of tunneling diodes even when the operating temperature was very low.
     The film has important potential in the electric field. Besides, the as-obtained type-II MoS_2 film may be suitable to be used as state lubricant for low resistance to the shear.
     Secondly, MoS_2 with different morphologies have been prepared by hydrothermal synthesis through modulating aging time, concentration of precursor, hydrothermal temperature and the ion additives in the process of hydrothermal synthesis, which may be explained from the point of growth dynamics. The as-obtained samples are MoS_2 particles and become spherical with aging time prolonging. Much longer aging time leads to formation of flower-like particles with size ranging from about 100 nm to 1μm, which are composed of nanopetals intercrossing with each other. That is, the morphology can be easily controlled by adjusting the aging period. Flower-like MoS_2 was obtained when hydrothermal temperature was above 180℃at hydrothermal period more than 1h with 10-4M ammonium molybdate as precursor. The as-obtained flower-like MoS_2 has strong absorption in the near UV range, which is much stronger and has obvious red shift comparing with the particles prepared without hydrothermal condition. In addition, comparing with the IF and 2H-MoS_2, the thermal analysis showed that MoS_2 of this structure exhibits a lower onset oxidation temperature.
     Comparing the morphology without additives, influence of Cl- on the morphology of the flower-like MoS_2 can be explained as follows: In the process of hydrothermal synthesis, salt-assisted additives, such as NH4Cl or NaCl may prevent their growth to some extent and thus helping to yield nanosized products. That is, Cl- has an important effect on the morphology of flower-like MoS_2.
     In addition, CFs/SnO2 core-shell material was synthesized via a surface modification precipitation process in aqueous solution at low temperature. The structure, morphology and optical properties of composites were investigated. The precursor was also SnO2 before annealing and the crystalline quality improved with annealing temperature increasing. Effects of concentration of SnCl2 on the coating were investigated and best coating of CFs/SnO2 core-shell structure was obtained with 0.05M SnCl2. A surface reaction and nucleation model is proposed for the growth of this structure. The energy band gap of SnO2 calculated from the absorption spectra was about 3.90 eV. Photoluminescence (PL) spectra of the samples showed that the visible emission band with peak at 583nm had an obvious red-shift compared to the standard SnO2 powders prepared under the same experimental conditions. Moreover, combined the PL spectrum with results from Raman study of samples, the yellow emission in PL spectrum may be attributed to the crystal defects and residual strains. What’s more, the SnO2 coating can protect the CFs from oxidation at a relatively high temperature, indicating that the CFs/MoS_2 core-shell structure may have potential in the field of sensors, catalysts, Li ion battery and other areas in much lager temperature range.
     In conclusion, this thesis provided easy way to synthesis MoS_2 of different form and the reaction process are easy to control. Type-ⅡMoS_2 film composed of hexagonal crystallite with the c axis of the crystallites perpendicular to the Si substrate was obtained with an easy method, and the p-MoS_2/n-Si diode keeps a good characteristic of reverse diodes down to very low temperature, which may find potential in the electric field. In addition, MoS_2 with different morphologies may have potential in the field of catalysts and other areas.
引文
[1] 本刊编辑部,纳米材料及其应用,中国涂料,2001,1(48).
    [2] D.D. Awschalom, D.P. Divincenzo, J.F. Smyth, Macroscopic quantum effects in nanometer-scale magnets, Science, 1992, 258 (5081): 414-421.
    [3] A.D. Kent, S.V. Molnar, S. Gider, and D.D. Awschalom, Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays, J. Appl. Phys. 1994, 76(10): 6656-6660.
    [4] 张庆德,纳米材料的主要应用领域,科技经济市场,2001,104: 30-31
    [5] E. Benavente, M.A. Santa Ana, et al, Intercalation chemistry of molybdenum disulfide,Coordin. Chem. Rev., 2002, 224:87-109
    [6] P.D. Fleischauer, J.R. Lince, P. A. Bertrand, R.Bauer, Electronic Structure and Lubrication Properties of MoS_2: A Qualitative Molecular Orbital Approach, Langmuir 1989, 5:1009-1015.
    [7] S.V. Prasad, N.T. McDevitt, J.S. Zabinski, Tribology of tungsten disulfide films in humid environments: The role of a tailored metal-matrix composite substrate,Wear,1999,230:24–34
    [8] S.R. Cohen, L. Rapoport, E.A. Ponomarev, H. Cohen, T. Tsirlina, R. Tenne, C.L. Clement, The tribological behavior of type II textured MX2 (M=Mo, W; X=S, Se) films,Thin solid films,1998,324:190–197
    [9] 西村允. 固体润滑, 1987, 7(1):47-54
    [10] M. Homyonfer, B. Alperson, et al, Intercalation of Inorganic Fullerene-like Structures Yields Photosensitive Films and New Tips for Scanning Probe Microscopy,J. Am. Chem. Soc. 1997, 119:2693-2698.
    [11] L. Cizaire, B. Vacher, T. Le Mogne, J. M. Martin, L. Rapoport, A. Margolin, R.Tenne, Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS_2 nanoparticles,Surf. Coat. Tech., 2002, 160:282–287
    [12] M. M. Mdleni, T. Hyeon, K. S. Suslick, Sonochemical Synthesis of Nanostructured Molybdenum Sulfide, J. Am. Chem. Soc. 1998, 120:6189-6190.
    [13] N. M. Renevier, J. Hamphire, V. C. Fox, J. Witts, T. Allen, D. G. Teer, Advantages of using self-lubricating, hard, wear-resistant MoS_2-based coatings, Surf. Coat. Tech., 2001, 142-144:67-77
    [14] J. Chen, N. Kuriyama, et al, Electrochemical Hydrogen Storage in MoS_2 Nanotubes,J. Am. Chem. Soc. 2001, 123:11813-11814.
    [15] F. P. Bowden, D. Tabor, The Friction and Lubrication of Solids, Part II, Oxford Univ. Press, London, 1964.
    [16] B. Bhushan, B. K. Gupta, Handbook of Tribology, McGraw-Hill, New York, 1991.
    [17] K.B. Miremadi, K. Colbow, S. R. Morrison, A molybdenum disulfide magnetic solid lubricant for ferromagnetic surfaces,J. Appl. Phys. 1997, 82:2636-2639.
    [18] M. H. Zhu, Z. R. Zhou, An investigation of molybdenum disulfide bonded solid lubricant coatings in fretting conditions,Surf. Coat. Tech.,2001,141:240-245
    [19] A. J. Stock, Lubr. Eng. 1966, 22:146–152
    [20] R. C. Rosenberg, W. E. Campbell, Lubr. Eng. 1968, 24:92–98
    [21] A. L. Black, R. W. Dunster, J. V. Sanders, Comparative study of surface deposits and behaviour of MoS_2 particles and molybdenum dialkyl-dithio-phosphate,Wear, 1969, 13:119–132.
    [22] J. Gansheimerand, R. Holinsky, A study of solid lubricants in oils and greases under boundary conditions,Wear, 1972, 19:439–449.
    [23] J. Gansheimer, R. Holinski, Trans. ASME, J. Lubr. Tech. 1973, 95:242–248
    [24] R. Holinski, ASLE Trans. 1975, 18:263–269
    [25] B. ?u?tari?, L. Kosec, M. Jenko, V. Leskov?ek, Vacuum sintering of water-atomised HSS powders with MoS_2 additions,Vacuum, 2001, 61:47-477.
    [26] L. Rapoport, Y. Feldman, M. Homyonfer, H. Cohen, J. Sloan, J.L. Hutchison, R. Tenne, Inorganic fullerene-like material as additives to lubricants structure–function relationship,Wear, 1999, 225–229:975–982.
    [27] J. J. Rissdon, NLGL Spokesman, 1986, 50(6) :211~214.
    [28] R. L. Johnson, NLGL Spokesman, 1988, 52(8) :298~305.
    [29] M. Chhowalla, G. A. J. Amaratunga, Nature,2000,407:164; 沃恒洲, 胡坤宏, 胡献国, 纳米二硫化钼作为机械油添加剂的摩擦学特性研究,摩擦学学报, 2004, 24:33-37
    [30] C.G. Wiegenstein, Kirk H. Schulz, Methanethiol Adsorption on Defective MoS_2 (0001) Surfaces,J. Phys. Chem. B, 1999, 103:6913-6918
    [31] B. K. Miremadi, R. C. Singh, S. R. Morrison, K. Colbow, Appl. Phys. A, 1996, 63:271.
    [32] G. A. Camacho-Bragado, J. L. Elechiguerra, A. Olivas, S. Fuentes, D. Galvan and M. Jose Yacaman, Structure and catalytic properties of nanostructured molybdenum sulfides,J. Catal., 2005, 234:182-190.
    [33] I. Bezverkhyy, P. Afanasiev, M. Lacroix, J.Catal. 2005, 230:133-139.
    [34] S. Yamada, A.Yano, M. Sato, T. Itoh, Effect of “topotactic” reduction product of molybdenum disulfide on catalytic activity of metallocene catalyst for olefin polymerization,J. Mol. Catal. A: Chemical, 2003, 200:239–249
    [35] I. Bezverkhyy, P. Afanasiev, M. Lacroix, Promotion of highly loaded MoS_2-Al2O3 hydrodesulfurization catalysts prepared in aqueous solution,J.Catal. 2005, 230:133–139.
    [36] G.A.C. Bragado, J.L. Elechiguerra, A. Olivas, S. Fuentes, D. Galvan, M. Jose Yacaman, Structure and catalytic properties of nanostructured molybdenum sulfides,J.Catal., 2005, 234:182–190.
    [37] P. C. H. Mitchell, D. A. Green, E. Payen, C. A. Scott, Magn. Reson. Chem. 2000, 38:S43–S48
    [38] M. S. Wittingham, R. R. Chianelli, J. Chem. Ed.1980, 57:569.
    [39] T. A. Pecoraro, R. R. Chianelli, Hydrodesulfurization catalysis by transition metal sulfides,J. Catal. 1981, 67:430.
    [40] J. Valyon, W. K. Hall, The chemisorption of O and NO on reduced and sulfided molybdena-alumina catalysts2,J. Catal.1983, 84:216.
    [41] J. T. Richardson, Electronic properties of unsupported cobalt-promoted molybdenum sulfide,J. Catal. 1983, 112:313.
    [42] J. Valyon, R. J. Schneiden, W. K. Hall, Site selective chemisorption on sulfided molybdena-alumina catalysts,J. Catal. 1984, 85:277.
    [43] K. Ramanathan, S.W. Weller, Characterization of tungsten sulfide catalysts,J. Catal. 1985, 95:249.
    [44] E. G. Derouane, E. Pedersen, B. S. Clausen, Z. Gabelica, R. Candia, H. Topsoe, EPR studies on unsupported and alumina-supported sulfided Co---Mo hydrodesulfurization catalysts,J. Catal. 1986, 99:253.
    [45] A. Sobczynski, Molybdenum disulfide as a hydrogen evolution catalyst for water photodecomposition on semiconductors,J. Catal. 1991, 131:156.
    [46] J. Grimblot, Genesis, architecture and nature of sites of Co (Ni) ±MoS_2 supported hydroprocessing catalysts,Catal. Today, 1998, 41:111.
    [47] L. S. Byskov, J. K. Norskov, B.S. Clausen, H. Topsoe, DFT Calculations of Unpromoted and Promoted MoS_2-Based Hydrodesulfurization Catalysts,J. Catal.1999, 187:109-122
    [48] J. Brenner, C. L. Marshall, L. Ellis, N. Tomczyk, J. Heising, M. Kanatzidis, Microstructural Characterization of Highly HDS-Active Co6S8-Pillared Molybdenum Sulfides ,Chem. Mater. 1998, 10:1244–1257
    [49] K. E. Dungey, M. D. Curtis, E. Penner-Hahn James, Structural Characterization and Thermal Stability of MoS_2 Intercalation Compounds,Chem. Mater. 1998, 10: 2152–2161.
    [50] K.E. Dungey, M.D. Curtis, E.P. Hahn James, Behavior of MoS_2Intercalation Compounds in HDS Catalysis,J. Catal. 1998, 175:129–134
    [51] 张文钲, 纳米级二硫化钼的研发现状,中国钼业, 2000, 24:23-26
    [52] N. M. Renevier, N. Lobiondo, V. C. Fox, D. G. Teer, J. Hampshire, Performance of MoS_2/metal composite coatings used for dry machining and other industrial applications,Surf. Coat. Tech., 2000, 123: 84–91.
    [53] A. Savan, E. Pfluger, R. Goller, W. Gissler, Use of nanoscaled multilayer and compound films to realize a soft lubrication phase within a hard, wear-resistant matrix,Surf. Coat. Tech., 2000, 126:159-165
    [54] D.Y. Wang, C.L. Chang, Z.Y. Chen, W.Y. Ho, Microstructural and tribological characterization of MoS_2–Ti composite solid lubricating films,Surf. Coat. Tech., 1999, 120–121:629–635
    [55] K. J. Wahl, D. N. Dunn, I. L. Singer, Effects of ion implantation on microstructure, endurance and wear behavior of IBAD MoS_2,Wear, 2000, 237:1–11.
    [56] D.G. Teer, New solid lubricant coatings,Wear, 2001, 251:1068–1074.
    [57] T.P. Yukhno, Y.V. Vvedensky, L.N. Sentyurikhina, Low temperature investigations on frictional behaviour and wear resistance of solid lubricantcoatings, Tribology International, 2001, 34:293–298.
    [58] N. M. Renevier, V. C. Fox, D. G. Teer, J. Hampshire, Coating characteristics and tribological properties of sputter-deposited MoS rmetal composite coatings deposited by closed field unbalanced magnetron sputter ion plating,Surf. Coat. Tech., 2000, 127:24-37
    [59] V. Rigato, G. Maggioni, A. Patelli, D. Boscarino, N. M. Renevier, D. G. Teer, Properties of sputter-deposited MoS_2 rmetal composite coatings deposited by closed field unbalanced magnetron sputter ion plating,Surf. Coat. Tech., 2000, 131:206-210
    [60] P.D. Fleischauer, J.R. Lince, A comparison of oxidation and oxygen substitution in MoS_2 solid film lubricants,Tribol. Int., 1999, 32:627–636
    [61] K.J. Ma, C.L. Chao, D.S. Liu, Y.T. Chen, M.B. Shieh, Friction and wear behaviour of TiN/Au, TiN/MoS_2 and TiN/TiCN/a-C:H coatings,J. Mater. Processing Tech., 2002, 127:182–186.
    [62] S.K. Kim, Y.H. Ahn , K.H. Kim, MoS -Ti composite coatings on tool steel by d.c. magnetron sputtering,Surf. Coat. Tech. 2003, 169-170:428–432
    [63] J. Xu, M.H. Zhu, Z.R. Zhou, P. Kapsa, L. Vincent, An investigation on fretting wear life of bonded MoS_2 solid lubricant coatings in complex conditions,Wear, 2003, 255:253–258.
    [64] E. Arslan, F. Bülbül, A. Alsaran, A. Celik, I. Efeoglu, The effect of deposition parameters and Ti content on structural and wear properties of MoS_2 Ti coatings,Wear, 2005, 259:814–819.
    [65] E. Gourmelon, J. C. Bernède, J. Pouzet, S. Marsillac, Textured MoS_2 thin films obtained on tungsten: Electrical properties of the W/MoS_2 contact,J. Appl. Phys., 2000, 87:1182-1186.
    [66] A. Savana, E. Pflügera, R. Gollerb, W. Gissler, Use of nanoscaled multilayer and compound films to realize a soft lubrication phase within a hard, wear-resistant matrix,Surf. Coat. Tech., 2000, 126:159-165
    [67] H. Wang, B. Xu, J. Liu, D. Zhuang, Characterization and anti-friction on the solid lubrication MoS_2 film prepared by chemical reaction technique,Sci. Tech. Adv. Mater., 2005, 6:535–539.
    [68] 涂江平, 含无机类富勒烯(IF)过渡族金属硫化物纳米复合涂层的环境摩擦磨损特性,机 械 工 程 学 报,2007,43(1):47-82
    [69] H. Tributsch, J.C. Bennett, J. Electroanal. Chem. 1977,81:97
    [70] J. Baglio, C. Calabrese, E. Kamieniecki, R. Kershaw, C. Kubiak, A. Ricco, A. Wold, M. Wrighton, G. Zoski, J. Electrochem. Soc. 1982,129:1461
    [71] Y. Santiago, C.R. Cabrera, J. Electrochem. Soc. 1994,141:629
    [72] K.S. Lemon, G. Jakovidis, A. Singh, E.H. Taheri, Production of large scale polycrystalline MoS_2 films, phys.stat.sol.(a) 2000,179:329
    [73] S.R. Cohen, L. Rapoport, E.A. Ponomarev, H. Cohen, T. Tsirlina, R. Tenne, C.L. Clement, The tribological behavior of type II textured MX2 (M=Mo, W; X=S, Se) films,Thin solid films 1998,324:190–197.
    [74] S.B. Sadale, P.S. Pati, Synthesis of type-I textured tungsten disulfide thin films on quartz substrate,J. Cryst. Growth 2006,286:481–486
    [75] N. Barreau, J.C. Bernede,MoS_2 textured films grown on glass substrates through sodium sulfide based compounds,J. Phys. D: Appl. Phys. 2002,35: 1197–1204
    [76] E. Galun, H. Cohen, L. Margulis, A. Vilan, T. Tsirlina, G. Hodes, R. Tenne, Crystallization of layered metal-dichalcogenides films on amorphous substrates, Appl. Phys. Lett. 1995,67 (23):3474
    [77]O. Lignier, G. Couturier, J. Salardenne, Growth mechanism of 2H-WS thin films: a similar process to graphitization2,Thin Solid Films 1999,338: 75–80.,
    [78] P. Roy, S.K. Srivastava, Chemical bath deposition of MoS thin film using ammonium tetrathiomolybdate as a single source for molybdenum and sulphur2,Thin Solid Films 2006,496 (293) :298
    [79] W.J. Li, E.W. Shi, J.M. Ko, Z.Z. Chen, H. Ogino, T. Fukuda, Hydrothermal synthesis of MoS_2 nanowires,J. Cryst. Growth 2003;250:418–422
    [80] Q. Li, J.T. Newberg, E.C. Walter, J.C. Hemminger, R.M. Penne , Polycrystalline Molybdenum Disulfide (2H-MoS_2) Nano- and icroribbons by Electrochemical/Chemical Synthesis,Nano Lett., 2004,4(2) :277
    [81] K.P. Loh, H. Zhang, W.Z. Chen, W. Ji,Templated Deposition of MoS_2 Nanotubules Using Single Source Precursor and Studies of Their Optical Limiting Properties,J. Phys. Chem. B 2006, 110:1235-1239
    [82] I. Uzcanga, I. Bezverkhyy, P. Afanasiev, C. Scott, M. Vrinat, Sonochemical Preparation of MoS_2 in Aqueous Solution: Replication of the Cavitation Bubbles in an Inorganic Material Morphology,Chem. Mater. 2005,17(14):3575
    [83] S.E. Skrabalak, K. S. Suslick,Porous MoS_2 Synthesized by Ultrasonic Spray Pyrolysis, J. Am. Chem. Soc. 2005, 127:9990-9991
    [84] X.L. Li, J.P. Ge, Y.D. Li,Atmospheric Pressure Chemical Vapor Deposition: An Alternative Route to Large-Scale MoS_2 and WS2 Inorganic Fullerene-like Nanostructures and Nanoflowers,Chem. Eur. J. 2004, 10:6163 – 6171]
    [85] Q. Wang, J.H. Li, Facilitated Lithium Storage in MoS_2 Overlayers Supported on Coaxial Carbon Nanotubes,J. Phys. Chem. C 2007, 111, 1675-1682
    [86] 单继宏, 宁桂玲, 林源, MoS_2的润滑应用及新的合成技术,化工科技, 2002, 10(3):42-45
    [87] L. Margulis, G. Salitra, R. Tenne, Nature, 1993, 365:113-114;Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, Science, 1995, 267:222-225; Y. Feldman, V. Lyakhovitskaya, R. Tenne, Kinetics of Nested Inorganic Fullerene-like Nanoparticle Formation, J. Am. Chem. Soc. 1998, 120:4176-4183; A. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, R. Tenne, Growth Mechanism of MoS_2 Fullerene-like Nanoparticles by Gas-Phase Synthesis, J. Am. Chem. Soc. 2000, 122:11108-11116; Y. Feldman, A. Zak, R. Tenne, et al, New reactor for production of tungsten disulfide hollow onion-like (inorganic fullerene-like) nanoparticles,Solid State Sciences, 2000, 2:663; L. Cizaire, B. Vacher, T. Le Mogne, J.M. Martin, L. Rapoport, A. Margolin, R. Tenne, Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS_2 nanoparticles,Surf. Coat. Tech., 2002, 160:282-287
    [88] I. Endler, A. Leonhardt, U. Konig, H.V. Berg, W. Pitschke, V. Sottke,Chemical vapour deposition of MoS_2 coatings using the precursors MoCl5 and H2S,Surf. Coat. Techn. 1999,120–121:482–488
    [89] M. Nath, A. Govindaraj, C. N. R. Rao,Simple Synthesis of MoS_2 and WS2 Nanotubes, Adv. Mater. 2001, 13(4):283-286
    [90] X.L. Li, J.P. Ge, Y.D. Li, Atmospheric Pressure Chemical Vapor Deposition: An Alternative Route to Large-Scale MoS_2 and WS2 Inorganic Fullerene-like Nanostructures and Nanoflowers, Chem. Eur. J. 2004, 10:6163 – 6171
    [91] Z.J. Zhang, J. Zhang, Q.J. Xue, Synthesis and Characterization of a Molybdenum Disulfide Nanocluster,J. Phys. Chem. 1994, 98:12973
    [92] I. Bezverkhy, P. Afanasiev, M. Lacroix, Aqueous Preparation of Highly Dispersed Molybdenum Sulfide,Inorg. Chem. 2000, 39:5416-5417
    [93] D. Duphil, S. Bastide, C. Lévy-Clément, J. Mater. Chem. 2002, 12:2430-2432
    [94] 宋旭春, 徐铸德, 陈卫祥, 郑遗凡, 韩贵, 无机类富勒烯MoS_2纳米材料的制备与表征,化学物理学报, 2004, 17:630
    [95] M.W. Juzkowt, I.D. Cay, Decomposition of tetrahydrofuran on molybdenum disulfide and lithium molybdenum sulfide (LixMoS_2),J. Phys.Chem.1991, 95:9911-9914.
    [96] H.W. Wang, P. Skeldon, G.E. Thompson, Thermogravimetric–differential thermal analysis of the solid-state decomposition of ammonium tetrathiomolybdate during heating in argon,J. Mater. Sci. 1998, 33(12):3079-3083.
    [97] S. C. Ray, Structure and optical properties of molybdenum disulphide (MoS_2) thin film deposited by the dip technique,J. Mater. Sci. Let. 2000, 19:803-804
    [98] W. K. Hsu, B.H. Chang, Y.Q. Zhu, W.Q. Han, H. Terrones, M. Terrones, N. Grobert, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, An Alternative Route to Molybdenum Disulfide Nanotubes,J. Am. Chem. Soc. 2000, 122:10155-10158.
    [99] Q. Li, J.T. Newberg, E.C. Walter, J.C. Hemminger, R. M. Penner, Polycrystalline Molybdenum Disulfide (2H-MoS_2) Nano- and Microribbons by Electrochemical-Chemical Synthesis,Nano Lett., 2004, 4:277-281.
    [100] Q. Li, E.C. Walter, W.E. vanderVeer, B. J. Murray, J. T. Newberg, E. W. Bohannan, J. A. Switzer, J. C. Hemminger, R.M. Penner, Molybdenum Disulfide Nanowires and Nanoribbons by Electrochemical-Chemical Synthesis,J. Phys. Chem. B 2005, 109:3169-3182.
    [101] S. C. Ray, M. K. Karanjai, D. Gupta, Tin dioxide based transparent semiconducting films deposited by the dip-coating technique, Surf Coat. Tech., 1998, 102:73-80
    [102] C.L. Clement, E. A. Ponomarev, M. Neumann-Spallart, et al., Electrochemical deposition of MoS_2 thin films by reduction of,Thin Solid Films, 1996, 280:86-89.
    [103] C.M. Zelenski, P.K. Dorhout, Template Synthesis of Near-Monodisperse1 Microscale Nanofibers,J. Am. Chem. Soc. 1998, 120:734-742.
    [104] X. Bokhimi, J. A. Toledo, J. Navarrete, X. C. Sun, M. Portilla, Intern. J. Hydrogen, Energ., 2001, 26:1271–1277.
    [105] Y.J. Xiong, Y. Xie, Z.Q. Li, X.X. Li, R. Zhang, Micelle-assisted fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres,Chem. Phys. Lett., 2003, 382:180–185.
    [106] W.J. Li, E.W. Shi, J.M. Ko, Z.Z. Chen, H. Ogino, T. Fukuda, Hydrothermal synthesis of MoS_2 nanowires,J. Cryst. Growth, 2003, 250:418–422
    [107] Y. Tian, Y. He, Y.F. Zhu, Low temperature synthesis and characterization of molybdenum disulfide nanotubes and nanorods,Mater. Chem. Phys., 2004, 87:87–90
    [108] B.A. Vanchura, P.G. He, V. Antochshuk, M. Jaroniec, A. Ferryman, D. Barbash, Julia E. Fulghum, S.P. D. Huang, Direct Synthesis of Mesostructured Lamellar Molybdenum Disulfides Using a Molten Neutral n-Alkylamine as the Solvent and Template,J. Am. Chem. Soc. 2002, 124:12090-12091.
    [109] J.H. Zhan, Z.D. Zhang, X.F. Qian, C. Wang, Y. Xie, Y. T. Qian, Solvothermal Synthesis of Nanocrystalline MoS_2 from MoO3 and Elemental sulfur,J Solid State Chem. 1998, 141:270–273
    [110] Y.Y. Peng, Z.Y. Meng, C. Zhong, J. Lu, Z.P. Yang , Y.T. Qian, Tube- and ball-like amorphous MoS_2 prepared by a solvothermal method,Mater. Chem. Phys., 2002, 73:327–329
    [111] M.A. Py, R.R. Haering, Can. J. Phys, 1983, 61:76
    [112] K. Chrissafis, M. Zamani, K. Kambas, J. Stoemenos, N. A. Economou, Structural studies of MoS 2 intercalated by lithium,Mater. Sci. Eng. B, 1989, 3:145
    [113] W.M.R. Divigalpitiya, R.F. Frindt, S.R. Morrison, Science, 1989, 246:369.
    [114] E. R.Hitzky, R. Jiménez, B. Casal, V. Manríquez, M. A. Santa Ana, G.González, PEO intercalation in layered chalcogenides ,Adv. Mater. 1993, 5:738.
    [115] G. González, M. A. Santa Ana, E. Benavente, J. P. Donoso, T. J. Bonagamba, N.C. Mello, H. Panepucci, Electrical conductivity and lithium diffusion in molybdenum disulfide intercalated with poly(ethylene oxide),Solid State Ionics, 1996, 8:225.
    [116] G. González, M. A.S. Ana, E. Benavente, Lithium chemical diffusion coefficients in poly(ethylene oxide)-molybdenum sulfide nanocomposites,J. Phys. Chem. Solids 1997, 58:1457.
    [117] J.P.Lemmon,M.M. Lerner, Preparation and Characterization of Nanocomposites of Polyethers and Molybdenum Disulfide,Chem. Mater. 1994, 6:207.
    [118] A. S. Golub, G. A. Protsenko, L. M. Gumileva, et al, Russian Chemical Bulletin, 1993, 42:632-634.
    [119] S. R. Morrison, R. F. Frindt, et al, US. Pat. 4822590, 1989
    [120] J. Heising, M.G. Kanatzidis, Exfoliated and Restacked MoS_2 and WS2- Ionic or Neutral Species,J. Am. Chem. Soc. 1999, 121:11720-11732
    [121] N. Mirabal, V. Lavayen, E. Benavente, M.A.S. Ana, G. González, Synthesis, functionalization, and properties of intercalation compounds,Microelectron. J., 2004, 35:37–40
    [122] V. Alexiev, H.M.Altenschildesche, R. Prins, and Th. Weber, Solid-State NMR Study of Hydrated Intercalation Compounds of Molybdenum Disulfide,Chem. Mater. 1999, 11:1742-1746
    [123] A.C. Bloise, J.P. Donoso, et al, NMR Study of Lithium Dynamics and Molecular Motions in a Diethylamine-Molybdenum,J. Phys. Chem. B 2002, 106: 11698-11707.
    [124] R. B. Somoano, V. Hadek, A. Rembaum, Alkali metal intercalates of molybdenum disulfide,J. Chem. Phys. 1973, 58:697-701.
    [125] A. S. Golub, N. D. Lenenko, Y.V. Zubavichus, et al, Phys. Solid State, 2002, 44:427-428.
    [126] A.S. Golub, I.B. Shumilova, Y.V. Zubavichus, Y.L. Slovokhotov, Y.N. Novikov, A.M. Marie, M. Danot, From single-layer dispersions of molybdenum disulfide towards ternary metal sulfides- incorporating copper and silver into a MoS_2 matrix,Solid State Ionics 1999, 122:137–144.
    [127] M. Danot, M. I. Afanasov, P. B. Fabritchnyi, A. S. Golub, N. D. Lenenko, et al, Mossbauer evidence for fast electron hopping between Fe(II) and Fe(III) in iron hydroxide-molybdenum disulfide lamellar nanocomposite,Solid State Ionics, 2000, 128:211–216.
    [128] A. S. Golub, Y.V. Zubavichus, Y. L. Slovokhotov, Y.N. Novikov, M. Danot, Layered compounds assembled from molybdenum disulfide single-layers and alkylammonium cations,Solid State Ionics, 2000, 128:151–160.
    [129] R. Bissessur, K.Y. Peter Liu, Direct insertion of polypyrrole into molybdenum disulfide,Solid State Ionics, 2006,177(1-2):191-196
    [130] A.S. Golub, I.B. Shumilova, Y.N. Novikov, J.L. Mansot, M. Danot, Phenanthroline intercalation into molybdenum disulfide,Solid State Ionics, 1996, 91: 307-314.
    [131] M.G. Kanatzidis, R. Bissesur, D.C. DeGroot, J.L. Schindler,C.R. Kannewutf, New Intercalation Compounds of Conjugated Polymers. Encapsulation of Polyaniline in MoS_2,Chem. Mater. 1993, 5:595.
    [132] S. Nakagaki, A. S. Mangrich, F. Wypych, A cationic iron(III) porphyrin encapsulated between the layered structure of MoS_2. A new approach to the synthesis of an Fe---Mo---S system,Inorganica Chimica Acta, 1997, 254:213-217
    [133] N. Mirabal, P. Aguirre, M. A. S.Ana, E. Benavente, G. González, Thermal stability and electrical conductivity in polyethers-molybdenum disulfide nanocomposites,Electrochimica Acta, 2003, 48:2123-2127.
    [134] E. Benavente, M. A.S. Ana, G. González , F.B. Guedes, N. C. Mello, H.C. Panepucci, T.J. Bonagamba, J.P. Donoso, Lithium-induced self-assembling of poly(ethylene oxide) intercalated in molybdenum disulfide,Electrochimica Acta 2003, 48:1997-2002.
    [135] R. Bissessur, W. White, Novel alkyl substituted polyanilines-molybdenum disulfide nanocomposites,Mater. Chem. Phys., 2006, 99:214-219
    [136] L. Kosidowski, A.V. Powell, Chem. Commun. 1998, 20:2201-2202
    [137] A.V. Powell, L. Kosidowski, A. Dowall, J. Mater. Chem., 2001, 4:1086-1091
    [138] M. A. S.Ana, E. Benavente, J. Paeza, et al, Chilena de Quimica, 2000, 45: 491-498.
    [139] Y. V. Zubavichus, A. S. Golub, N. D. Lenenko, et al, Distortion of MoS_2 host layers in intercalation compounds with various guest species correlation with charge transfer,J. Mol. Catal. A: Chem., 2000, 158:231–236.
    [140] X. Rocquefelte, F. Boucher, P. Gressier, et al. Mo cluster formation in the intercalation compound,Phys. Rev., 2000, 62(4):2397-2400.
    [141] J. Heising, M.G. Kanatzidis, Exfoliated and Restacked MoS_2 and WS2: Ionic or Neutral Species? Encapsulation and Ordering of Hard Electropositive Cations,J. Am. Chem. Soc, 1999, 121:11720-11732
    [142] V. Sánchez, E. Benavente,High Electronic Conductivity Molybdenum Disulfide-Dialkylamine Nanocomposites,Chem. Mater. 1999, 11:2296-2298.
    [143] K.S.Suslick, T. Hyeon, M.Fang, Nanostructured Materials Generated by High-Intensity Ultrasound: Sonochemical Synthesis and Catalytic Studies,Chem.Mater. 1996, 8:2172.
    [144] N.A.Dhas, Y.Koltypin, A.Gedanken, Sonochemical Preparation and Characterization of Ultrafine Chromium Oxide and Manganese Oxide Powders,Chem. Mater. 1997, 9:3159.
    [145] K.V.P.M. Shafi, Y.Koltypin, A.Gedanken, R. Prozorov, J. Balogh, J. Lendvai, I. Felner, Sonochemical Preparation of Nanosized Amorphous NiFe2O4 Particles,J. Phys. Chem. B 1997, 101:6409.
    [146] T. Hyeon, M. Fang, K. S. Suslick, Nanostructured Molybdenum Carbide: Sonochemical Synthesis and Catalytic Properties,J. Am. Chem. Soc. 1996, 118:5492
    [147] M.M. Mdeleni, T. Hyeon, K.S. Suslick, Sonochemical Synthesis of Nanostructured Molybdenum Sulfide,J. Am. Chem. Soc. 1998,120:6189
    [148] I. Uzcanga, I. Bezverkhyy, P. Afanasiev, C. Scott, M. Vrinat, Sonochemical Preparation of MoS_2 in Aqueous Solution: Replication of the Cavitation Bubbles in an Inorganic Material Morphology,Chem. Mater., 2005,17(14):3575
    [149] 胡坤宏, 沃恒洲, 韩效钊, 胡献国, 纳米二硫化钼制备现状与发展趋势,现代化工, 2003, 23:14-17
    [150] 林春元,二硫化钼的超细粉碎,中国钼业, 1994, 18(l):2532.
    [151] M.Chhowalla, G.A.J. Amaratunga, Thin films of fullerene-like MoS_2 nanoparticles with ultra-low friction and wear,Nature, 2000, 407:164-167.
    [152] R.Sen, A. Govindaraj, K. Suenaga, S. Suzuki, H. Kataura, S. Iijima, Y. Achiba, Encapsulated and hollow closed-cage structures of WS2 and MoS_2 prepared by laser ablation at 450–1050℃,Chem. Phys. Lett. 2001, 340(3-4):242-248
    [153] M. S. Donley, N. T. Devitt, T. W. Haas, P. T. Murray, J. T. Grant, Deposition of stoichiometric MoS_2 thin films by pulsed laser evaporation,Thin Solid Films,1989, 168:335.
    [154] M. S. Donley, P. T. Murray, S. A. Barber, T. W. Haas, Deposition and properties of MoS 2 thin films grown by pulsed laser evaporation,Surf. Coat. Tech. 1988, 36:329
    [155] J.H. Wang, W. Lauwerens, E. Wieers, L. M. Stals, Jiawen He, J. P. Celis, Structure and tribological properties of MoSx coatings prepared by bipolar DC magnetron sputtering,Surf. Coat. Tech., 2001, 139 (2-3):143-152.
    [156] N. Sano, H.L. Wang, M. Chhowalla, I. Alexandrou, G.A.J. Amaratunga, M. Naito, T. Kanki, Fabrication of inorganic molybdenum disulfide fullerenes by arc in water,Chem. Phys. Lett. 2003, 368:331-337
    [157] Molybdenum disulfide made by ultrasonic spray pyrolysis,Focus on Catalysts, September 2005, 2005(9):7.
    [158] M.R. Hilton, Fracture in MoS_2 solid lubricant films,Surf. Coat. Tech., 1994, 68-69:407
    [159] B.S. Stupp, Frictional and morphological properties of Au---MoS films sputtered from a compact target2,Thin Solid Films, 1984, 118:375.
    [160] M. R. Hilton, R. Bauer, S. V. Didziulis, M. T. Dugger, J. Keem, J. Scholhamer, Structural and tribological studies of MoS_2 solid lubricant films having tailored metal-multilayer nanostructures,Surf. Coat. Tech., 1992, 53:13
    [161] G. Weise, A. Teresiak, I. Bacher, P. Markschlager, G. Kampschulte, Influence of magnetron sputtering process parameters on wear properties of steel/Cr3Si or Cr/MoSx,Surf. Coat. Technol. 1995, 76-77:382
    [162] D.G. Teer, J. Hampshire, V. Fox, V. Bellido-Gonzalez, The tribological properties of MoS_2-metal composite coatings deposited by closed field magnetron sputtering,Surf. Coat. Tech., 1997, 94-95:572
    [163] M. C. Simmonds, A. Savan, H. V. Swygenhoven, E. Pfluger, Characterisation of magnetron sputter deposited MoSx/metal multilayers,Thin Solid Films, 1999, 354, 59.
    [164] J. Haider, M. Rahman, B. Corcoran, M. S. J. Hashmi, Deposition and characterization of hard-solid lubricant coating by closed-field magnetron sputtering,Surf. Coat. Tech., 2005, 200:1080–1083
    [165] R. Tenne, E. Galun, A. Ennaoui, S. Fiechter, K. Ellmer, M. Kunst, C.Koelzow, Ch. Pettenkofer, S. Tiefenbacher, R. Scheer, et al., Characterization of oriented thin films of WSe, grown by van der Waals,Thin solid films 1996,272 :38–42.
    [166] E. Gourmelon, H. Hadouda, J.C. Bernede, J. Pouzet, Vacuum 48, 509 (1997).
    [167] H. Hadouda, J.C. Bernede, E. Gourmelon, J. Pouzet, J. Mater. Sci. 32, 4019 (1997)
    [168] M. Regula, C. Ballif, F. Levy, In situ TEM observation of nickel promoted WS2 thin-film crystallization, J. Cryst. Growth 1998,193:109–113
    [169] C. Sommerhalter, T.W. Matthes, J. Boneberg, M.C.L. Steiner, P. Leiderer, Investigation of acceptors in p-type WS by standard and photo-assisted scanning tunneling microscopy/spectroscopy,2Appl. Surf. Sci. 1999,144/145:564–569
    [170] E. Gourmelon, J. C. Bernede, J. Pouzet, G. Sorensen, phys. stat. sol. (a) 1997,161:R5
    [171] N. Barreau, J. C. Bernede, J. Pouzet, M.G. Viry, A. Perrin,Characteristics of Photoconductive MoS_2 Films Grown on NaCl Substrates by a Sequential Process,phys. stat. sol. (a) 2001,187(2):427–437
    [172] N. Barreau, J.C. Bernede, MoS_2 textured films grown on glass substrates through sodium sulfide based compounds, J. Phys. D: Appl. Phys. 2002,35 :1197–1204
    [173] (a) R. Tenne, A. Wold, Passivation of recombination centers in n-WSe2 yieldshigh efficiency (14%) photoelectrochemical cell , Appl.Phys.Lett.1985, 47(7):707-709; (b)D. Mahalu, L. Margulis, A. Wold, R. Tenne, Preparation of WSe2 surfaces with high photoactivity, Phys. Rev.B,1992,45(4):1943-1949
    [174] V. M. Nabutovsky, K. Eherman, and FL Tenne, Collection efficiency of photoexcited carriers of electrochemically etched surface, J. Appl. Phys. 1993, 73 (6):2866-2870
    [175]N. Barreau, J. C. Bernede, J. Pouzet, M. Guilloux-Viry, and A. Perrin,Characteristics of Photoconductive MoS_2 Films Grown on NaCl Substrates by a Sequential Process,phys. stat. sol. (a) 2001,187(2):427–437
    [176] E. Schmidt, F. Weill, G. Meunier and A. Levasseur,New amorphous molybdenum oxysulfides obtained in the form of thin films and their characterization by TEM,Thin Solid Films, 1994, 245(1-2):34-39
    [177] K.S.Lemon, G.Jakovids, A.Singh, E.H.Taheri, Production of large scale polycrystalline MoS_2 films, phys.stat.sol.(a), 2000,179:329
    [178] G.S. Chu, G.Z. Bian, Y.L. Fu, Z.C. Zhang, Preparation and structural characterization of nano-sized amorphous powders of MoS_2 by γ-irradiation method,Mater. Lett. 2000, 43:81–86
    [179] D. Vollath, D.V. Szabo, Synthesis of nanocrystalline MoS_2 and WS2 in a microwave Plasma,Mater. Lett. 1998, 35:236–244
    [180] E. Borsella, S. Botti, M.C. Cesile, S. Martelli, A. Nesterenko, Mater. Sci. Forum, 1998, 636:278–281
    [181] A. Ennaoui, S. Fiechter, K. Ellmer, R. Scheer, K. Diesner, Photoactive 2H-WS2 thin films by sulfurization of WO3,Thin solid films 1995,261:124–131.
    [182] X.L. Li, J.P. Ge, Y.D. Li, Atmospheric Pressure Chemical Vapor Deposition: An Alternative Route to Large-Scale MoS_2 and WS2 Inorganic Fullerene-likeNanostructures and Nanoflowers,Chem. Eur. J. 2004,10:6163–6171.
    [183] M. Regula, C. Ballif, F. Levy, In situ TEM observation of nickel promoted WS2 thin-film crystallization,J. Cryst. Growth 1998,193:109–113
    [184] H.J. Osten, J.Klatt, G.Lippert, B.Dietrich, and E.Bugiel, Surface-controlled solid phase epitaxy of Germanium on Silicon, Phys.Rev.Lett. 1992, 69(3):450-453
    [185] H. J. Osten, E. Bugiel, and J. Klatt, Suppressing of island formation in surfactant-controlled solid phase epitaxy of germanium on Si(110), Appl. Phys. Lett. 1992, 61 (16):1918-1920
    [186] H. J. Osten,a) J. Klatt, G. Lippert, E. Bugiel, and S. Hinrich, Two-dimensional lattice-mismatched heteroepitaxy of germanium on silicon beyond the critical thickness by introducing a surfactant, Appt. Phys. Lett. 1992, 60((20) : 2522-2524
    [187]G. L. Frey, S. Elani, M. Homyonfer, Y. Feldman, and R. Tenne, Optical-absorption spectra of inorganic fullerenelike MS2(M=Mo, W),Phys. Rev. B 57(1998):6666
    [188] (a) R. Tenne, A. Wold, Passivation of recombination centers in n-WSe2 yields high efficiency (14%) photoelectrochemical cell , Appl.Phys.Lett.1985, 47(7):707-709; (b)D. Mahalu, L. Margulis, A. Wold, R. Tenne, Preparation of WSe2 surfaces with high photoactivity, Phys. Rev.B,1992,45(4):1943-1949
    [189] V. M. Nabutovsky, K. Eherman, and FL Tenne, Collection efficiency of photoexcited carriers of electrochemically etched surface, J. Appl. Phys. 1993, 73 (6):2866-2870
    [190]N. Barreau, J. C. Bernede, J. Pouzet, M. Guilloux-Viry, and A. Perrin,Characteristics of Photoconductive MoS_2 Films Grown on NaCl Substrates by a Sequential Process,phys. stat. sol. (a) 2001,187(2):427–437
    [191] E. Schmidt, F. Weill, G. Meunier and A. Levasseur,New amorphous molybdenum oxysulfides obtained in the form of thin films and theircharacterization by TEM,Thin Solid Films, 1994, 245(1-2):34-39
    [192]L. Kirkup, S. Wallace, Temperature dependence of germanium tunnel diode /-V characteristics, Eur. J. Phys. 1987,8 : 93-97
    [193]D. Meyerhofer, G.A. Brown, H.S.Sommers, Degenerate Germanium. I. Tunnel, Excess, and Thermal Current in Tunnel Diodes, Phys. Rev. 1962,126 (4):1329-1341
    [194] T. Sekine, K. Uchinokura, T. Nakashizu, E. Matsuura, and R.Yoshizaki, Dispersive Raman mode of layered compound 2H-MoS_2 under the resonant condition, J. Phys. Soc. Jpn. 53(1984):811
    [195] A. M. Stacy and D. T. Hodul, Raman spectra of IVB and VIB transition metal disulfides using laser energies near the absorption edges, J. Phys. Chem. Solids 46(1985):405
    [196] T.J.Wieting, J.L.Verble, Infrared and raman studies of long-wavelength optical phonons in hexagonal MoS_2, G. Phys. ReV. B 1971, 3, 4286.
    [197] Molybdenum Disulfide Nanowires and Nanoribbons by Electrochemical/Chemical Synthesis Q. Li, E. C. Walter, W. E. van der Veer, B. J. Murray, J. T. Newberg, E. W. Bohannan, J. A. Switzer, J. C. Hemminger, and R. M. Penner,J. Phys. Chem. B 2005, 109, 3169-3182
    [198] Mechanically Activated MoO3. 4. In Situ Characterization of Physical Mixtures with Al2O3,G. Mestl, N. F. D. Verbruggen, F. C. Lange, B. Tesche, and H. Knozinger, Langmuir, 1996,12(7):1817-1829
    [198]L.X. Chang, H.B. Yang, J.X. Li, W.Y. Fu, Y.H. Du, K. Du, Q.J. Yu, J. Xu, M.H. Li, Simple synthesis and characteristics of Mo/MoS_2 inorganic fullerene-like and actinomorphic nanospheres with core/shell structure,Nanotechnology 2006,17:3827
    [199]D.J. Srolovitz, S.A. Safran, M. Homyonfer, R. Tenne, Morphology of Nested Fullerenes,Phys.Rev.Lett. 1995,74 (10):1779
    [200] H. Zhang, X. Ren, Z.L. Cui,Shape-controlled synthesis of Cu2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers,J. Cryst. Growth 2007,304:206–210
    [201]F. Sun, Y.P. Guo, W.B. Song, J.Z. Zhao, L.Q. Tang, Z.C. Wang ,Morphological control of Cu2O micro-nanostructure film by electrodeposition,J. Cryst. Growth 2007,304:425–429
    [202]F. Sun, Y.P. Guo, Y.M. Tiana, J.D. Zhangb, X.T. Lv, M.G. Lia, Y.H. Zheng, Z.C. Wang,The effect of additives on the Cu2O crystal morphology in acetate bath by electrodeposition,J. Cryst. Growth 2008,310:318–323
    [203]J.Q. Sun, J.S. Wang, X.C. Wu, G.S. Zhang, J.Y. Wei, S.Q. Zhang, H. Li, and D.R. Chen,Novel method for high-yield synthesis of rutile SnO2 nanorods by oriented aggregation,Cryst. Growth & Design, 2006,6(7):158
    [204] S.Y. Jing, S.X. Xing, Y. Wu, Y.F. Wang , B. Zhao, C. Zhao,Synthesis of octahedral Cu2O microcrystals assisted with mixed cationic/anionic surfactants,Mater. Lett. 2007),61:2281–2283
    [204] N.L. Wu,S.Y. Wang, I.A. Rusakova, Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides,Science 1999,285:1375.
    [205] M.J. Siegfried and K.S. Choi, Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape sransformation of pre-grown crystals, J. Am. Chem. Soc. 2006,128:10356-10357
    [206] F F. Liang, A. K. Sadana, A. Peera, J. Chattopadhyay, Z. Gu, R. H. Hauge, and W. E. Billups, A Convenient Route to Functionalized Carbon Nanotubes, Nanolett, 2004, 4(7):1257
    [207] B. Levy, W. Liu, Directed Photocurrents in Nanostructured TiO2/SnO2 Heterojunction Diodes,J. Phys. Chem. B, 1997, 101 (10):1810 10 9
    [208] A. N. M. Green, E. Palomares, S. A. Haque, J. M. Kroon, J. R. Durrant, Charge Transport versus Recombination in Dye-Sensitized Solar Cells Employing Nanocrystalline TiO2 and SnO2 Films,J. Phys. Chem. B, 2005,109:12525
    [209] D. Niinobe, Y. Makari, T. Kitamura, Y. Wada, S. Yanagida, Origin of Enhancement in Open-Circuit Voltage by Adding ZnO to Nanocrystalline SnO2 in Dye-Sensitized Solar Cells, J. Phys. Chem. B, 2005, 109 (38):17892
    [210] A. Salehi, A highly sensitive self heated SnO2 carbon monoxide sensor, Sensors Actuat. B 2003, 96:88
    [211] C.H. Wang, X.F. Chu, M.M. Wu, Highly sensitive gas sensors based on hollow SnO2 spheres prepared by carbon sphere template method,Sensors Actuat. B 2007, 120:508
    [212] Y. Liu, E. Koep, M. Liu, A Highly Sensitive and Fast-Responding SnO2 Sensor Fabricated by Combustion Chemical Vapor Deposition,Chem.Mater. 2005, 17:3997
    [213] A. Maiti, J. A. Rodriguez, M. Law, P. Kung, J. R. McKinney, P. Yang, SnO2 Nanoribbons as NO2 Sensors:Insights from First Principles Calculations, Nano Lett., 2003, 3(8):1025
    [214] P. Hidalgo, R. H. R. Castro, A. C. V. Coelho, D. Gouvea, Surface Segregation and Consequent SO2 Sensor Response in SnO2-NiO, Chem. Mater. 2005, 17:4149
    [215] A. Kolmakov, Y.X. Zhang, G. S. Chen, M. Moskovits, Detection of CO and O2 using Tin Oxide nanowire sensors, Adv. Mater. 2003,15:997
    [216] Y. Cao, X.T. Zhang, W.S. Yang, H Du, Y.B. Bai, T.J. Li, J.N. Yao, A Bicomponent TiO2/SnO2 Particulate Film for Photocatalysis, Chem. Mater. 2000,12:3445
    [217] Y. Wang, J.Y. Lee, Preparation of SnO2-graphite nanocomposite anodes byurea-mediated hydrolysis, Electrochem. Commun. 2003, 5:292
    [218] Q. Kuang, S.F. Li, Z.X. Xie, S.C. Lin, X.H. Zhang, S.Y. Xie, R.B. Huang, L.S. Zheng, Controllable fabrication of SnO2-coated multiwalled carbon nanotubes by chemical vapor deposition, Carbon 2006, 44:1166
    [219] Y. Wang, F.B. Su, J. Yang Lee, X. S. Zhao, Crystalline Carbon Hollow Spheres, Crystalline Carbon-SnO2 Hollow Spheres, and Crystalline SnO2 Hollow Spheres: Synthesis and Performance in Reversible Li-Ion Storage, Chem. Mater. 2006,18:1347
    [220] F. Gu, S. F. Wang, M. K. Lu, G.J. Zhou, D. Xu, and D. R. Yuan, Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol-Gel Method, J. Phys. Chem. B 2002,108:8119
    [221] J. F. Scott, Raman spectrum of SnO_2, J. Chem. Phys. 1970, 53:852
    [222] J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, Large-scale rapid oxidation of SnO2 nanoribbons, J. Phys. Chem. B 2002,106:3823-3826
    [223] B. Cheng, J. M. Russell, W.S. Shi, L. Zhang, and E.T. Samulski, Large-scale, solution-phase growth of single-crystalline SnO2 nanorods, J. Am. Chem. Soc. 2004, 126:5972-5973
    [224] (a) F. Matossi, The vibration spectrum of rutile,J. Chem. Phys. 1951, 19:1543; (b) J. Zuo, C. Xu, X. Liu, C. Wan,; C. Wang, Y. Hu, Y. Qian, Study of the Raman spectrum of nanometer SnO, J. Appl. Phys. 1994, 75:1835; (c) L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, M. Roumyantseva, Structural Characterization of Nanocrystalline SnO2 by X-Ray and Raman Spectroscopy, J. Solid State Chem. 1998, 135:78
    [225] K. N. Yu, Y.H. Xiong, Y.L. Liu, C.S. Xiong, Microstructural change of nano-SnO2 grain assemblages with the annealing temperature, Phys. Rev. B 1997,55(4):2666-2671
    [226] Q. Kuang, Z.Y. Jiang, Z.X. Xie, S.C. Lin, Z.W. Lin, S.Y. Xie, R.B. Huang, and L.S. Zheng, Tailoring the Optical Property by a Three-Dimensional Epitaxial Heterostructure: A Case of ZnO/SnO2, J. Am. Chem. Soc. 2005,127:11777-11784
    [227] J.H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, and Z. L. Wang, Beaklike SnO2 Nanorods with Strong Photoluminescent and Field-Emission Properties, small 2006, 2 (1) :116-120
    [228] J.Q. Hu, Y.S. Bando, Q.L. Liu, and D. Golberg,Laser-ablation growth and optical properties of wider and long single-crystal SnO2 ribbons, Adv. Funct. Mater. 2003, 13(6):493-496

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700