用户名: 密码: 验证码:
金属及涂装体系在化工大气环境下腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国国民经济的快速发展,能源消耗加大,对石油的依赖性增强,而我国原油资源相对短缺,深度开采使得原油劣质化倾向严重,进口原油多为高硫、高酸原油,因此石化行业大气中腐蚀性气体含量日趋升高,设备装置腐蚀问题越来越严重。目前我国石化行业中除了对钢质管道、储罐的防护技术提出了相关规定要求外,对其他设备、设施尚未有规范、规程和标准可循,因此,研究金属及涂装体系在化工大气环境下的腐蚀行为,了解不同金属及涂装体系的腐蚀规律和耐蚀特性,对于合理选择防护措施,延长设备、材料使用寿命,减少腐蚀造成的经济损失,不仅有重要的意义,而且有广泛的应用价值。
     本文采用Q235碳钢、铜、铝和锌四种金属以及20种涂装体系,在石化厂区脱硫反应塔、测试中心和武汉大气环境材料腐蚀国家野外科学观测研究站三个暴露点进行大气暴露试验,用SEM和XRD等对锈层和腐蚀产物进行分析;在实验室用中性盐雾加速试验以及老化试验研究了涂装体系的耐候性以及耐蚀性,并探究了薄液膜下Q235碳钢的电化学腐蚀行为规律。
     研究表明,石化厂区大气环境对材料的腐蚀是一个复杂的过程。金属材料在脱硫反应塔研究站腐蚀速率高于另外两个站,其中Q235碳钢在脱硫反应塔腐蚀极其严重,腐蚀速率达到C5级别,另外两个研究站为C3级;涂装体系经过室外暴露结果和室内加速结果比对,喷铝涂层耐蚀性好,氟碳面漆耐候性优异,以富锌以及喷铝为底漆的体系耐蚀性能好。
     三个研究站点碳钢锈层形态各异,腐蚀产物也各不相同,腐蚀产物的成长对基体具有一定的保护作用。碳钢在石化厂区腐蚀并不是呈现均匀腐蚀,锈层与基体之间有缝隙,由一年腐蚀断面线扫描图可以看到,锈层中的硫元素的含量很低。碳钢在石化厂区初期为大量隆起状颗粒,随着腐蚀的进一步发生,颗粒连接为整片的锈层,但锈层具有裂纹,并不能完全阻碍腐蚀的产生。
     在含有氯离子、硫酸根离子以及两者混合同浓度离子的薄液膜下,氯离子对碳钢腐蚀影响作用较硫酸根离子的强。研究了各液膜厚度下Q235碳钢在各浓度硫酸钠溶液中的腐蚀速率,表明:随着液膜厚度的增大,腐蚀速率先减小后增大;不同浓度下Q235碳钢的腐蚀速率规律各不同。在7μm薄液膜下,腐蚀速率随浓度增大而减小。而在其余测试厚度薄液膜及本体溶液中,腐蚀速率则随浓度增大呈现先增大后减小的规律。
In recent years, with the rapid development of national economy, energy consumption increased and the dependence for oil is enhanced, while chinese crude oil resources are relatively short, the deep exploitation makes the tendency of low-grade crude oil serious, and most imported crude oil are high sulfur and high acid, so the content of corrosive gases in petrochemical industry rises day by day, the corrosion problem of equipment is getting more and more serious. At present, there are no standards or regulations of equipment protection teconology except for steel pipelines and storage tanks in national petrochemical industry. Therefore, studying the corrosion behavior of metal and coating system in the petrochemical atmospheric environment, understanding the law of corrosion and corrosion resistance of different metal and coating system, not only have important significance, but also have great value in application, for the reasonable selection of protective measures, prolonging the using life of equipments and materials and reducing the economic loss caused by corrosion.
     In this paper, atmospheric exposure tests were carried out in the desulfurization tower, testing centers of the petrochemical plant and atmospheric corrosion of Wuhan National Field Research Stationt with Q235 carbon steel, copper, aluminum, zinc and 20 species of coating system. Rust and corrosion products were analyzed by SEM and XRD. Weatherability and corrosion resistance of the coating system were studied by means of neutral salt spray accelerated test and aging test in laboratories, besides the electrochemical corrosion behavior of the carbon Q235 steel in thin electrolyte film.
     The results show that the corrosion of materials in petrochemical atmosphere is a complex process. The corrosion rate of metal in the desulfurization tower research station was higher than the other two stations. The corrosion of Q235 carbon steel in the desulfurization tower was extremely serious, the corrosion rate reached for the C5 level, compared with C3 level in the other two research stations. The characteristics of coating system were compared between outdoor exposure tests and indoor accelerated tests, the results indicated that sprayed aluminum coating has a excellent corrosion resistance, fluorocarbon coating has a great weathering resistance, and zinc-rich and sprayed aluminum primer system possess good corrosion resistance.
     The rust layer of carbon steel in the three research sites had a various shapes, and corrosion products were also different, the growth of which had a certain protective function to the substrate. In the petrochemical plant, the corrosion of carbon steel is not uniform corrosion, as there are some cracks between the rust layer and magnesium substrate. We can see that the surful content in the rust layer is very low through the section of line scans. The surface of carbon steel had massive prosperous undulation pellet in the initial period, with the further occurrence of corrosion, the pellets connected for an entire piece of rust layer. However, the corrosion could not be completely hindered, since there were some cracks in the rust layer.
     In the thin film containing chloride ion, sulfate ion and the same concentration mixture of the two ions, the chloride ion did a more enormous implication in the corrosion of carbon steel, compared with sulfate ion. The corrosion rate of the Q235 carbon steel in various densities sodium sulfate solution and thin film thickness were studied, the results indicated that:the corrosion rate decreases with the film thickness increases, and then increases; different concentrations of sodium sulfate solution resulted in a different corrosion rate rules. Under the 7μm liquid film, the corrosion rate decreased with the increasing concentration of sodium sulfate solution. In the remaining test of the thin film's thickness and the bulk solution's concentration, the corrosion rate increased with the concentration increased, and then decreased.
引文
[1]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994,1.
    [2]魏宝明.金属腐蚀理论与应用[M].北京:化学工业出版社,1984,1-2.
    [3]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003,1-2.
    [4]孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社,2001,2-5
    [5]Sharma P K, Khandelwal M, Singh T N. Variation on physico-mechanical properties of Kota stone under different watery environments[J]. Building and Environment,2007, 42(12):4117~4123.
    [6]Arroyave C, Lopez F A, Morcillo M. The early atmospheric corrosion stages of carbon steel in acidic fogs[J]. Corrosion Science,1995,37(11):1751~1761.
    [7]Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J]. Corrosion Science,1994,36(2):283~299.
    [8]Shu tao Wang, Shan wu Yang, Ke wei Gao, et al. Corrosion behaviors of the exposed side and underside of low alloy weathering steel in Qingdao and Wanning for 18 months [J]. Acta Metallurgica Sinica,2008,21(6):425~436.
    [9]Yuantai Ma, Ying Li, Fuhui Wang. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment [J]. Corrosion Science,2010,52(5):1796~1800.
    [10]Weissenrieder J, Leygraf C. In situ studies of filiform corrosion of iron[J]. Journal of The Electrochemical Society,2004,151(3):B165-B171.
    [11]Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corrosion Science,2006, 48(9):2799~2812.
    [12]Cao X, Wang N, Liu N. Synergistic effect of chloride and NO2 on the atmospheric corrosion of bronze[J]. Anti-Corrosion Methods and Materials.2009,56 (6):299~305.
    [13]Castano J G, Arroyave C, Morcillo M. Characterization of atmospheric corrosion products of zinc exposed to SO2 and NO2 using XPS and GIXD[J]. Journal of Materials Science,2007,42 (23):9654~9662.
    [14]Graedel T E, Schwartz N. Air quality reference data for corrosion assessment[J]. Mater.Perform.,1977,16(8):17~25.
    [15]Masanori Hattori, Atsushi Nishikata, Tooru Tsuru. EIS study on degradation of polymer-coated steel under ultraviolet radiation[J]. Corrosion Science,2010,52(6): 2080~2087.
    [16]Perera D Y. Effect of thermal and hygroscopic history on physical aging of organic coatings[J]. Progress in Organic Coatings,2002,44(1):55~62.
    [17]Thorsten Pretsch, Ines Jakob, Werner Miiller. Hydro lytic degradation and functional stability of a segmented shape memory poly(ester urethane)[J]. Polymer Degradation and Stability,2009,94(1):61~73.
    [18]Darowicki K, Szocinski M, Zielinski A. Assessment of organic coating degradation via local impedance imaging[J]. Electrochimica Acta,2010,55 (11):3741~3748.
    [19]Davis G D, Shaw B A, Arah C O, et al. Effect of SO2 deposition painted steel surface[J]. Surface and Interface Analysis,1990,15(2):101~112.
    [20]唐伦科.自然曝露试验与加速腐蚀试验的相关性及防蚀设计研究[D].重庆:重庆大学,2006年,10-12.
    [21]吴军,周贤良,董超芳,等.铜及铜合金大气腐蚀研究进展[J].腐蚀科学与防护技术,2010,22(05):464-468.
    [22]林翠,王凤平,李晓刚.大气腐蚀研究方法进展[J].中国腐蚀与防护学报,2004,(04):58-65.
    [23]Damian L, Fako R. Weathering structural steels corrosion in atmospheric of various degrees of pollution in Romania[J]. Materials and Corrosion,2000,51(8):574~578.
    [24]Miranda L R M, Sathier L, Nogueira R, et al. Atmospheric corrosion tests in Brazilian legal Amazon-field and laboratory tests[J]. Materials and Corrosion,2000,51(3): 182~185.
    [25]Boelen B, Schmitz B, Defourny J, et al. A literature survey on the development of an accelerated laboratory test method for atmospheric corrosion of precoated steel products[J]. Corrosion Science,1993,34(11):1923~1931.
    [26]J Wang, Z Y Wang and W Ke. Corrosion behaviour of weathering steel in diluted Qinghai salt lake water in a laboratory accelerated test that involved cyclic wet/dry conditions[J]. Materials Chemistry and Physics,2010,124(2-3):952~958.
    [27]Wei Han, Guocai Yu, Zhenyao Wang, et al. Characterisation of initial atmospheric corrosion carbon steels by field exposure and laboratory simulation[J]. Corrosion Science, 2007,49(7):2920~2935.
    [28]董俊华,柯伟.低碳钢大气腐蚀室内模拟加速腐蚀试验与锈蚀规律[J].电化学,2009,15(2):170-178.
    [29]徐乃欣,张承典,丁翠红,等.加速大气腐蚀实验的一个新方案[J].中国腐蚀与防护学报,1990,10(3):228-231.
    [30]Lyon S B, Thompson G E, Johnson J B, et al. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test:aluminium, galvanized steel and steel[J]. Corrosion, 1987,43(12):719~726.
    [31]Zhu F, Persson D, Thierry D, et al. Formation of corrosion products on open and confined zinc surface exposed to periodic wet/dry condition-a comparison between zinc and electrogalvanied steel[J]. Corrosion,2001,57(7):582~590.
    [32]王振尧,郑逸萍,刘寿荣.A3钢在人造污染介质中的大气腐蚀行为[J].中国腐蚀与防护学报,1994,14(3):240-246.
    [33]孙志华,李金桂,李牧铮.碳钢大气腐蚀加速实验研究[J].材料工程,1996,(7):26-27.
    [34]Drazic D M, Vasciz V. The correlation between accelerated laboratory corrosion tests and atmospheric corrosion station tests on steels[J]. Corrosion Science,1989,29(10): 1197~1204.
    [35]Li J, Li M, Sun Z. Development of an artificial climatic complex accelerated corrosion tester and investigation of complex accelerated corrosion test methods[J]. Corrosion, 1999,55(5):498~503.
    [36]Schulz U, Trubiroha P, Schernau U, et al. The effects of acid rain on the appearance of automotive paint systems studied outdoors and in a new artificial weathering test[J]. Progress in Organic Coatings,2000,40(1-4):151~165.
    [37]Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-Ⅰ. Verification of the experimental technique[J]. Corrosion Science, 1990,30(6-7):681~696.
    [38]Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layer-Ⅱ. Experimental results[J]. Corrosion Science,1990,30(6-7): 697~714.
    [39]张学元,柯克,杜云龙.金属在薄液膜下电化学腐蚀电池的设计[J].中国腐蚀与防护学报,2001,21(2):117-122.
    [40]扈显琦,梁成浩.交流阻抗技术的发展与应用[J].腐蚀与防护,2004,25(2):57-60.
    [41](美)阿伦.J.巴德,拉里.R.福克纳等著.电化学方法原理和应用(第二版)(邵元化,朱果逸等译)[M].北京:化学工业出版社,2005,372-410.
    [42]C F Dong, H Sheng, Y H An, et al. Corrosion of 7A04 aluminum alloy under defected epoxy coating studied by localized electrochemical impedance spectroscopy[J]. Progress in Organic Coatings,2010,67(3):269~273.
    [43]M L Zheludkevich, K A Yasakau, A C Bastos, et al. On the application of electrochemical impedance spectroscopy to study the self-healing properties of protective coatings[J]. Electrochemistry Communications,2007,9(10):2622~2628.
    [44]E Remita, E Sutter, B Tribollet, et al. A thin layer cell adapted for corrosion studies in confined aqueous environments[J]. Electrochimica Acta,2007,52(27):7715~7723.
    [45]徐龙娇,董超芳,肖葵,等.氯离子作用下碳钢和耐候钢大气初期腐蚀的Kelvin探针研究[J].北京科技大学学报,2010,32(5):581-588.
    [46]汪川,王振尧,柯伟.Q235碳钢在SO2气体中的初期腐蚀行为[J].金属学报,2008,44(6):729-734.
    [47]汪川,王振尧,柯伟.Q235碳钢在潮湿SO2环境中的初期腐蚀锈层的表征[J].科学通报,2008,53(23):2833-2838.
    [48]刘月娥,林翠,赵晴.碳钢在SO2环境中的腐蚀行为[J].中国腐蚀与防护学报,2010,30(1):51-57.
    [49]Syed S. Atmospheric corrosion of materials[J]. Emir J Eng Res,2006,11(1):1~24.
    [50]王振尧,汪川,韩薇.白铜和黄铜在SO2气氛中的腐蚀对比[J].装备环境工程,2006,3(5):16-20.
    [51]Oesch S, Faller M. Environmental effects on materials:The effect of air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminum. A short literature survey and results of labotatory exposures[J]. Corrosion Science,1997,39(9):1505~1530.
    [52]陈惠玲,魏雨.碳钢在含SO2环境大气中腐蚀机理的研究[J].腐蚀与防护,2006,27(6):284-286.
    [53]叶堤,赵大为,陈刚才,等.非海洋地区大气污染对金属材料的腐蚀影响研究[J].装备环境工程,2006,(01):37-41.
    [54]韩薇,汪俊,王振尧,等.碳钢与低合金钢耐大气腐蚀规律研究[J].中国腐蚀与防护学报,2004,24(3):147-150,154.
    [55]张全成,吴建生,陈家光,等.暴露一年的耐大气腐蚀用钢表面锈层分析[J].中国腐蚀与防护学报,2001,21(5):297-300.
    [56]Garedel T E, Mandich M L, Weschler C J, et al. Kinetic model studies of atmospheric droplet chemistry 2. Homogeneous transition metal chemistry in raindrops[J]. Journal of Geophysical Research,1986,91(D4):5205~5221.
    [57]Braterman P S, Cairns-Smith A G, Sloper R W. Photooxidation of hydrated iron(2+)-significance for banded iron formations[J]. Nature (london, united kingdom) 1983,303(5913):163~164.
    [58]H R Zhou, X G Li, J Ma, et al. Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers[J]. Materials Science and Engineering:B,2009, 162(1):1~8.
    [59]E1-Mahdy G A, Nishikata A, Tsuru T. AC impedance study on corrosion of 55% Al-Zn alloy-coated steel under thin electrolyte layers[J]. Corrosion Science,2000,42(9): 1509~1521.
    [60]Nishikata A, Ichihara Y, Tsuru T. An application of electrochemical impedance spectroscopy to atmospheric corrosion study[J]. Corrosion Science,1995,37(6): 897~911.
    [61]Nishikata A, Ichihara Y, Hayashi Y, et al. Influence of electrolyte layer thichness and pH on the initial stage of the atmospheric corrosion of iron[J]. The Electrochemical Society, 1997,144(4):1244~1252.
    [62]Nishikata A, Yamashita Y, Katayama H, et al. Electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet-dry condition[J]. Corrosion Science,1995, 37(12):2059~2069.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700