用户名: 密码: 验证码:
功能性纳米颗粒的合成、组装、及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,无机纳米材料因其具有优良的性质成为材料领域的研究热点。纳米粒子是一种介于宏观固体和分子间亚稳态的中间态物质。当粒子尺寸进入纳米数量级(1—100 nm)时,由于纳米粒子的表面组成基元占较大比例,使得其显示出强烈的体积效应、量子效应、表面效应和量子隧道效应。同时纳米材料的电学、光学、磁学等特殊性质,给材料的应用注入了新的活力。
     本论文主要研究了铃铛型二氧化钛(WiO2)复合微球和上转换稀土纳米颗粒薄膜的制备及其性能研究:
     (1)采用层层自组装技术,在商品级TiO2纳米粒子(P25)的表面交替组装PSS(聚苯磺酸钠)/PDDA(聚二烯丙基二甲基氯化铵)聚电解质后,进一步通过溶胶-凝胶法,在聚电解质表面包覆二氧化硅(SiO2)壳层,得到TiO2/PSS/PDDA/SiO2复合微球。在紫外光的照射下,聚电解质层被P25降解除去,得到具有铃铛结构的WiO2@j@SiO2纳米粒子。TEM观察显示,复合微球的核(TiO2)和壳层(SiO2)的空隙为2-12nm,可由聚电解质的层数来控制。将该复合微球掺杂到水性聚氨酯中,可得到紫外屏蔽性能优异的耐老化透明涂层。对罗丹明B溶液的降解实验结果表明,核和壳层之间的空隙越大,复合微球的光催化活性越大。
     (2)采用溶剂热的方法制备了形态规整、荧光性能优异的上转换稀土纳米晶粒NaYF4:Yb, Er。随后,借助超声搅拌将稀土纳米晶粒分散在氯仿中得到稀土纳米晶粒的油性分散液。在分散液中加入少量的水,形成平整的油/水界面。最后,向油/水界面逐步滴加无水乙醇。在自由能降低的驱动下,分散在有机溶剂中的稀土纳米晶粒逐渐迁移到油/水界面,形成规整的单层颗粒薄膜。SEM观察显示,制备的单层薄膜具有规整的形貌。重复同样的实验步骤可制备多层纳米颗粒薄膜。薄膜的荧光性能与薄膜的层数成正比。本方法过程简单易行,可以用于显示器或者传感器等薄膜材料的制备。
In recent years, inorganic nanomaterials are becoming the hotspot in academic research because of their excellent properties. Nanoparticles are intermediate materials between bulk materials and molecules. For the nanoparticles with size less than 100 nm, the proportion of atoms on the surface of particle is extremely high. As a result, volume effect, quantum effect, surface effect and quantum tunneling effect are the basic properties of nanomaterials. Moreover, some other functional properties, such as electric property, luminescence property and magnetic property have extended the application of nanomaterials.
     In this paper, rattle-type TiO2@SiO2 nanoparticles and monolayer films of upconversion rare earth nanoparticles NaYF4:Yb,Er were prepared. Also the properties of the nanomaterials were investigated. All the research contents and results are shown as follows:
     (1) Rattle-type TiO2@SiO2 particles, with commercial TiO2 particles encapsulated into hollow SiO2 shell, were fabricated by successive coating of multilayer polyelectrolytes and SiO2 shell onto TiO2 particles and then treatment by UV irradiation to remove the polyelectrolyte layers. TEM observation showed that the composite particles had a unique rattle-type structure in which there was void space between the TiO2 core and SiO2 shell. The photocatalytic degradation of Rhodamine B indicated that these composite particles with larger void space tended to have higher photoactivity. The polyurethane films doped with rattle-type TiO2@void@SiO2 composite particles had very good UV-shielding property.
     (2) Upconversion rare earth nanoparticles NaYF4:Yb,Er with uniform morphology and excellent luminescence property were prepared by solvothermal method. And then, the nanoparticles were dispersed into chloroform by magnetic stirring. Water was added to the vessel to produce a chloroform/water interface. And then some ethanol was added to the interface at a low rate. At the same time, the rare earth nanoparticles were trapped at the interface gradually to form a monolayer film. Repeating the same strategy, the nanoparticles were also successfully self-assembled into multilayer films. The luminescence intensity was in direct proportion to the number of the layers. The procedure is very simple and effective. These films hold immense promise for a number of technical applications in areas such as display and sensing materials.
引文
[1]Fujishima A., Honda K., Electrochemical photolysis of water at a semiconductor electrode. [J]. Nature,1972,238:37-38.
    [2]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用.[M].2002,25.
    [3]Linsebigler A. L., Lu G Q., Yates J. T., Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. [J]. Chem. Rev.,1995,95:735-758.
    [4]Gotic M., Ivanada M., Sekulic A., Music S., Popovic S., Turkovic A., Furic K., Microstructure of nanosized TiO2 obtained by sol-gel synthesis. [J]. Mater. Lett.,1996, 28:225-229.
    [5]Ogihara T., Ikeda M., Kato M., Mizutani N., Continuous processing of monodispersed titania powders. [J]. J. Am. Ceram. Soc.,1989,72:1598-1601.
    [6]Terabe K., Kato K., Miyazaki H., Yamaguchi S., Imai A., Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide. [J]. J. Mater. Sci.,1994,29:1617-1622.
    [7]Kumar S. R., Pillai S. C., Hareesh U. S., Mukundan P., Warrier K. G. K., Synthesis of thernally stable, high surface area anatase-alumina mixed oxides. [J]. Mater. Lett., 2000,43:286-290.
    [8]Vorkapic D., Matsoukas T., Effect of temperature and alcohols in the preparation of titania nanoparticles form alkoxides. [J]. J. Am. Ceram. Soc.,1998,81:2815-2820.
    [9]Hong K. P., Do K. K., Chong H. K., Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4. [J].J.Am. Ceram. Soc.,1997,80: 743-749.
    [10]Aruna S. T., Tirosh S., Zaban A., Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizes. [J]. J. Mater. Chem.,2000,10:2388-2391.
    [11]Kim C. S., Moon B. K., Park J. H., Choi B. C., Seo H. J., Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant. [J]. J. Cryst. Growth,2003,257: 309-315.
    [12]Bhushan B., Jung Y. C., Koch K., Self-cleaning efficiency of artificial superhydrophobic surfaces. [J]. Langmuir,2009,25:3240-3248.
    [13]Nakajima A., Hashimoto K., Watanabe K., Takai K., Yamauchi G, Fujishima A., Transparent superhydrophobic thin films with self-cleaning properties. [J]. Langmuir, 2000,16:7044-7047.
    [14]Zhang X. T., Sato O., Taguchi M., Einaga Y, Murakami T., Fujishima A., Self-cleaning particle coating with antireflection properties. [J]. Chem. Mater.,2005, 17:696-700.
    [15]Steven M., Kuznicki M. E., Water splitting by titanium exchanged zeolite A. [J]. J. Am. Chem. Soc,1978,100:6790-6791.
    [16]Chuangchote S., Jitputti J., Sagawa T., Yoshikawa S., Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. [J]. ACS Appl. Mater. Interfaces, 2009,1:1140-1143.
    [17]Gratzel M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. [J]. J. Photoch. Photobio. A,2004,164:3-14.
    [18]Sauvage F., Fonzo F. D., Bassi S. L., Casari C. S., Russo V., Divitini G., Ducati C., Bottani C. E., Comte P., Graetzel M., Hierarchical TiO2 photoanode for dye-sensitized solar cells. [J]. Nano Lett.,2010,10:2562-2567.
    [19]Torimoto T., Okawa Y., Takeda N., Yoneyama H., Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behavior of dichloromethane. [J]. J. Photochem. Photobiol. A:Chem.,1997,103:153-159.
    [20]Tada H., Kubo Y, Akazawa M., Ito S., Promoting effect of SiOx monolayer coverage of TiO2 on the photoinduced oxidation of cationic surfactants. [J]. Langmuir, 1998,14:2936-2944.
    [21]Tada H., Kubo Y, Akazawa M., Ito S., Enhancing effect of SiOx monolayer coverage of TiO2 on the photoinduced oxidation of rhodamine 6G in aqueous media. [J]. J. Phys. Chem. B,1998,102:6360-6365.
    [22]Vohra M. S., Tanaka K., Photocatalytic degradation of aqueous pollutants using silica-modified TiO2. [J]. Water Research,2003,37:3992-3996.
    [23]El-Toni A. M., Yin S., Sato T., Control of silica shell thickness and microporosity of titania-silica core-shell type nanoparticles to depress the photocatalytic activity of titania. [J]. J. Colloid Interface Sci.,2006,300:123-130.
    [24]Demirors A. F., Blaaderen A., Imhof A., Synthesis of eccentric titania-silica core-shell and composite particles. [J]. Chem. Mater.,2009,21:979-984.
    [25]Ikeda S., Ikoma Y, Kobayashi H., Harada T., Torimoto, T., Ohtani B., Matsumura M., Encapsulation of titanium oxide particles in hollow silica for size-selective photocatalytic reactions. [J]. Chem. Commun.,200743:3753-3755.
    [26]Ikeda S., Kobayashi H., Sugita T., Ikoma Y, Harada T., Matsumura M., Efficient photodecomposition of gaseous organics catalyzed by titanium oxide encapsulated in a hollow silica shell with high porosity. [J]. Appl. Catal. A:Gen.,2009,363:216-220.
    [27]Wang S., Wang T., Chen W. X., Hori T., Phase-selectivity photocatalysis:a new approach in organic pollutants' photodecomposition by nanovoid core(TiO2)/shell(SiO2) nanoparticles. [J]. Chem. Commun.,2008,44:3756-.758.
    [28]Zhang Y., Wu Y. F., Chen M., Wu L. M., Fabrication method of TiO2-SiO2 hybrid capsules and their UV-protective property [J]. Colloids Surf. A,2010,353:216-225.
    [29]Jain P. K., Huang X. H., El-Sayed I. H., El-Sayed M. A., Nobel metals on the nanoscale:optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. [J]. Acc. Chem. Res.,2008,41:1578-1586.
    [30]Auzel F., Upconversion and anti-stokes processes with f and d ions in solids. [J]. Chem. Rev.,2004,104:139-173.
    [31]Schwartzberg A. M., Zhang J. Z., Novel optical properties and emerging applications of metal nanostructures. [J]. J. Phys. Chem. C,2008,112:10323-10337.
    [32]Suyver J. F., Aebischer A., Biner D., Gerner P., Grimm J., Heer S., Kramer K. W., Reinhard C., Gudel H. U., Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. [J]. Opt. Mater.,2005,27:1111-1130.
    [33]Rahman P., Green M., The synthesis of rare earth fluoride based nanoparticles. [J]. Nanoscale,2009,1:214-224.
    [34]Yi G. S., Chow G. M., Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. [J]. Adv. Funct. Mater.,2006,16:2324-2329.
    [35]Chen Z. G, Chen H. L., Hu H., Yu M. X., Li F. Y., Zhang Q., Zhou Z. G, Yi T. Huang C. H., Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. [J]. J. Am. Chem. Soc.,2008,130: 3023-3029.
    [36]Lezhnina M. M., Justel T., Katker H., Wiechert D. U., Kynast U. H., Efficient luminescence from rare-earth fluoride nanoparticles with optically functional shells. [J]. Adv. Funct. Mater,2006,16:935-942.
    [37]Mai H. X., Zhang Y. W., Sun L. D., Yan C. H., Size- and phase-controlled synthesis of monodispersed NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscope. [J]. J. Phys. Chem. C, 2007,111:13730-13739.
    [38]Qian H. S., Zhang Y., Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. [J]. Langmuir,2008,24: 12123-12125.
    [39]Li C. X., Yang, J., Quan, Z. W., Yang, P. P., Kong, D. Y., Lin, J., Different microstructures of β-NaYF4 fabricated by hydrothermal process:effects of pH values and fluoride sources. [J]. Chem. Mater.,2007,19:4933-4942.
    [40]Wang L. Y, Li Y. D., Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. [J]. Chem. Mater.,2007,19:727-734.
    [41]Wang X., Li Y D., Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles:synthesis, characterization, and properties. [J]. Chem. Eur. J.,2003,9:5627-5635.
    [42]Wang Y.,Tu L. P., Zhao J. W., Sun Y J., Kong X. G., Zhang H., Upconversion luminescence of β-NaYF4:Yb3+, Er3+@β-NaYF4 core/shell nanoparticles:excitation power density and surface dependence. [J]. J. Phys. Chem. C,2009,113:7164-7169.
    [43]Mai H. X., Zhang Y. W., Si R., Yan Z. G., Sun L. D., You L. P., Yan C. H., High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties. [J]. J. Am. Chem. Soc.,2006,128:6426-6436.
    [44]Boyer J. C., Gagnon J., Cuccia J. A., Capobianco J. A., Synthesis, characterization, and spectroscopy of NaGdF4:Ce3+, Tb3+/NaYF4 core/shell nanoparticles. [J]. Chem. Mater.,2007,19:3358-3360.
    [45]Li Z. Q. Z. Y., Jiang S., Multicolor core/shell-structure upconversion fluorescent nanoparticles. [J]. Adv. Mater,2008,20:4765-4769.
    [46]Li Z. Q., Zhang Y., An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb,Er/Tm nanocrystals with controllable shape and upconversion fluorescence. [J]. Nanotechnology,2008,19:1-5.
    [47]Goto T. E., Lopez R. F., Oliveira O. N., Caseli L., Enzyme activity of catalyse immobilized in Langmuir-Blodgett films of phospholipids. [J]. Langmuir,2010,26: 11135-11139.
    [48]Moula G., Aroca R. F., Plasmon-enhanced resonance raman scattering and fluorescence in Langmuir-Blodgett Monolayers. [J]. Anal. Chem.,2011,83:284-288.
    [49]Reuter S., Hofmann A. M., Busse K., Frey H., J. K., Langmuir and Langmuir-Blodgett films of multifunctional amphiphilic polyethers with cholesterol moieties. [J]. Langmuir,2011,27:1978-1989.
    [50]Yamaki T., Asai K., Alternate multilayer deposition from ammonium amphiphiles and titanium dioxide crystalline nanosheets using the Langmuir-Blodgett technique. [J]. Langmuir,2001,17:2564-2567.
    [51]Ren Y., Chen M., Zhang Y., Wu L. M., Fabrication of rattle-type TiO2/SiO2 core/shell particles with both high photoactivity and UV-shielding property. [J]. Langmuir,2010,26:11391-11396.
    [52]Seo J., Schattling P., Lang T., Jochum F., Nilles K., Theato P., Char K., Covalently bonded layer-by-layer assembly of multifunctional thin films based on activated esters. [J]. Langmuir,2010,26:1830-1836.
    [53]Kharlampieva E., Kozlovskaya V., Sukhishvili S. A., Layer-by-Layer hydrogen-bonded polymer films:from fundamentals to applications. [J]. Adv. Mater., 2009,21:3053-3065.
    [54]Zhai L., Cebeci R C., Cohen R. E., Rubner M. F., Stable superhydrophobic coatings from polyelectrolyte multilayers. [J]. Nano Lett.,2004,4:1349-1353.
    [55]Bao Y., Luu Q. A., Lin C. K., Schloss J. M., May P. S., Jiang C. Y, Layer-by-layer assembly of freestanding thin films with homogeneously distributed upconversion nanocrystals. [J]. J. Mater. Chem,2010,20:8356-8361.
    [56]唐伟忠,薄膜材料制备原理.[M].2005,73.
    [57]Uda H., Yonezawa. H., Ohtsubo. Y., Kosaka. M., H. S., Thin CdS films prepared by metalorganic chemical vapor deposition. [J]. Energy Mater. Sol.,2003,75: 219-226.
    [58]Mercey B., Lecoeur P., Hervieu M., Wolfman J., Simon C., Murray H., Raveau, [101] Oriented Pr0.7Ca0.3-xSrxMnO3 thin films prepared by rf magnetron reactive sputtering. [J]. Chem. Mater.,1997,9:1177-1185.
    [59]Matolin V., Matolinova I., Vaclavu M., Khalakhan, I.,, Vorokhta M., Fiala R., Pis I., Sofer Z., Poltierova-Vejpravova J., Mori T., Potin V., Yoshikawa H., Ueda S., Kobayashi K., Platinum-Doped CeO2 thin film catalysts prepared by magnetron sputtering. [J]. Langmuir,2010,26:12824-12831.
    [60]Allen N. S., Edgea M., Ortega A., Sandovla G, Liauwa C. M., Verrana J., Degradation and stabilisation of polymers and coatings:nano versus pigmentary titania particles. [J]. Polym. Degrad. Stab.,2004,85:927-946.
    [61]Li Y, Zhang H., Guo Z., J. H., Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst. [J]. Langmuir,2008, 24:8351-8357.
    [62]Li G. S., Zhang D. Q., Yu J. C., A new visible-light photocatalyst:CdS quantum dots embedded mesoporous TiO2. [J]. Environ. Sci. Technol.,2009,43:7079-7085.
    [63]Hong X. T., Wang Z. P., Cai W. M., Lu F., Zhang J., Yang Y Z., Ma N., Liu Y J., Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. [J]. Chem. Mater.,2005,25:1548-1552.
    [64]Jagadale T. C., Takale S. P., Sonawane R. S., Joshi H. M., Patil S. I., kale B. B., Ogale S. B., N-Doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method. [J]. J. Phys. Chem. C,2008,112:14595-14602.
    [65]Shiraishi Y.,Saito N., T. H., Adsorption-driven photocatalytic activity of mesoporous titanium dioxide. [J]. J. Am. Chem. Soc.,2005,127:12820-12822.
    [66]E. O. F., Inorganic materials as catalysts for photochemical splitting of water. [J]. Chem. Mater.,2008,20:35-54.
    [67]Nowotny J., Bak T., Nowotny M. K., Sheppard L. R., TiO2 surface active sites for water splitting. [J]. J. Phys. Chem. B,2006,25:18492-18495.
    [68]Kim Y., Kim C. H., Lee Y, Kim K. J., Enhanced performance of dye-sensitized TiO2 solar cells incorporation COOH-functionalized Si nanoparticles. [J]. Chem. Mater.,2010,22:207-211.
    [69]Jang S. R., Lee C. C., Choi H., Ko J. J., Lee J., Vittal R., Kim K. J., Oligophenylenevinylene-functionalized Ru(II)-bypyridine sensitizers for efficient dye-sensitized nanocrystalline TiO2 solar cells. [J]. Chem. Mater.,2006,18: 5604-5608.
    [70]Kiwi J., Nadtochenko V., Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrance at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy. [J]. Langmuir,2005,21:4631-4641.
    [71]Cosa G., Galletero M. S., Fernandez. L., Marquez F., Garcia H., Scaiano J. C., Turning the photocatalytic activity of titanium dioxide by encapsulation inside zeolites exemplified the cases of thianthrene phtooxygenation and horseradish peroxidase photodeactivation. [J]. New. J. Chem.,2002,26:1448-1455.
    [72]yoneyama H., Torimoto T., Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations. [J]. Catal. Today, 2000,58:133-140.
    [73]Djerdjev A. M., Beattie J. K., O'Brien R. W., Coating of silica on titania pigment particles examined by electroacoustics and dielectric response. [J]. Chem. Mater., 2005,21:3844-3849.
    [74]Tissot I., Reymond J. P., Lefebvre F., Bourgeat-Lami E., SiOH-Functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles. [J]. Chem. Mater.,2004,14:1325-1331.
    [75]Caruso F., Lichtenfeld H., Donath E., Mohwald H., Investigation of electrostatic interactions in poly electrolyte multilayer films:binding of anionic fluorescent probes to layers assembled onto colloids. [J]. Macromolecules,1999,32:2317-2328.
    [76]Caruso F., Mohwald H., Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids. [J]. Langmuir,1999,15:8276-8281.
    [77]Caruso F., Spasova M., Susha A., Giersig M., Caruso R. A., Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. [J]. Chem. Mater.,2001,13:109-116.
    [78]Hurum D. C., Gray K. A., Recombination pathway in the Deguss P25 formulation of TiO2:surface versus lattice mechanism. [J]. J. Phys. Chem. B,2005, 109:977-980.
    [79]Hurum D. C., Agrios A. G., Gray K. A., Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. [J]. J. Phys. Chem. B,2003, 107:4545-4549.
    [80]Stober W., Fink A., Bohn E., Controlled growth of monodisperse silica spheres in the micron size range. [J]. J. Colloid Interface Sci.,1968,26:62-69.
    [81]李建宇,稀土发光材料及其应用.[M].2003,
    [82]Chen M., Xie L., Li F. Y., Zhou S. X., Wu L. M., Capillary-force-induced formation of luminescent polystyrene/(rare-earth-doped nanoparticles) hybrid hollow spheres. [J]. ACS Appl. Mater. Interfaces,2010,2:2733-2737.
    [83]Zhang Q. Y., Yang C. H., Jiang Z. H., Concentration-dependent near-infrared quantum cutting in GdBQ3:Tb3+, Yb3+ nanophosphors. [J]. Appl. Phy. Lett.,2007,90: 1-3.
    [84]He Hu L. X., Jing Zhou, Fuyou Li, Tianye Cao, Chunhui Huang, Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells. [J]. Chem. Eur. J,2009,15:3577-3584.
    [85]Chen M., Wu L. M., Zhou S. X., You B., A method for the fabrication of monodispese hollow silica spheres. [J]. Adv. Mater,2006,18:801-806.
    [86]Wang Z. X., Wu L. M., Chen M., Zhou S. X., Facile synthesis of superparamagnetic fluorescent Fe3O4/ZnS hollow nanospheres. [J]. J. Am. Chem. Soc., 2009,131:11276-11277.
    [87]Sun Z. X., Xu L., Guo W. H., Xu B. B., Liu S. P., Li F. Y, Enhanced photoelectrochemical performance of nanocomposite film fabricated by self-assembly of titanium dioxide and phlyoxometalates. [J]. J. Phys. Chem. C.,2010,114: 5211-5216.
    [88]Wan Y., Zhao D. Y., On the controllable soft-templating approach to mesoporous silicates. [J]. Chem. Rev.,2007,20:2821-2860.
    [89]Lee S. L., K, Zhong, Z. H., Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition. [J]. Nano Lett,2010,10:4702-4707.
    [90]Reincke F., Hickey S. G, Kegel W. K., Vanmaekelbergh D., Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. [J]. Angew. Chem. Int. Ed.,2004,43:458-462.
    [91]Park Y. K., Yoo S. H., Park S., Assembly of highly ordered nanoparticle monolayers at a water/hexane interface. [J]. Langmuir,2007,23:10505-10510.
    [92]Duan H. W, Wang D. Y, Kurth D. G, Mhowald H., Directing self-assembly of nanopartilces at water/oil interfaces. [J]. Angew. Chem. Int. Ed.,2004,43:5639-5642.
    [93]Shi H. Y, Hu B., Yu X. C., Zhao R. L., Ren X. F., Liu S. L., Liu J. W., Feng M., Xu A. W, Yu S. H., Ordering of disordered nanowires:spontaneous formation of highly aligned, ultralong Ag nanowire films at oil-water-air interface. [J]. Adv. Funct. Mater.,2010,20:958-964.
    [94]Wang J., Wang D. Y, Sobal N. S., Giersig M., Jiang M., Mohwarld h., Stepwise directing of nanocrystals to self-assemble at water/oil interfaces. [J]. Angew. Chem. Int. Ed.,2006,45:7963-7966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700