用户名: 密码: 验证码:
液压支架机液联合仿真与液压控制系统分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着采煤工艺的发展,对于综放工作面关键设备液压支架的整体性能要求越来越高。为研究、设计和开发高性能的液压支架,单纯利用传统的设计方法需要进行样机的试制和各种性能试验,周期长、成本高,变更参数和条件困难,有时甚至无法实现。近年来兴起的虚拟样机技术为液压支架的设计和研究提供了新的思路,虚拟样机技术以计算机建模和仿真技术为支持,利用虚拟产品模型,在产品实际制造之前对产品的性能进行分析和评估,实现对设计方案的评估和优化,从而达到产品设计的最优目标。
     本文以某型液压支架为研究对象,利用虚拟样机技术,借助三维设计软件PRO/E和多体动力学仿真软件ADAMS建立了液压支架的物理模型,进行了运动学仿真分析,主要分析了液压支架立柱升降机构、尾梁摆动与插板伸缩机构以及护帮板摆动机构的运动特性;借助控制系统分析软件EASY5搭建了液压控制系统模型,分析了支架液压系统各回路的静、动态特性;另外,研究了ADAMS和EASY5两个软件在进行联合仿真时的接口问题,从而建立了完整的液压支架机液一体化虚拟样机,完成了整体系统的真实模型,实现了机械系统与液压系统的互动联合仿真。
     通过建立液压支架机液联合仿真模型,对该型液压支架的立柱升降回路和护帮千斤顶回路进行了仿真研究,分析了液压动力回路与相应机械系统的互动响应特性,掌握了液压支架较为真实准确的整机动态特性,为液压支架性能测试和研究提供了新的方法。另外,本文所研究的联合仿真技术可以应用到其他机电液产品设计开发中去,对提升我国机电产品的国际竞争力具有重要意义。
With the developing of mining technology, the demanding for capability of key equipment in the fully mechanized caving mining face is increasing. To research, design and develop hydraulic support with high performance applications, more time and cost would be needed to produce and test prototype, and can not change parameters of hydraulic support freely, if only use traditional design ways. The virtual prototyping technology just beginning to emerge in recent years provides a new way for the design and study of hydraulic support. Analyze and assess the product's performance before the product is manufactured using virtual prototyping technology model which can optimize the design project to achieve the optimal target.
     This paper has taken a certain type of hydraulic support as the study object. Based on the virtual prototyping technology, getting help from the 3D design software PRO/E and mechanical systems dynamic analysis software ADAMS, the physical model of hydraulic support is established and executes kinematical simulation. The movement characteristics of the prop rising and falling mechanism, end beam swinging and inserting plate extension mechanism as well as the guard board swinging mechanism are the crucial points of the study. Through the system analysis software EASY5, the hydraulic system model is set up and the static and dynamic characteristics of some hydraulic loops are analyzed. In addition, the issue of interface produced by two types of software is studied and the mechanical-hydraulic integration virtual prototyping model is established which is the real model of the whole system. The co-simulation of mechanical system and hydraulic system is realized.
     By building the mechanical-hydraulic integration co-simulation model, the prop control hydraulic loop and guard board control hydraulic loop are simulated and studied. Analyze the interaction response characteristics between the hydraulic power loop and the mechanical system which has the true and accurate dynamic characteristics of the whole machine mastered by the designer. This way of co-simulation has provided a new method for performance testing and research of hydraulic support.In addition, the co-simulation technology studied in this paper can be applied in the design and development of other mechanical-electronic-hydraulic products, which has important significance to enhance our international competitiveness of the mechanical-electronic-hydraulic products.
引文
1.MSC.Software支术部.MSC.Software机构控制一体化仿真整体解决方案[J].船舶科学技术,2008(2):8-10.
    2.潘东升,陈松茂,丘宏扬等.液压仿真技术的现状及发展趋势[J].新技术新工艺,2005(4):7-11.
    3.程安宁.液压仿真技术的应用与发展[J].机床与液压,2004(5):9-10.
    4.W.霍夫罗著,陈鹰译.液压元件及系统的动态仿真[M].浙江:浙江大学出版社,1988.
    5.李运华,史维祥.流体动力技术的现状与发展[J].机床与液压,1994(4):187-193.
    6. Back W Hoffmann. DSH-Program System for Digital Simulation of Hydraulic Systems[J]. The Sixth International Fluid Power Symposium,1981(4):95-114.
    7. Bowns D E, Tom linson S P, Hull S R. Applications of an Hydraulic Automatic Simulation Package to the Design of Fluid Power Systems[J]. Proceedings of Beijing International Fluid Power Symposium,1984(10):1-23.
    8. Bowns D E, Tom linson S P, Dugdale S K. Progress Towards a General Purpose Hydraulic System Simulation Language[J]. The Sixth International Fluid Power Symposium,1987(4): 46-48.
    9.刘能宏,刘其云.复杂非线性液压系统动态特性的数字仿真[M].液压与气动,1982(4):1-5.
    10.田树军,杨国权,刘能宏.YYG190型液压凿岩机动态特性仿真研究[J].凿岩机械气动工具,1994(3):51-55.
    11.冯宇军,田树军.功率键合图方法在人体循环系统计算机仿真研究中的应用[J].大连理工大学学报,1999,39(3):429-433.
    12. Li Yongtang, Yu Xinlu. A new method of modeling and simulation for large scale hydraulic system[C]. The 32nd International MATADOR Conference, Manchaester, UK1997.10.
    13.田树军.液压系统动态建模与仿真方法研究及通用仿真软件包开发[D].大连:大连理工大学,1991.
    14.高磊.液压系统动态特性通用仿真软件包的研究开发[D].大连:大连理工大学,1998.
    15.王士刚.液压系统可视化动态建模技术及其软件实现方法研究[D].大连:大连理工 大学,2001.
    16.王勇.液压仿真软件的研究进展[J].系统仿真学报,1998(10):54-57.
    17.宁桂峰.满翠华.CAE在液压支架设计中的应用研究[J],煤矿机械,2005(2):49-50.
    18.孙悦刊.基于虚拟样机技术的液压支架设计方法研究[J].青岛:山东科技大学,2005.
    19.徐亚军,崔柳,朱军.基于虚拟样机的液压支架运动仿真和动态干涉检查[J].煤矿机械,2004(12):67-69.
    20.徐亚军,王国法.基于虚拟样机技术的液压支架模型干涉检查[J].煤矿机电,2005(1):34-36.
    21.高宇,石岚,赵树庆.基于虚拟样机技术的液压支架动力学建模与分析[J].太原理工大学学报,2005,5.
    22.徐亚军,王国法,朱军.液压支架推杆十字头万向接的有限元分析[J].煤矿机械,2005(3):38-40.
    23.徐亚军,王国法.基于虚拟样机技术的液压支架模型干涉检查[J].煤矿机电,2005(1):34-36
    24.宁桂峰,王国法,满翠华等.ANSYS在新型立柱设计中的仿真应用[J].机械设计与制造,2004(6):20-21.
    25.王国彪,饶明杰.液压支架优化设计与计算机模拟分析[M].北京:机械工业出版社,1994.
    26.王国法等.液压支架技术[M].北京:煤炭工业出版社,1999.
    27.李军,邢俊文,覃文浩.ADAMS实例教程[M].北京理工大学出版社,2002.
    28.郑建荣.ADAMS-虚拟样机技术入门与提高[M].北京:机械工业出版社,2003,136-172.
    29.李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2009.
    30陈立平,张云清,任卫群,覃刚.机械系统动力学分析及DAMS应用教程[M],北京:清华大学出版社,2005.
    31.丁寿滨,常宗瑜等.ADAMS与常用CAD软件之间的接口[J].微计算机信息,2005.21(10).
    32.耀华.液压支架四连杆机构计算机辅助设计[J].煤炭科学技术,2007,35(6):51-54.
    33.韩凤霞,胡登高,范迅.液压支架四连杆机构的三维建模和运动仿真[J].煤矿机械,2006,27(09):67-68.
    34.王国法,徐亚军,孙守山.液压支架三维建模及其运动仿真[J].煤炭科学技术,31(1): 42-45,2003.
    35.MSC.Software公司.MSC.EASY5系统与控制虚拟产品开发解决方案[J].CAD/CAM与制造业信息化,2004(8):54-55.
    36. Joan Pearson.EASY5 User Guide. Boeing Company. Printed in the United States of America,2005.
    37. G.S. Duleba, C. W. Ginsburg, J. E. Harrison. Hydraulic System Modeling Steady-State Analysis, Simulation Using a Lumped Mass Approach [A].第三界国际流体传动及控制学术会议论文集[C].北京:万国学术出版社,1999:572-577.
    38. N.Fritz, A.Elsswy, K.-H.Modler, H.Goldhahn. Simulation of Mechanical Drives with Easy5[J]. Computers&Industrial Engineering,1999,37(1-2):231-234.
    39. 美国波音公司. Hydraylic Library Guide[Z],1999.
    40. Proyavkin, E. T. New nontraditional technology of working thin and steep coal seams [J]. Ugol Ukrainy,1993,94(3):2-4.
    41. Vakilian, M., R.C. Degeneff, and M. Kupferschmid, Computing the internal transient voltage response of a transformer with a nonlinear core using gear's method part 2: verification. IEEE Transactions on Power Systems,1995.10(2):702-708.
    42. Rautert, J. and F.G Kollmann. Computer simulation of dynamic forces in helical and bevel gears. Chicago, IL, USA:Publ by American Soc of Mechanical Engineers (ASME), New York NY USA.1989.2:435-440.
    43. Maciel, M.R.W. and R.P. Brito, Gear's procedure for simulation of complex distillation. Brazilian Journal of Chemical Engineering,1995.12(2):106-112.
    44.程钢,刘维平,王红岩等.基于MSC.EASY5软件车辆动力传动系统仿真平台的开发与应用[J].计算机工程与应用,2004,(7):185-188.
    45.曹春玲.煤矿乳化液泵站液压系统[J].液压与气动,2006,(8):34-35.
    46.杨涛.乳化液泵站液压系统建模仿真与控制系统开发[D].山西太原:太原理工大学,2008.
    47.李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社,2003.
    48.刘能宏,田树军.液压系统动态特性数字仿真[M].大连:大连理工大学出版社,1993.
    49. Li Yongtang, Lei Bufang. Research of the dynamic characteristics on a new hydraulic system of electro-hydraulic hammer. Chinese Jorunal of Mechanical Engineering,2001.
    50.韩伟,王国法,李政等.液压支架移架速度的定量化研究[J].煤炭学报,2003,28(2): 219-224.
    51. M Lizell. Dynamic Leveling A Low Power Active Suspension With Adaptative Control[J]. Vehicle System Dynamics,1991(03).
    52.丰吉贺,孙伟等.联合仿真技术在车体半主动悬架系统模糊控制中的应用[J].装甲兵工程学院学报,2007,21:40-43.
    53.邱伟前.乳化液泵机液耦合建模与仿真[D].西安:西安科技大学,2008.
    54.高饮和,郭晓松.基于ADAMS的多级液压缸系统仿真建模[J].机床与液压,2003(1),:93-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700