用户名: 密码: 验证码:
木材压缩弯曲理论及其设备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们在很早以前就已经应用火烤法弯曲木材,随着生活水平的提高,弯曲木被越来越多地应用在家具及门窗上,弯曲木构件的加工水平也越来越高,相继出现了手工弯曲、机械弯曲和数控弯曲等加工方法,计算机技术的发展也对弯曲木的加工产生了巨大的推动作用。
     弯曲木加工,首先要进行木材原料选择,只有选择了适合弯曲的树种才能进行下一步的软化处理,软化过程是将木材放入高温高压的容器中,经过长时间的蒸煮使其软化,必要时可以加入氨水以提高软化效果。随着科技水平的提高,高频和微波加热软化是今后发展的主要方向之一。随着弯曲方式的多样化,局部加热、局部压缩、局部弯曲也是达到木材多向弯曲的手段,这样可以减少拼接和胶合带来的麻烦,提高弯曲木的美观和耐用性。目前世界各国的压缩机多以成捆压缩为主,成捆压缩可以弥补因单根木条上的缺陷而引起的压缩不均现象,本文对成捆压缩的布局和压缩方法进行了讨论,对于工业化生产有一定的实践意义。
     无论是手工弯曲还是机械弯曲都需借助一定的工具,模具、刚带是在弯曲过程中起着决定性作用的工具,它可以使中性层外移,减少外层纤维劈裂的可能性,提高弯曲木成品率;在同等条件下,缩小木材最小弯曲半径,达到更大的弯曲曲率。文中分别对矩形截面和圆形截面的弯曲木的最小弯曲半径加以分析,并用图表说明了最小弯曲半径的变化范围,即使同样是使用钢带,用端部可调的钢带比用端部固定的钢带弯曲木材所形成的弯曲半径更小。
     对弯曲成形理论进行了分析,弯曲木中性层的位置是决定弯曲成功与否的关键,通过对简式弯曲和复式弯曲的分析,对简式弯曲的中性层位置进行了定量描述,指出了与其相关的两个重要参数(极限拉伸强度与极限压缩强度)的关系;定性地说明了钢带弯曲对中性层的外移而导致高成品率的原因。在对复式弯曲方法的分析中,指出其提高弯曲木密度,增加构件刚度的原因。在研究过程中发现,传统的复式弯曲方法在加工无固定旋转中心和曲率较小的弯曲木构件时应用受到限制,提出了数控复式弯曲方法,解决了无固定旋转中心和曲率变化较大的弯曲木构件的加工问题,并能与发展相对完善的数控系统连接起来,对弯曲木加工业具有很大推动作用。文中对机械手弯曲进行了描述,机械手弯曲也是机械与数控系统相结合的弯曲技术,它对木材多向弯曲是一个突破,可以很好地解决木材多向弯曲的成形问题。文中对弯曲的轨迹设计和进给量的计算进行了详细说明,并应用实例进行了分析。但是,这种方法的局限性是无法将钢带加入其中,对弯曲木的最小弯曲半径有一定的限制。机械手弯曲是由计算机控制的,所以可以利用计算机资源对木材进行有限元分析,通过有限元分析可以迅速求解木材在特定条件下的弯曲形状和弯曲应力,更有利于在弯曲过程中实时考虑木材湿度、弹性模量和材种等各方面的因素。
     对弯曲成形和铣削成形的弯曲构件进行了对比分析,通过数学描述解析方法证明了弯曲成形的构件具有更高的强度,同时也指出了两者在出材率上的差异。对我国弯曲木加工企业的技术改进和木材的深加工利用将有一定的价值。
     确立了数控弯曲设备(弯曲机械手)的总体结构,设计了其控制系统,并对系统实现的功能及系统的特点进行了详细的说明。
     以国家林业局“948”项目“压缩法加工弯曲木生产工艺技术及设备引进”和国家“863”计划项目“弯曲木成形加工机器人生产线”为课题来源,并得到了它们的资助。
Long time ago, people found that timber could be bended with the fire shining. With the development of living condition, the bending woods were applied to the furniture and windows, its processes were filled with more technology. It was applied to the bending wood making that manual bending, mechanical bending and NC bending, and the development of computer technology promoted the bending wood process.
     In wood bending, the raw material must be selected at first, which was the foundation to the next softening procedure, softening means the timbers were put into the container with high temperature and press ion. After a long time, the timber was plastic; sometimes the ammonia could be used to enhance the plasticizing affection. The high frequency and microwave softening are the new research fields in the science and technology advancement.
     The bending method was multiplex. It is necessary to multi direction wood bending that partial heating, partial compressing and partial bended, which reduced the trouble of joint and agglutination, enhanced the appearance quality and duration. To the presser all the world, the precession in bundles was the process tendency, which eliminated press unbalance caused by the defection of single timber. The distribution and press ion in bundles could provide the theory foundation in the industrial production.
     Whether manual bending or mechanical bending, the tools and jigs were necessary, and the steel strap was the key tool in the bending procedure, it made the unchanged layer moving outside, decrease the possibility of outside wood fiber split. In the same condition, the steel strap made the bending radius smaller got great curvature. In this paper, the smallest bending radius of rectangle cross section and round stick were anal sized with the figure, form its variety scope, it was showed that the bending with adjustable end stop could get smaller bending radius than fixed end stop in the steel strap using.
     With the analysis of bending theory, the position of unchanged layer is the key to bending success. In the analysis of simple bending and compound bending, the position of simple bending's unchanged layer was described; it is connected with two vital parameters, the ultimate tensile strength and ultimate press strength. The great productive ratio was illustrated caused by unchanged layer moving outside with the steel strap. From the analysis of compound bending, it was showed that the density and strength was heightened. During the research of compound bending, traditional compound bending was not fit to the components without certain rotary center or with great various curvatures. The NC compound bending was illustrated to solve this question, and it could connect wood bending with NC technology, which would promote the development bending wood industrial greatly. The mechanical hands bending was combine equipment too, which solved the forming question of multi direction bending wood. It is creative for the multi direction bending wood making. The track design and feed calculation were introduced with example, but the steel strap technology couldn't be applied to the mechanical hands bending, so the smallest bending radius was limited. The mechanical hands were controlled by computer, so the Finite Element Method could be used to analyze the bending shape and stress in the certain condition, which conduced to synthesize the effect of moisture, elasticity and wood species.
     Contrasting bending and milling to the curve components' process, the bending component was with greater strength than milled component with mathematic description, and the difference in recovery ratio was illustrated too. All above should be valuable to the technology advancement and wood further utilizing in the wood bending corporations.
     The typical equipment, wood bending hands was initialized in structure. Control system was designed, and illuminated the system's function and characteristics.
     This thesis comes from the national forestry bureau's "948" project "The Technics and Equipments Importation of Bending Wood with Compressing" and national "863" plan "Robot Product Line for Wood Bending", and supported by them.
引文
[1] 奥拓·埃格尔特.木材弯曲成型的应用、工艺及设备[J].木材工业,2003,17(4):34
    [2] 北京林业大学.木材学[M].北京:中国林业出版社,1982
    [3] 曹上秋,解林坤.浅析实木弯曲及其软化处理技术[J].家具与室内装饰,2005(5):74-75
    [4] 曹金珍.木材的机械吸湿蠕变[J].北京林业大学学报,1998(9):94-98
    [5] 陈玉和.泡桐压缩木回弹率的影响因素[J].中南林学院学报,1997(1)
    [6] 陈建桥.材料力学[M].武汉:华中科技大学出版社,2001.4
    [7] 陈维山,赵杰.机电系统计算机控制[M].哈尔滨:哈尔滨工业大学出版社,2002.8
    [8] 成俊卿.木材学[M].中国林业出版社,1985.9
    [9] 程瑞香,张一帆.实验设计与数据处理[M].东北林业大学出版社,2001.4
    [10] 崔振源编著.断裂韧性与测试原理和方法[M].上海:科学技术出版社,1981
    [11] 费本华,张东升.木材断裂裂纹及应力场的分形研究[J].木材工业,2003,17(3):7-12
    [12] 高庆.工程断裂力学[M].重庆:重庆大学出版社,1986
    [13] 国家标准局.金属材料平面应变断裂韧度KIC试验方法(GB4161-84.北京:中国标准出版社,1984
    [14] 何玲芝.汽蒸处理对柞木材水分移动性的影响[J].林业科技,1994,19(6):41-42
    [15] 黄旭东等.数控机床与数控技术[M].北京:清华大学出版社,2000.5
    [16] 江泽慧,任海青.木材断裂过程的研究[J].核技术,2000,23(8):573-576
    [17] 姜勇.Ansys7.0[M].清华大学出版社,2003:66-100
    [18] 姜树海,陆怀民.林业机器人研究动态[J].森林工程,1998,14(3):39-40
    [19] 姜树海等.旋切定心与上木技术的发展[J].林业机械与木工设备,2000,28(2):4-7
    [20] 李大纲.温度对意杨木材弯曲性能的影响[J].林业科技开发,1994,(2):29-31
    [21] 李大纲.木材微波加热弯曲工艺学原理.[博士后研究工作报告].2002,12
    [22] 李佳,赵小林等.数控机床及应用[M].北京:清华大学出版社,2001.7
    [23] 李坚等.木材科学[M].哈尔滨:东北林业大学出版社,1994
    [24] 李坚等.木材保护学[M].哈尔滨:东北林业大学出版社,1999
    [25] 李坚.新型木材[M].哈尔滨:东北林业大学出版社,1993
    [26] 李坚.加热、水蒸气处理对木材横纹压缩变形的固定作用[J].东北林业大学学报,2000,4:4-6
    [27] 李军.氨水处理与微波加热联合软化木材的弯曲工艺[J].南京林业大学学报,1998,22(4):55-59
    [28] 李军.浅析曲木工艺中蒸煮软化机理[J].家具,1997,(4):1-4
    [29] 李军.浅析实木弯曲的弯曲机理及影响因素[J].林业科技开发,1998(6):16-18
    [30] 李军.浅谈曲木工艺中的蒸煮软化机理[J].木材工业,1997,4:4-6
    [31] 李青.国产榆木压缩木的研制[J].木材工业,2000.12
    [32] 刘忠传.木制品生产工艺学[M].北京:中国林业出版社,1993
    [33] 刘君良.木材流变学研究综述[J].木材工业,1998.1:48-53
    [34] 刘绪林.浅谈家具中木材弯曲成型技术的发展[J].木材工业,1999(1):2-7
    [35] 刘元.试样尺寸对木材物理力学性质的影响[J].中南林学院学报.2000.12:46-50
    [36] 刘一星等.木材横纹压缩大变形应力-应变关系的定量表征[J].林业科学.1995.9:436-442
    [37] 刘应安.木材干燥应力数学模型[J].东北林业大学学报,1998,26(5):56-59
    [38] 刘志佳等.弯曲木材试件尺寸稳定性与陈放时间的关系[J].木材加工机械,2006(6):31-33
    [39] 陆文达.木材改性工艺学[M].哈尔滨:东北林业大学出版社,1993:63-67
    [40] 马世春.汽蒸处理改善木材尺寸稳定性初探[J].木材工业,1998,12(5):36-39
    [41] 马岩.压缩弯曲木平面机器人弯曲曲线形成理论研究[J].林业科学,2003,39(4):108-112
    [42] 马岩.理想原木材积通式和缺陷原木模型与材积推导[J].东北林业大学学报,1990,18(4):81-94
    [43] 马岩著.原木和锯材建模及求积理论[M].哈尔滨:东北林业大学出版社,1996
    [44] 马岩,赵辉.矩形截面对称板材弯曲成型和铣削成型出材率的解析分析[J].林业科学,2006,42(11):106-109
    [45] 慕中民.高频加热制造弯曲木工艺初探[J].人造板通讯,2005(7):24-25
    [46] 任海青,邵卓平.断裂力学在木材学中的应用[J].木材工业,1999,13(5):20-23
    [47] 任洪娥,马岩,赵辉,丛宪冬.弯曲木加工机器人进给量数控编程的数学方法[J].东北林业大学学报.2002,30(4):50-52
    [48] 邵卓平.木材断裂韧性测试研究[J].力学与实践.2002,24(4):49-51
    [49] 邵卓平.线弹性断裂力学原理在木材中应用的特殊性与木材顺纹理断裂[J].林业科学,2002,38(6):110-115
    [50] 邵卓平.柔度法标定木材断裂韧性的研究[J].林业科学,2001,38(2):113-117
    [51] 邵卓平,任海青,江泽慧.木材横纹理断裂及强度准则[J].林业科学,2003,39(1):119-125
    [52] 邵卓平,任海青,江泽慧.柔度法标定木材断裂韧性的研究[J].林业科学,2001,37(2):112-116
    [53] 沈德君,牛笑一.白蜡木曲木家具的可行性研究[J].家具与室内装饰,2000(6)
    [54] 申利明.高频介质加热应用于曲木工艺的研究[M].南京林业大学,1998
    [55] 宋魁彦,王逢瑚,宋宇宏.榆木顺纹压缩弯曲技术[J].林业科学,2004,40(2):126-130
    [56] 宋魁彦.现代家具生产工艺与设备[M].黑龙江科技出版社.2001.12:178-186
    [57] 孙艳玲,陆振友.木材断裂力学的研究[J].北京林业大学学报,1997,19(3):85-92
    [58] 孙友富.制材生产技术[M].北京:中国林业出版社,1999:27-28
    [59] 王立昌.木材压缩处理技术简介[J].建筑人造板,2001,(3):8-10
    [60] 王洁瑛.木材变定的产生、回复及永久固定[J].北京林业大学学报,1999.3:71-77
    [61] 王洁瑛.饱水和气干状态的压缩成型及其热处理永久固定[J].北京林业大学学报,2000.1:72-75
    [62] 王逢瑚.现代家具设计与制造[M].东北林业大学出版社,1994.4:270-237
    [63] 王启霞,黄荣英.机器人面临更高要求[J].机器人情报,1994,38(2):3~4
    [64] 王喜明,王欣.木材的皱缩[J].木材工业,2000,14(2):29-30
    [65] 王雅生,于旭东等.基于P C I总线的两轴运动控制卡的设计[J].组合机床与自动化加工技术,2004,31(2):31~34
    [66] 吴振彪.工业机器人[M].武汉:华中理工大学出版社,1997:26~32,36~42,45~49
    [67] 徐其文.弯曲木成型技术及其在家具制作中的应用研究[J].南通工学院学报,2002,1(3):94-96
    [68] 杨创创,史小娟,韩维生,肖建平.弯曲木构件的形变及其控制措施[J].西北林学院学报,2002,17(2):76-78
    [69] 杨会峰,刘伟庆.FRP增强胶合木梁弯曲变形的解析分析[J].南京工业大学学报,2006,28(3):1-5
    [70] 叶翠仙.荷木小径材弯曲工艺[J].福建林学院学报,2001(2):135-138
    [71] 杨庆等.家具弯曲件的制作及选料[J].家具,2001.10
    [72] 尤佳.慢说弯曲木家具[J].家具,1997(5):18-19
    [73] 张彬渊.木材弯曲成型技术[J].家具,1992:1-6
    [74] 张力平.木材软化技术的初步研究[J].木材工业,1994,8(2):21-23
    [75] 朱政贤.木材干燥[M].北京:中国林业出版社,1994.3:76-80
    [76] 周保华.木材干燥过程中内应力的初步研究[J].南京林产工业学院学报,1982(2):76-90
    [77] 中华人民共和国国家标准.GB/T1931-1991.木材含水率测定方法
    [78] 中华人民共和国国家标准.GB/T1936.1-1991.木材静曲强度试验方法
    [79] 张帝树.白桦及毛白杨小径材木方软化工艺的研究[J].北京林业大学学报.1994.1:47-52
    [80] 张力平.木材软化技术的初步[J].木材工业,1994.2:21-23
    [81] 赵辉,陆怀民.矩形截面对称板材弯曲成型和铣削成型的强度分析[J].林业科学, 2005,41(6):195-197
    [82] 赵辉,马岩.木材复式弯曲成形方法分析[J].木材加工机械,2006(3):22-23
    [83] 朱晓春,吴祥等.数控技术[M].北京:机械工业出版社,2003.1
    [84] A Forcellese, L Fratin, F Gabrielli, F Micari. Computer aided engineering of the sheet bending process. J. Mater. Proc. Techno., 1996(60): 225-232
    [85] A L Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part Iyield criteria and flow rules for porous ductile media. ASME, J. Engng Mater. Technol., 1977(99): 2-15
    [86] Amit Acharya. A nonlinear generalization of the Koiter-Sanders-Budiansky bending strain measure. Int. Journal of Solids and Structures., 2000(37): 5517-5528
    [87] Andrea Carpinteri, Roberto Brighenti, Andrea Spagnoli. Fatigue growth simulation of partthrough flaws in thick-walled pipes under rotary bending. International Journal of Fatigue, 2000(22) 1-9
    [88] Barrent J D. Effect of crack-front width on fracture toughness of Doouglas-fir. Eng. Frac. Mech., 1976, 8(4): 711-717
    [89] Boatright S W J. Garrentt G G. The effect of microstructure and stress state on the fracture behavior of wood. J. of Materials Sci., 1983, 18: 2181-2199
    [90] BURTON, D. B. —WONNER, R: Veneer Block Optimatiztion Using Ultrasonic. Modern Sawmill and Panel Techniques 2, Volume 2, Proceedings of North American Sawmill and Panel Clinic, Portland, Oregon, March 1981.
    [91] C. O. Clorius, M. U. P, P. H, L. d. Compressive Fatigue in Wood. Wood Science. 2000(34), 21-37
    [92] C. Bengtsson, Mechano-Sorptive Bending Creep of Timber-Influence of Material Parameters. H. A. P-Und Werkstoff 2001: 229-236
    [93] J. M. Dinwood ie. Initializes smelt of the influence of moisture content and level of stressing on rate of creep and time to failure. W. S. T. 1981, 15: 125-144
    [94] Irwin G R. Analysis of stress and strain near the end of a crack traversing a plate, J. Appl. Mech., 1957, 24: 361-364
    [95] Jan J 5 R. AdaPtive - network - based fuzzy inference system, J. IEEE Trans on system Man and Cybernetics. 1993, 3(23)
    [96] J. D. Coleman, Surrey Hills. Reconsolidate wood products. US Patent 4 232 067, 1980
    [97] J Endo, T Murota, Deformation of H-beam under unsymmetrical bending, in: Z R Wang, Y He(Eds), Advanced Technology of Plasticity, Proceedings of the 4th International conference on Technology of Plasticity, Beijing, 1993
    [98] J R Rice and D M Tracey, On the ductile enlargement of void in triaxial stress fields. J. Mech. Phys. Solids, 1996(17): 201-217
    [99] J. Walters, C. R. Silversides: Injection Plating of Containerized Tree Seedings, Forest Management Institute Information Report FMR-X-120, 1979: 27
    [100] JWWA. Technical Guide to Japanese Wood Working Machinery. 1989.
    [101] KNOKEY, E. R. —HANK WANDE VOORDE, H. J.: X-Y Centering of Veneer Blocks. In: Modern Sawmill and Panel Techniques 1, volume 1, Proceedings of the north American Sawmill and Panel Clinic, Portland, Oregon March 1980: 149-152
    [102] Kristoffer. Finite element simulation of the tube hydroforming process-bending, performing and hydroforming. J. Mater. Proc. Technol., 2002(127): 401-408
    [103] Kryzanowsk T. Logging & Sawmilling Journal, 1996, 27(5): 27-28
    [104] K S Zhang. Analysis of deformation and fracture for cracked specimen of ductile steel. Engineering Fracture Mechanics, 1996(53): 625-632
    [105] K S Zhang, C Q Zheng. Computer simulation of fracture initiation and crack propagation of TPB specimens. Engng Fracture Mech., 1991(39): 859-865
    [106] K S Zhang. Fracture prediction and necking analysis. Engng Fracture Mech., 1995(52): 575-582
    [107] L. A. Donaldson, JC. P. Turner. The Influence of Compression Wood and Microfibril Angle on the Occurrence of Distortion in Window Flames Made from Radiate Pine. H. A. P-Und Werkstoff 59. 2001. P163-168
    [108] Mayan, Tang xiaohua, Ren hong'e, Xing liping. The research of the peeling log six points centering theory. 14e SEMINIR INTERNATIONAL SURL' USINAGE DU BOIS PARIS, EPINAL, CLUNY-FRANCE, 12-19 Sep. 1999: 641-646
    [109] Mark Alberr. Software I third-Party Packages in the shop. Modem Machine shop, 1998(11)
    [110] Mohammed Ibrahim AI-Majed. High Performance Machine Tool Controllers-A Control Theoretic Study and Pc-based Realization[D]. University of California at Berkeley, 1997
    [111] M. perstorper, M. j, R. K, G J. Distortion of Norway Spruce Tiber. H. A. P-Und Werkstoff. 2001: 94-103
    [112] Mr. Jan Buchter, engineer (M. Sc.) Mr. John Adelhoej, engineer (M. Sc.) Mr. Jens Ljoerring, cabinet-maker Mr. Introduction to Compressed Wood. 1993: 3-26
    [113] M Zhan, H Yang, Z Q Jiang, Z S Zhao, Y. Lin. A study on a 3D FE simulation method of the NC bending process of thin-walled tube. J. of Materials Processing Technology., 2002(129): 273-276
    [114] M. Norimoto. Wood Bending of Sugi and Hinoki from the Thinning Operation. Wood Research. 1983. 18.
    [115] M. Norimoto. Wood Bending using Microwave Heating. Journal of Microwave Power and Electromagnetic Energy. 1989. 4
    [116] Porter A W. On the mechanics of fracture in wood. Forest Products journal, 1964, 4(8): 316-325
    [117] Shigeru Aomura, Atsushi Koguchi. Optimized bending sequences of sheet metal bending by robot. Robotics and Computer Integrated Manufacturing, 2002(18): 29-39
    [118] Sih G C, Prais P C, Irwin G R. On cracks in rectilinearly anisotropic bodies using singular isoperimetric elements, Int. J. of Fracture Mech., 1965, 1: 189-203
    [119] Souichiro Nishino, Kunio Ohya, Keisuke Naruishi. Proposal for reducing press working load and highly accurate evaluation of springback error in bending automobile sheet metal. JSAE Review, 2003(24): 283-288
    [120] Triboulot P, Jodin P, Pluvinage G. Validity of fracture mechanics concepts applied to wood by finite element calculation. Wood Sci Techol, 1984, 18: 51-58
    [121] S. pang. Modeling of Stress Development during Drying and Relief during Streaming in Pines Radiate Lumber. Drying Tech. 2000. 8
    [122] Schniewood. a. p. Creer Rupture Life of Douglas Fir. Under Cyclic Environmental Condition. Wood Sci. Tech. 1967. 1: 278-288
    [123] Tang xiaohua, Mayan, Xing liping, Ren hong'e. The research of under analytical mathematics model peeling log out put rate optimization theory, 14e SEMINIRE INTERNATIONAL SURL' USINAGE DU BOIS PARIS, EPINAL, CLUNY-FRANCE, 12-19 Sep. 1999: 435-440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700