用户名: 密码: 验证码:
碳/碳氮一维纳米材料的制备、物性以及相关器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究、优化了浮动催化化学气相沉积法制备单壁碳纳米管的生长参数,可控地制备出几种不同形貌的单壁碳纳米管并开展了相应的物性研究。在此基础上,开展了单壁碳纳米管器件的设计、构建以及电学输运特性研究。另外,利用气相沉积方法制备了富氮的碳氮微纳米线。主要内容如下:
     1.利用浮动催化CVD方法制备了三种不同形貌的单壁碳纳米管:单根单壁碳纳米管、单壁碳纳米管网格和单壁碳纳米管膜;利用不同的手段研究了单壁碳纳米管样品的形貌、结构和管径分布。在硅基底上制备了规则排列的金图案,并使同一根单壁碳纳米管同时沉积在硅和金的表面。拉曼光谱研究结果表明:与普通拉曼散射相比,表面增强拉曼散射能够更有效地实现对单根单壁碳纳米管的探测和表征。
     2.以PMMA光刻胶作为牺牲层,制备了悬空的单根碳纳米管器件;并在室温和低温下研究了碳纳米管器件的电学输运特性,观测到了半导体性碳管器件p/n型电导的双极性行为和明显的库仑振荡现象;测量结果表明碳纳米管-金属电极间的肖特基势垒对悬空碳纳米管器件的电学输运性质有着重要的影响。利用聚焦离子束技术将器件中单根碳管的两端开口,分别在真空和水蒸气气氛下研究了开口单根碳管的电学性质。通过一种经过改进的四电极方法从实验上证明:水可以进入到开口的单壁碳纳米管中,碳管的自由载流子与管内极性水分子存在一定程度的相互耦合;在外加电场的作用下,碳管内定向运动的载流子通过这种耦合引起水分子的定向运动。而水分子的定向运动可以在同一碳纳米管的另一部分导致载流子的运动和积累,从而建立起一个稳定的电动势。这说明水填充的单壁碳纳米管可以用作电能和水流动能的转换器。
     3.利用金刚石拉丝模对所制备的单壁碳纳米管膜进行后处理,得到了高密度、定向排列的碳纳米管样品。这种样品以单壁碳纳米管为结构单元构成了二维三角格子,晶格常数为19.62 ?;由于单壁管之间的距离与石墨层间距类似,在碳纳米管晶体中首次观测到尖锐、峰位与石墨(002)峰接近的衍射峰。同时,拉曼散射研究发现碳纳米管晶体中的呼吸模与原始的碳纳米管膜呼吸模相比存在明显的区别:在碳纳米管晶体中,较大管径碳管的呼吸模受到明显的抑制。碳纳米管晶体具有较大的密度、较小的电阻率和优良的光电导性能。
     4.对化学气相沉积方法进行了改进,采用具有较高热稳定性的碳氮粉末作为前驱物,在较低的实验温度下首次实现了富氮碳氮微纳米线的大规模制备。获得的碳氮微纳米线具有大的长径比和较好的石墨层状结构,样品表现出典型的sp2价键特征,并且在蓝绿光波段具有荧光特性。我们提出了富氮碳氮一维结构的气-固生长模型,并且认为在热蒸发过程中由碳氮原子组成的杂苯环(C3N3)及其衍生结构没有被破坏,而是作为基本的结构单元在温度和气流合适的位置沉积并生长成一维结构,从而保证了产物具有高的含氮量。实验结果对制备高含氮量的碳氮纳米结构和富氮掺杂的碳纳米管具有一定的指导意义。
In this thesis, we have optimized the parameters of floating catalytic chemical vapor deposition (FCCVD) technique, and prepared single-walled carbon nanotubes (SWNTs) with several different morphologies. Their related physical properties have also been investigated. Meanwhile, we have fabricated suspended SWNT devices, and measured the electrical transport properties of the devices. Moreover, we have reported the large-scale synthesis of the nitrogen-rich carbon nitride micro/nanofibers. The main results of this thesis include the following four parts.
     Firstly, by using FCCVD method, we synthesized SWNTs with three different morphologies: individual SWNTs, SWNT networks and SWNT films. The morphology, structure and diameter distribution of the as-prepared SWNT products were characterized by using several techniques. Individual SWNTs were directly deposited on Au-patterned Si substrates, which allowed us to carry out comparative studies on surface-enhanced Raman scattering (SERS) and normal Raman scattering (NRS) from the different segments of an individual SWNT. It suggested that SERS is powerful for detecting Raman signals from individual and isolated SWNTs.
     Secondly, we directly deposited individual SWNTs on the Si/SiO2 substrates covered with a ~100-nm-thick polymethylmethacrylate (PMMA) film, and then used them to fabricate suspended SWNT devices. Electrical transport properties of the SWNT devices were investigated at both room temperature and low temperature. Ambipolar behavior was measured in some of the semiconducting SWNT devices, and Coulomb oscillations were also observed when experimental temperature was below 60 K. Our results indicated that Schottky barrier between nanotube and metal electrodes was significant for the electrical properties of the suspended SWNT devices. Moreover, we used focused ion beam (FIB) to open both ends of the SWNT in the nanotube device, and thus water molecules can enter the inner channel of SWNT when the device is exposed to the water vapor. As a voltage/current was applied on one part of the SWNT, an electromotive force was clearly detected along the other part of the same nanotube. We suggested the electromotive force can be induced by the mutual coupling between the free charge carriers of the SWNT and the water dipoles inside the nanotube channel. Thus, individual water-filled SWNTs can be used as hydroelectric power converters.
     Thirdly, the prepared SWNT films were post-treated by using a series of diamond wire drawing dies, and the obtained SWNTs were highly dense and perfectly aligned. X-ray diffraction (XRD) indicated that the highly dense and perfectly aligned SWNTs (HDPA-SWNTs) formed a two-dimensional triangular lattice with the lattice constant of 19.62 ?. A sharp (002) diffraction peak was also observed. Raman spectra revealed that the radial breathing modes (RBMs) of nanotubes with larger diameters in the HDPA-SWNTs were remarkably suppressed. The HDPA-SWNTs have large density, low resistivity and excellent photoconductance properties.
     Finally, we reported the first synthesis of the nitrogen-rich carbon nitride micro/nanofibers via a thermal evaporation method. Our successful synthesis is attributed to both the high thermal stability of the carbon nitride precursor and the lower experimental temperature, which allowed the CNx (x > 1) nucleus in the precursor remain stable during vapor transfer. They acted as the basic units for one-dimensional structure assembling, and thus made the produced micro/nanofibers nitrogen-rich. The products had graphitic structure, and exhibited sp2 hybridized bonding feature. Blue photoluminescence was observed with a broad full width at half maximum (FWHM), which was closely related to the high nitrogen content and weekly ordered structure of the micro/nanofibers. Our development of a vapor-phase synthesis should be helpful for synthesizing other nitrogen-rich nanostructures and nitrogen-doped carbon nanotubes.
引文
[1] 张立德,牟季美. 纳米材料和纳米结构. 北京:科学出版社,2001. 1–22
    [2] 解思深. 纳米科技发展调研报告汇编. 科学技术部基础研究司,2002. 15–59
    [3] M. L. Cohen. Nanotubes, nanoscience, and nanotechnology. Mater. Sci. Eng. C, 2001, 15: 1–11
    [4] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater., 2003, 15: 353–389
    [5] S. V. N. T. Kuchibhatla, A. S. Karakoti, D. Bera, S. Seal. One dimensional nanostructured materials. Progress in Mater. Sci., 2007, 52: 699–913
    [6] J. L. C. Kr?mer, N. Garcya, H. Olin. Conductance quantization histograms of gold nanowires at 4 K. Phys. Rev. B, 1997, 55: 12910–12913
    [7] A. Y. Alekseev, V. V. Cheianov. Nonuniversal conductance quantization in high-quality quantum wires. Phys. Rev. B, 1998, 57: R6834–R6837
    [8] L. Perfetti, S. Mitrovic, G. Margaritondo, M. Grioni, L. Forró, L. Degiorgi, H. H?chst. Mobile small polarons and the Peierls transition in the quasi-one-dimensional conductor K0.3MoO3. Phys. Rev. B, 2002, 66: 075107–(1–8)
    [9] J. Lee, S. Eggert, H. Kim, S. J. Kahng, H. Shinohara, Y. Kuk. Real space imaging of one-dimensional standing waves: Direct evidence for a Luttinger liquid. Phys. Rev. Lett., 2004, 93: 166403–166406
    [10] H. Kroto, J. Heath, S. O’Brien, C. Curl, R. Smalley. C60: Buckminsterfullerene. Nature, 1985, 318: 162–163
    [11] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman. Solid C60: A new form of carbon. Nature 1990, 347: 354–358
    [12] R. C. Haddon, A. F. Heberd, M. J. Rosseinsky, D. W. Murphy, S. J. Duclos, K. B. Lyons, B. Miller, J. M. Rosamilia, R. M. Fleming, A. R. Kortan, S. H. Glarum, A. V. Makhija, A. J. Muller, R. H. Eick, S. M. Zahurak, R. Tycko, G. Dabbagh, F. A. Thiel. Conducting films of C60 and C70 by alkali-metal doping. Nature, 1991, 350: 320–322
    [13] S. Pekker, S. Janossy, L. Mihaly, O. Chauvet, M. Carrard, L. Forro. Single-crystalline (KC60)n: A conducting linear alkali fulleride polymer. Science, 1994, 265: 1077–1078
    [14] S. E. Campbell, G. Luengo, V. I. Srdanov, F. Wudl, J. N. Israelachvili. Very low viscosity at the solid–liquid interface induced by adsorbed C60 monolayers. Nature, 1996, 382: 520–522
    [15] Y. R. Ma, P. Moriarty, P. H. Beton. Disorder-order ripening of C60 islands. Phys. Rev. Lett., 1997, 78: 2588–2591
    [16] S. Iijima. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58
    [17] T. W. Ebbesen, P. M. Ajayan. Large-scale synthesis of carbon nanotubes. Nature, 1992, 358: 220–222
    [18] S. Iijima, T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603–605
    [19] D. S. Bethune, C. H. Kiang, M. S. DeVries, G. Gorman, R. Savoy, R. Beyers. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363: 605–607
    [20] 韦进全,张先锋,王昆林. 碳纳米管宏观体. 北京:清华大学出版社,2006. 5–7
    [21] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamyde la Chapelle, S. Lefrant, P. Deniard, R. Leek, J. E. Fischerk. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997, 388: 756–758
    [22] S. Maruyama, E. Einarsson, Y. Murakami, T. Edamura. Growth process of vertically aligned single-walled carbon nanotubes. Chem. Phys. Lett., 2005, 403: 320–323
    [23] A. Thess, R. Lee, P. Nikolave, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273: 483–487
    [24] M. S. Dresselhaus, G. Dresselhaus, R. Saito. Carbon fibers based on C60 and their symmetry. Phys. Rev. B, 1992, 45: 6234–6242
    [25] J. W. Mintmire, B. I. Dunlap, C. T. White. Are fullerene tubules metallic? Phys. Rev. Lett., 1992, 68: 631–634
    [26] S. Iijima, T. Ichihashi, Y. Ando. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature, 1992, 356: 776–778
    [27] M. S. Dresselhaus, G. Dresselhaus, R. Saito. Physics of carbon nanotubes. Carbon, 1995, 33: 883–891
    [28] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus. Electronic structure of chiral graphene tubules. Appl. Phys. Lett., 1992, 60: 2204–2206
    [29] R. Saito, G. Dresselhaus, M. S. Dresselhaus. Physical Properties of Carbon Nanotubes. London: Imperial College Press, 1998
    [30] R. Jishi, D. Inomata, K. Nakao, M. S. Dresselhaus, G. Dresselhaus. Electronic and lattice properties of carbon nanotubes. J. Phys. Soc. Jpn., 1994, 63: 2252–2260
    [31] M. S. Dresselhaus, G. Dresselhaus, Ph. Avouris. Carbon Nanotubes: Synthesis, Structure, Properties, and Applicants. Berlin: Springer Press, 2001
    [32] J. C. Charlier, X. Blase, S. Roche. Electronic and transport properties of nanotubes. Rev. Mod. Phys., 2007, 79: 677–732
    [33] J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker. Electronic structure of atomically resolved carbon nanotubes. Nature, 1998, 391: 59–62
    [34] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391: 62–64
    [35] S. Kazaoui, N. Minami, R. Jacquemin. Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy. Phys. Rev. B, 1999, 60: 13339–13342
    [36] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, 1997, 275: 187–191
    [37] J. C. Charlier, Ph. Lambin. Electronic structure of carbon nanotubes with chiral symmetry. Phys. Rev. B, 1998, 57: R15037–R15039
    [38] S. Reich, C. Thomsen. Chirality dependence of the density-of-states singularities in carbon nanotubes. Phys. Rev. B, 2000, 62: 4273–4276
    [39] M. S. Dresselhaus, P. C. Eklund. Phonons in carbon nanotubes. Adv. Phys., 2000, 49: 705–814
    [40] R. Jishi, L. Venkataraman, M. S. Dresselhaus, G. Dresselhaus. Phonon modes in carbon nanotubules. Chem. Phys. Lett., 1993, 209: 77–82
    [41] R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, M. S. Dresselhaus. Raman intensity of single-wall carbon nanotubes. Phys. Rev. B, 1998, 57: 4145–4153
    [42] S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, S. Iijima. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett., 2001, 337: 48–54
    [43] L. Ci, Z. Rao, Z. Zhou, D. Tang, X. Yan, Y. Liang, D. Liu, H. Yuan, W. Zhou, G. Wang, W. Liu, S. Xie. Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chem. Phys. Lett., 2002, 359: 63–67
    [44] Y. H. Ho, C. P. Chang, F. L. Shyu, R. B Chen, S. C. Chen, M. F. Lin. Electronic and optical properties of double-walled armchair carbon nanotubes. Carbon, 2004, 42: 3159–3167
    [45] J. W. Chen, L. F. Yang, Unique effects of incommensurability on transport properties of incommensurate double-walled carbon nanotubes. J. Phys. Condens. Matter, 2005, 17: 957–963
    [46] E. Bichoutskaia, M. I. Heggie, A. M. Popov, Y. E. Lozovik. Interwall interaction and elastic properties of carbon nanotubes. Phys. Rev. B, 2006, 73: 045435–(1–9)
    [47] Y. Tison, C. E. Giusca, V. Stolojan, Y. Hayashi, S. R. P. Silva. The inner shell influence on the electronic structure of double-walled carbon nanotubes. Adv. Mater., 2008, 20: 189–194
    [48] J. L. Rivera, C. McCabe, P. Cumming. Oscillatory behavior of double-walled nanotubes under extension: A simple nanoscale damped spring. Nano Lett., 2003, 3: 1001–1005
    [49] S. Zhang, W. Kim, R. S. Ruoff. Atomistic simulations of double-walled carbon nanotubes (DWCNTs) as rotational bearings. Nano Lett., 2004, 4: 293–297
    [50] L. F. Sun, S. S. Xie, W. Liu, W. Y. Zhou, Z. Q. Liu, D. S. Tang, G. Wang, L. X. Qian. Materials: Creating the narrowest carbon nanotubes. Nature, 2000, 403: 384–384
    [51] D. T. Colbert, J. Zhang, S. M. McClure, P. Nikolaev, Z. Chen, J. H. Hafner, D. W. Owens, P. Kotula, C. Carter, J. Weaver, A. G. Rinzler, R. E. Smalley. Growth and sintering of fullerene nanotubes. Science, 1994, 266: 1218–1222
    [52] Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, T. Hayashi. Interlayer spacings in carbon nanotubes. Phys. Rev. B, 1993, 48: 1907–1909
    [53] M. Bretz, B. G. Demczyk, L. Q. Zhang. Structural imaging of a thick-walled carbon microtubule. J. Cryst. Growth, 1994, 141: 304–309
    [54] C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, M. S. Dresselhaus. Size effects in carbon nanotubes. Phys.Rev. Lett., 1998, 81: 1869–1872
    [55] S. Iijima, P. M. Ajayan, T. Ichihashi. Growth model for carbon nanotubes. Phys. Rev. Lett., 1992, 69: 3100–3103
    [56] P. M. Ajayan, T. Ichihashi, S. Iijima. Distribution of pentagons and shapes in carbon nano-tubes and nano-particles. Chem. Phys. Lett., 1993, 202: 384–388
    [57] P. J. F. Harris, M. L. H. Green, S. C. Tsang. High-resolution electron-microscopy of tubule- containing graphitic carbon. J. Chem. Soc. Faraday Trans., 1993, 89: 1189–1192
    [58] M. Q. Liu, J. M. Cowley. Growth behavior and growth defects of carbon nanotubes. Mater. Sci. Eng. A, 1994, 185: 131–140
    [59] Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, S. Iijima. Mass production of single-walled nanotubes by the arc plasma jet method. Chem. Phys. Lett., 2000, 323: 580–585
    [60] C. Liu, H. T. Cong, F. Li, P. H. Tan, H. M. Cheng, K. Lu, B. L. Zhou. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon, 1999, 37: 1865–1868
    [61] Y. Saito, Y. Tani, N. Miyagawa, K. Mitsushima, A. Kasuya, Y. Nishina. High yield of single-wall carbon nanotubes by arc discharge using Rh–Pt mixed catalysts. Chem. Phys. Lett., 1998, 294: 593–598
    [62] B. Liu, T. W?gberg, Eva Olsson, R. Yang, H. Li, S. Zhang, H. Yang, G. Zou, B. Sundqvist. Synthesis and characterization of single-walled nanotubes produced with Ce/Ni as catalysts. Chem. Phys. Lett., 2000, 320: 365–372
    [63] T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley. Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett., 1995, 243: 49–54
    [64] T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, R. E. Smalley. Self-assembly of tubular fullerenes. J. Phys. Chem., 1995, 99: 10694–10697
    [65] A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fishcer, A. M. Rao, P. C. Eklund, R. E. Smalley. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Appl. Phys. A: Mater. Sci. Process, 1998, 67: 29–37
    [66] M. Monthioux, B. W. Smith, B. Burteaux, A. Claye, J. Fisher, D. E. Luzzi. Sensitivity of single-wall carbon nanotubes to chemical processing: An electron microscopy investigation. Carbon, 2001, 39: 1251–1272
    [67] H. J. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett., 1996, 260: 471–475
    [68] J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, R. E. Smalley. Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett., 1998, 296: 195–202
    [69] A. Fonseca, K. Hernadi, P. Piedigrosso, J. F. Colomer, K. Mukhopadhyay, R. Doome, L. P. Biro, P. Lambin, P. A. Thiry, D. Bernaerts, J. B. Nagy. Synthesis of single- and multi-wall carbon nanotubes over supported catalysts. Appl. Phys. A: Mater. Sci. Process, 1998, 67: 11–22
    [70] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett., 1999, 313: 91–97
    [71] B. Kitiyanan, W. E. Alvarez, J. H. Harwell, D. E. Resasco. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem. Phys. Lett., 2000, 317: 497–503
    [72] N. R. Franklin, H. J. Dai. An enhanced CVD approach to extensive nanotube networks with directionality. Adv. Mater., 2000, 12: 890–894
    [73] A. Cassell, J. Raymakers, J. Kong, H. J. Dai. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B, 1999, 103: 6484–6492
    [74] M. Su, B. Zheng, J. Liu. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett., 2000, 322: 321–326
    [75] H. M. Cheng, F. Li, G. Su, H. Pan, L. He, X. Sun, M. S. Dresselhaus. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett., 1998, 72: 3282–3284
    [76] H. M. Cheng, F. Li, X. Sun, S. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus, M. S. Dresselhaus. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem. Phys. Lett., 1998, 289: 602–610
    [77] B. C. Satishkumar, A. Govindaraj, R. Sen, C. N. Rao. Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures. Chem. Phys. Lett., 1998, 293: 47–52
    [78] K. Bladh, L. K. L. Falk, F. Rohmund. On the iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase. Appl. Phys. A: Mater. Sci. Process, 2000, 70: 317–322
    [79] L. Song, L. J. Ci, L. Lv, Z. P. Zhou, X. Q. Yan, D. F. Liu, H. J. Yuan, Y. Gao, J. X. Wang, L. F. Liu, X. W. Zhao, Z. X. Zhang, X. Y. Dou, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv. Mater., 2004, 16: 1529–1534
    [80] M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, R. E. Smalley. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. A, 2001, 19: 1800–1805
    [81] 朱宏伟,吴德海,徐才录. 碳纳米管. 北京:机械工业出版社,2005. 70–79
    [82] C. J. Brabec, A. Maiti, C. Roland, J. Bernholc. Growth of carbon nanotubes: A molecular dynamics study. Chem. Phys. Lett., 1995, 236: 150–155
    [83] A. Maiti, C. J. Brabec, C. Roland, J. Bernholc. Theory of carbon nanotube growth. Phys. Rev. B, 1995, 52: 14850–14858
    [84] J. C. Charlier, A. De Vita, X. Blasé, R. Car. Microscopic growth mechanisms for carbon nanotubes. Science, 1997, 275: 646–649
    [85] J. L. Zimmerman, R. K. Bradley, C. B. Huffman, R. H. Hauge, J. L. Margrave. Gas-phase purification of single-wall carbon nanotubes. Chem. Mater., 2000, 12: 1361–1366
    [86] A. Maiti, C. J. Brabec, C. M. Roland, J. Bernholc. Growth energetics of carbon nanotubes. Phys. Rev. Lett., 1994, 73: 2468–2471
    [87] C. H. Kiang, W. A. Goddard. Polyyne ring nucleus growth model for single-layer carbon nanotubes. Phys. Rev. Lett., 1996, 76: 2515–2158
    [88] L. C. Qin, S. Iijima. Structure and formation of raft-like bundles of single-walled helical carbon nanotubes produced by laser evaporation. Chem. Phys. Lett., 1997, 269: 65–71
    [89] A. Gorbunov, O. Jost, W. Pompe, A. Graff. Solid–liquid–solid growth mechanism of single-wall carbon nanotubes. Carbon, 2002, 40: 113–118
    [90] R. T. K. Baker, M. Barber, P. Harris, F. Feates, R. Waite. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal., 1972, 26: 51–62
    [91] S. Helveg, C. L. Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. R. Nielsen, F. A. Pedersen, J. K. Nerskov. Atomic-scale imaging of carbon nanofibre growth. Nature, 2004, 427: 426–429
    [92] 朱宏伟,吴德海,徐才录. 碳纳米管. 北京:机械工业出版社,2005. 169–175
    [93] H. Kajiura, S. Tsutsui, H. J. Huang, M. Miyakoshi, Y. Hirano, A. Yamada, M. Ata. Production of single-walled carbon nanotube ropes under controlled gas flow conditions. Chem. Phys. Lett., 2001, 346: 356–360
    [94] S. M. Huang, X. Y. Cai, C. S. Du, J. Liu. Oriented long single walled carbon nanotubes on substrates from floating catalysts. J. Phys. Chem. B, 2003, 107: 13251–13254
    [95] A. M. Cassell, N. R. Franklin, T. W. Tombler, E. M. Chan, H. J. Dai. Directed growth of free-standingsingle-walled carbon nanotubes. J. Am. Soc. Chem., 1999, 121: 7975–7976
    [96] Y. G. Zhang, A. L. Chang, J. Cao, Q. Wang, W. Kim, Y. M. Li, N. Morris, E. Yenilmez, J. Kong, H. J. Dai. Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett., 2001, 79: 3155–3157
    [97] E. Joselevich, C. M. Lieber. Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett., 2002, 2: 1137–1141
    [98] X. Y. Dou, Z. P. Zhou, P. H. Tan, J. J.Zhou, L. Song, L. F.Sun, L. F. Liu, P. Jiang, X. W. Zhao, S. D. Luo, X. Q. Yan, D. F. Liu, J. X. Wang, Y. Gao, Z. X. Zhang, H. J. Yuan, W. Y. Zhou, S. S. Xie. Growth of aligned single-walled carbon nanotubes under ac electric fields through floating catalyst chemical vapor deposition, Chin. Phys., 2005, 14: 2068–2076
    [99] N. Wang, Z. K. Tang, G. D. Li, J. S. Chen. Materials science: Single-walled 4 ? carbon nanotube arrays. Nature, 2000, 408: 50–51
    [100] Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang, H. J. Dai. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B, 2001, 105: 11424–11431
    [101] C. Kocabas, S. H. Hur, A. Gaur, M. A. Meitl, M. Shim, J. A. Rogers. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small, 2005, 1: 1110–1116
    [102] S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimpakar, M. A. Alam, S. V. Rotkin, J. A. Rogers. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech., 2007, 2: 230–236
    [103] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 2004, 306: 1362–1364
    [104] G. Y. Zhang, D. Mann, L. Zhang, A. Javey, Y. M. Li, E. Yenilmez, Q. Wang, J. P. Mcvittie, Y. Nishi, J. Gibbons, H. J. Dai. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. USA, 2005, 102: 16141–16145
    [105] S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, L. J. Georliga, C. Dekker. Individual single-wall carbon nanotubes as quantum wires. Nature, 1997, 386: 474–477
    [106] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, R. E. Smalley. Single-electron transport in ropes of carbon nanotubes. Science, 1997, 275: 1922–1925
    [107] S. J. Tans, A. R. M. Verschueren, C. Dekker. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393: 49–52
    [108] H. Ajiki, T. Ando. Electronic states of carbon nanotubes. J. Phys. Soc. Jpn., 1993, 62: 1225–1266
    [109] S. J. Tans, M. H. Devoret, R. J. A. Groeneveld, C. Dekker. Electron–electron correlations in carbon nanotubes. Nature, 1998, 394: 761–764
    [110] A. Bezryadin, A. Verschueren, S. J. Tans, C. Dekker. Multiprobe transport experiments on individual single-wall carbon nanotubes. Phys. Rev. Lett., 1998, 80: 4036–4039
    [111] H. W. Ch. Postma, Z. Yao, C. Dekker. Electron addition and excitation spectra of individual single-wall carbon nanotubes. J. Low Temp. Phys., 2000, 118: 495–507
    [112] R. Fazio, F. W. J. Hekking, A. A. Odintsov. Josephson current through a Luttinger liquid. Phys. Rev. Lett., 1995, 74: 1843–1846
    [113] A. Kazumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. I. Khodos, B. Gorbatov, V. T. Volkov, C. Journet, M. Burghard. Supercurrents through single-walled carbon nanotubes. Science, 1999, 284: 1508–1511
    [114] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, P. L. McEuen. Luttinger-liquid behaviour in carbon nanotubes. Nature, 1999, 397: 598–601
    [115] Z. Yao, H. W. Ch. Postma, L. Balents, C. Dekker. Carbon nanotube intramolecular junctions. Nature, 1999, 402: 273–276
    [116] Z. Yao, C. L. Kane, C. Dekker. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett., 2000, 84: 2941–2944
    [117] C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, J. M. Xu. Electronic transport in Y-junction carbon nanotubes. Phys. Rev. Lett., 2000, 85: 3476–3479
    [118] A. N. Andriotis, M. Menon, D. Srivastava, L. Chernozatonskii. Rectification properties of carbon nanotube “Y-junctions”. Phys. Rev. Lett., 2001, 87: 066802–(1–4)
    [119] A. N. Andriotis, M. Menon, D. Srivastava, L. Chernozatonskii. Ballistic switching and rectification in single wall carbon nanotube Y junctions. Appl. Phys. Lett., 2001, 79: 266–268
    [120] C. W. Zhou, J. Kong, E. Yenilmez, H. J. Dai. Modulated chemical doping of individual carbon nanotubes. Science, 2000, 290: 1552–1555
    [121] Y. K. Kwon, D. Tománek, S. Iijima. “Bucky shuttle” memory device: Synthetic approach and molecular dynamics simulations. Phys. Rev. Lett., 1998, 82: 1470–1473
    [122] H. W. Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker. Carbon nanotube single-electron transistors at room temperature. Science, 2001, 293: 76–79
    [123] P. C. Collins, M. S. Arnold, Ph. Avouris. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 2001, 292: 706–709
    [124] A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker. Logic circuits with carbon nanotube transistors. Science, 2001, 294: 1317–1320
    [125] Z. H. Chen, J. Appenzeller, Y. M. Lin, J. S. Oakley, A. G. Rinzler, J. Y. Tang, S. J. Wind, P. M. Solomon, Ph. Avouris. An integrated logic circuit assembled on a single carbon nanotube. Science, 2006, 311: 1735–1735
    [126] Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, R. H. Chang. A nanotube-based field-emission flat panel display. Appl. Phys. Lett., 1998, 72: 2912–2913
    [127] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim. Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett., 1999, 75: 3129–3131
    [128] R. Rosen, W. Simendinger, C. Debbault, H. Shimoda, L. Fleming, B. Stoner, O. Zhou. Application of carbon nanotubes as electrodes in gas discharge tubes. Appl. Phys. Lett., 2000, 76: 1668–1670
    [129] J. L. Kwo, M. Yokoyama, W. C. Wang, F. Y. Chuang, I. N. Lin. Characteristics of flat panel display using carbon nanotubes as electron emitters. Diamond Relat. Mater., 2000, 9: 1270–1274
    [130] J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. Cho, H. J. Dai. Nanotube molecular wires as chemical sensors. Science, 2000, 287: 622–625
    [131] J. J. Zhao, A. Buldum, J. Han, J. P. Lu. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechology, 2002, 13: 195–200
    [132] J. Kong, M. G. Chapline, H. J. Dai. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater., 2001, 13: 1384–1386
    [133] B. L. Allen, P. D. Kichambare, A. Star. Carbon nanotube field-effect-transistor-based biosensors, Adv. Mater., 2007, 19: 1439–1451
    [134] S. N. Kim, J. F. Rusling, F. Papadimitrakopoulos. Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater., 2007, 19: 3214–3228
    [135] M. B. Nardelli, B. I. Yakobson, J. Bernholc. Mechanism of strain release in carbon nanotubes. Phys. Rev. B, 1997, 57: R4277–R4280
    [136] B. I. Yakobson. Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes. Appl. Phys. Lett., 1998, 72: 918–920
    [137] M. B. Nardelli, B. I. Yakobson, J. Bernholc. Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett., 1998, 81: 4656–4659
    [138] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund. Science of Fullerenes and Carbon Nanotubes. NewYork, NY, San Diego, CA: Academic Press, 1996
    [139] E. Hernandez, C. Goze, P. Bernier, A. Rubio. Elastic properties of single-wall nanotubes. Appl. Phys. A: Mater. Sci. Process, 1999, 68: 287–292
    [140] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, L. Zuppiroli. Mechanical properties of carbon nanotubes. Appl. Phys. A: Mater. Sci. Process, 1999, 69: 255–260
    [141] J. Tersoff, R. S. Ruoff. Structural properties of a carbon-nanotube crystal. Phys. Rev. Lett., 1994, 73: 676–379
    [142] J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. St?kli, N. A. Burnham, L. Forró. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett., 1999, 82: 944–947
    [143] M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett., 2000, 84: 5552–5555
    [144] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley. Nanotubes as nanoprobes in scanning probe microscopy. Nature, 1996, 384: 147–150
    [145] J. H. Hafner, C. L. Cheung, C. M. Lieber. Growth of nanotubes for probe microscopy tips. Nature, 1999, 398: 761–762
    [146] J. H. Hafner, C. L. Cheung, C. M. Lieber. Direct growth of single-walled carbon nanotube scanning probe microscopy tips. J. Am. Chem. Soc., 1999, 121: 9750–9751
    [147] C. L.Cheung, J. H. Hafner, C. M. Lieber. Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proc. Natl. Acad. Sci. USA, 2000, 97: 3809–3813
    [148] P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 1994, 265: 1212–1214
    [149] C. Bower, R. Rosen, L. Jin, J. Han, O. Zhou. Deformation of carbon nanotubes in nanotube-polymer composites. Appl. Phys. Lett., 1999, 74: 3317–3319
    [150] C. Stephan, T. P. Nguyen, M. L. de la Chapelle, S. Lefrant, C. Journet, P. Bernier. Characterization of singlewalled carbon nanotubes-PMMA composites. Synth. Metal., 2000, 108: 139–149
    [151] R. Z. Ma, J. Wu, B. Q. Wei, J. Liang, D. H. Wu. Processing and properties of carbon nanotubes-nano-SiC ceramic. J. Mater. Sci., 1998, 33: 5243–5246
    [152] T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito. Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res., 1998, 13: 2445–2449
    [153] S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens. A composite from poly(m-phenylenevinylene-co- 2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics. Adv. Mater., 1998, 10: 1091–1093
    [154] H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, R. H. Friend. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv. Mater., 1999, 11: 1281–1285
    [155] M. Gao, S. M. Huang, L. M. Dai, G. Wallace, R. P. Gao, Z. L. Wang. Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers. Angew. Chem. Int. Ed., 2000, 39: 3664–3667
    [156] M. K. Pederson, J. Q. Broughton. Nanocapillarity in fullerene tubules. Phys. Rev. Lett., 1992, 69: 2689–2692
    [157] F. J. G. Vidal, J. M. Pitarke, J. B. Pendry. Silver-filled carbon nanotubes used as spectroscopic enhancers. Phys. Rev. B, 1998, 58: 6783–6786
    [158] F. Zhang. Molecular dynamics studies of chainlike molecules confined in a carbon nanotube. J. Chem. Phys., 1999, 111: 9082–9085
    [159] J. L. Yang, H. J. Liu, C. T. Chan. Theoretical study of alkali-atom insertion into small-radius carbon nanotubes to form single-atom chains. Phys. Rev. B, 2001, 64: 085420–(1–5)
    [160] B. W. Smith, M. Monthioux, D. E. Luzzi. Encapsulated C60 in carbon nanotubes. Nature, 1998, 396: 323–324
    [161] B. W. Smith, M. Monthioux, D. E. Luzzi. Carbon nanotube encapsulated fullerenes: A unique class of hybrid materials. Chem. Phys. Lett., 1999, 315: 31–36
    [162] B. W. Smith, D. E. Luzzi. Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis. Chem. Phys. Lett., 2000, 321: 169–174
    [163] J. Y. Chen, A. Kutana, C. P. Collier, K. P. Giapis. Electrowetting in carbon nanotubes. Science, 2005, 310: 1480–1483
    [164] R. R. Meyer, J. Sloan, R. E. Dunin-Borkowski, A. I. Kirkland, M. C. Novotny, S. R. Bailey, J. L. Hutchison, M. L. H. Green. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science, 2000, 289: 1324–1326
    [165] J. Sloan, A. I. Kirkland, J. L. Hutchison, M. L. H. Green. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem. Commun. 2002: 1319–1332
    [166] S. C. Tsang, P. J. F. Harris, M. L. H. Green. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature, 1993, 362: 520–522
    [167] P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura. Opening carbon nanotubes with oxygen and implications for filling. Nature, 1993, 362: 522–525
    [168] P. M. Ajayan, S. Iijima. Capillarity-induced filling of carbon nanotubes. Nature, 1993, 361: 333–334
    [169] E. Dujardin, T. W. Ebbesen, H. Hiura, K. Tanigaki. Capillarity and wetting of carbon nanotubes. Science, 1994, 265: 1850–1852
    [170] P. M. Ajayan, O. Stephan, Ph. Redlich, C. Colliex. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature, 1995, 375: 564–567
    [171] M. Monthioux. Filling single-wall carbon nanotubes, Carbon, 2002, 40: 1809–1823
    [172] M. S. P. Sansom, P. C. Biggin. Water at the nanoscale. Nature, 2001, 414: 156–159
    [173] G. Hummer, J. C. Rasaiah, J. P. Noworyta. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001, 414: 188–190
    [174] K. Koga, G. T. Gao, H. Tanaka, X. C. Zeng. Formation of ordered ice nanotubes inside carbon nanotubes. Nature, 2001, 412: 802–805
    [175] W. H. Noon, K. D. Ausman, R. E. Smalley, J. P. Ma. Helical ice-sheets inside carbon nanotubes in the physiological condition. Chem. Phys. Lett., 2002, 355: 445–448
    [176] A. Kalra, S. Garde, G. Hummer. Osmotic water transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. USA, 2003, 100: 10175–10180
    [177] C. Dellago, M. M. Naor, G. Hummer. Proton transport through water-filled carbon nanotubes, Phys. Rev. Lett., 2003, 90: 105902–(1–4)
    [178] Y. C. Liu, Q. Wang. Transport behavior of water confined in carbon nanotubes. Phys. Rev. B, 2005, 72: 085420–(1–4)
    [179] B. K. Agrawal, V. Singh, A. Pathak, R. Srivastava. Ab initio study of H2O and water-chain-induced properties of carbon nanotubes. Phys. Rev. B, 2007, 75: 195421–(1–16)
    [180] S. Ghosh, K. V. Ramanathan, A. K. Sood. Water at nanoscale confined in single-walled carbon nanotubes studied by NMR. Europhys. Lett., 2004, 65: 678–684
    [181] K. Matsuda, T. Hibi, H. Kadowaki, H. Kataura, Y. Maniwa. Water dynamics inside single-wall carbon nanotubes: NMR observations. Phys. Rev. B, 2006, 74: 073415–(1–4)
    [182] O. Byl, J. C. Liu, Y. Wang, W. L. Yim, J. K. Johnson, J. T. Yates. Unusual hydrogen bonding in water-filled carbon nanotubes. J. Am. Chem. Soc., 2006, 128: 12090–12097
    [183] Y. Maniwa, K. Matsuda, H. Kyakuno, S. Ogasawara, T. Hibi, H. Kadowaki, S. Suzuki, Y. Achiba, H. Kataura. Water-filled single-wall carbon nanotubes as molecular nanovalves. Nat. Mater., 2007, 6: 135–141
    [184] W. Wenseleers, S. Cambré, J. ?ulin, A. Bouwen, E. Goovaerts. Effect of water filling on the electronic and vibrational resonances of carbon nanotubes: Characterizing tube opening by Raman spectroscopy. Adv. Mater., 2007, 19: 2274–2278
    [185] H. Shiozawa, T. Pichler, A. Grüneis, R. Pfeiffer, H. Kuzmany, Z. Liu, K. Suenaga, H. Kataura. A catalytic reaction inside a single-called carbon nanotube. Adv. Mater., 2008, 20: 1443–1449
    [186] J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, J. E. Fischer. Quantized phonon spectrum of single-wall carbon nanotubes. Science, 2000, 289: 1730–1733
    [187] W. Yi, L. Lu, D. L. Zhang, Z. W. Pan, S. S. Xie. Linear specific heat of carbon nanotubes, Phys. Rev. B, 1999, 59: R9015–R9018
    [188] J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, R. E. Smalley. Electrical and thermal transport properties of magnetically aligned single walt carbon nanotube films. Appl. Phys. Lett., 2000, 77: 666–668
    [189] 谭平恒. 碳纳米管及其相关材料的拉曼光谱研究[博士学位论文]. 北京:中国科学院半导体研究所,2001
    [190] M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297: 593–596
    [191] A. Hartschuh, H. N. Pedrosa, L. Novotny. Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science, 2003, 301: 1354–1356
    [192] J. A. Misewich, R. Martel, Ph. Avouris, J. C. Tsang, S. Heinze. Electrically induced optical emission from a carbon nanotube FET. Science, 2003, 300: 783–786
    [193] D. H. Lien, W. K. Hsu, H. W. Zan, N. H. Tai, C. H. Tsai. Photocurrent amplification at carbon nanotube–metal contacts. Adv. Mater., 2006, 18: 98–103
    [194] J. Hone, M. Whitney, C. Piskoti, A. Zettl. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B, 1999, 59: R2514–R2516
    [195] P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, T. W. Ebbesen. Nanotubes in a flash—ignition and reconstruction. Science, 2002, 296: 705–705
    [196] M. Meyyappan 主编,刘忠范译. 碳纳米管——科学与应用. 北京:科学出版社,2007. 22–24
    [197] J. Liebig. Ann. Chem., 1834, 10: 1
    [198] W. Leupin, J. Wirz. Low-lying electronically excited states of cycl[3.3.3]azine, a bridged 12π-perimeter. J. Am. Chem. Soc., 1980, 102: 6068–6075
    [199] R. S. Hosmane, M. A. Rossman, N. J. Leonard. Synthesis and structure of tri-s-triazine. J. Am. Chem. Soc., 1982, 104: 5497–5499
    [200] B. V. Lotsch, W. Schnick. Thermal conversion of guanylurea dicyanamide into graphitic carbon nitride via prototype CNx precursors. Chem. Mater., 2005, 17: 3976–3982
    [201] B. V. Lotsch, W. Schnick. From triazines to heptazines: Novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials. Chem. Mater., 2006, 18: 1891–1900
    [202] E. Kroke, M. Schwarz, E. H. Bordon, P. Kroll, B. Noll, A. D. Norman. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem., 2002, 26: 508–512
    [203] B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick. Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-atate NMR, and theoretical atudies. J. Am. Chem. Soc., 2003, 125: 10288–10300
    [204] B. V. Lotsch, W. Schnick. New light on an old story: Formation of melam during thermal condensation of melamine. Chem. Eur. J., 2007, 13: 4956–4968
    [205] B. V. Lotsch, M. D?blinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations— structural characterization of a carbon nitride polymer. Chem. Eur. J., 2007, 13: 4969–4980
    [206] A. Y. Liu, M. L. Cohen. Prediction of new low compressibility solid. Science, 1989, 245: 841–842
    [207] D. M. Teter, R. J. Hemley. Low-compressibility carbon nitrides. Science, 1996, 271: 53–55
    [208] T. Sekine, H. Kanda, Y. Bando, M. Yokoyama, K. Hojou. A graphitic carbon nitride. J. Mat. Sci. Lett., 1990, 9: 1376–1378
    [209] M. R. Wixom. Chemical preparation and shock wave compression of carbon nitride precursors. J. Am. Ceram. Soc., 1990, 73: 1973–1978
    [210] D. W. He, F. X. Zhang, X. Y. Zhang, M. Zhang, R. P. Liu, Y. F. Xu, W. K. Wang. Synthesis of C3N4 crystals under high pressure and high temperature. Sci. in China Series A, 1998, 41: 405–410
    [211] A. Andreyev, M. Akaishi, D. Golberg. Synthesis of nanocrystalline nitrogen-rich carbon nitride powders at high pressure. Diamond Relat. Mater., 2002, 11: 1885–1889
    [212] S. Muhl, J. M. Méndz. A review of the preparation of carbon nitride films. Diamond Relat. Mater., 1999, 8: 1809–1830
    [213] L. P. Guo, Y. Chen, E. G. Wang, L. Li, Z. X. Zhao. Identification of a new C-N phase with monoclinic structure. Chem. Phys. Lett., 1997, 268: 26–30
    [214] D. L. Yu, F. R. Xiao, T. S. Wang, Y. J. Tian, J. L. He, D. C. Li, W. K. Wang. Synthesis of graphite-C3N4 crystal by ion beam sputtering. J. Mat. Sci. Lett., 2000, 19: 553–556
    [215] T. S. Wang, D. L. Yu, Y. J. Tian, F. R. Xiao, J. L. He, D. C. Li, W. K. Wang, L. Li. Cubic-C3N4 nanoparticles synthesized in CNx/TiNx multilayer films. Chem. Phys. Lett., 2001, 334: 7–11
    [216] Y. F. Zhang, Z. H. Zhou, H. L. Li. Crystalline carbon nitride films formation by chemical vapor deposition. App. Phys. Lett., 1996, 68: 634–636
    [217] S. Kundoo, A. N. Banerjee, P. Saha, K. K. Chattopadhyay. Synthesis of crystalline carbon nitride thin films by electrolysis of methanol–urea solution. Mat. Lett., 2003, 57: 2193–2197
    [218] Y. J. Tian, D. L. Yu, J. L. He, F. R. Xiao, T. S. Wang, D. C. Li, L. Li, G. Zheng, O. Yanagisawa. Experimental observation of local heteroe-pitaxy between cubic-C3N4 and Ti2N in CNx/TiNy bilayers prepared by ion beam sputtering. J. Cryst. Growth, 2001, 225: 67–72
    [219] H. Montigaud, B. Tamguy, G. Demazeau, I. Alves, M. Birot, J. Dunogues. Solvothermal synthesis of the graphitic form of C3N4 as microscopic samples. Diamond Relat. Mater., 1999, 8: 1707–1710
    [220] H. Montigaud, B. Tamguy, G. Demazeau, I. Alves, S. Courjault. C3N4: Dream or reality? Solvothermal synthesis as microscopic samples of the C3N4 graphitic form. J. Mater. Sci., 2000, 35: 2547–2552
    [221] Y. J. Bai, B. Lü, Z. G. Liu, Li L, D. L. Cui, X. G. Xu, Q. L. Wang. Solvothermal preparation of graphite-like C3N4 nanocrystals. J. Cryst. Growth, 2003, 247: 505–508
    [222] C. B. Cao, Q. Lv, H. S. Zhu. Carbon nitride prepared by solvothermal method. Diamond Relat. Mater., 2003, 12: 1070–1074
    [223] Q. lv, C. B. Cao, J. T. Zhang, C. Li, H. S. Zhu. The composition and structures of carbon nitride solids synthesized by solvothermal method. Chem. Phys. Lett., 2003, 372: 469–475
    [224] Y. Fahmy, T. D. Shen, D.A Tucker, R. L. Spontak, C. C. Koch. Possible evidence for the stabilization of beta-carbon nitride by high-energy ball milling. J. Mater. Res., 1999, 14: 2488–2499
    [225] L. W. Yin, M. S. Li, G. Luo, J. L. Sui, J. M. Wang. Nanosized beta carbon nitride crystal through mechanochemical reaction. Chem. Phys. Lett., 2003, 369: 483–489
    [226] M. D. Alcalá, J. C. S.López, C. Real, A. Fernandez, P. Matteazzi. Mechanosynthesis of Carbon Nitride Compounds. Diamond Relat. Mater., 2001, 12: 1995–2001
    [227] L. W. Yin, Y. Bando, M. S. Li, Y. X. Liu, Y. X. Qi. Unique single-crystalline beta carbon nitride nanorods. Adv. Mater., 2003, 15: 1840–1844
    [228] A. Y. Liu, M. L. Cohen. Structural properties and electronic structure of low compressibility materials: β-Si3N4 and hypothetical β-C3N4. Phys. Rev. B, 1990, 41: 10727–10734
    [229] M. Kawaguchi, S. Yagi, H. Enomoto. Chemical preparation and characterization of nitrogen-rich carbon nitride powders. Carbon, 2004, 42: 345–350
    [230] M. Jelínek, W. Kulisch, M. P. D. Ogletree, J. Lancok, L. Jastrabik, D. Chvostova, C. Popov, J. Bulir. Mechanical and optical properties of CNx films with high N/C ratio. Appl. Phys. A: Mater. Sci. Process, 2001, 73: 167–170
    [231] F. Fendrych, L. Jastrabik. L. Pajasova, D. Chvostova, L. Soukup, K. Rusnak. The mechanical, tribological and optical properties of CNx coatings prepared by sputtering methods. Diamond Relat. Mater., 1998, 7: 417–421
    [232] X. Wang, P. J. Martin, T. J. Kinder. Optical and mechanical properties of carbon nitride films prepared by ion-assisted arc deposition and bagnetron sputtering. Thin Solid Films, 1995, 256: 148–154
    [233] A. G. Khurshudov, K. Kato. Tribological properties of carbon nitride overcoat for thin-film magnetic rigid disks. Surf. Coat. Technol., 1996, 86–87: 664–671
    [234] M. A. Baker, P. Hammer, C. Lenardi, J. Haupt, W. Gissler. Low-temperature sputter deposition and characterisation of carbon nitride films. Surf. Coat. Technol., 1997, 97: 544–551
    [235] Y. C. Zhao, D. L.Yu, H. W. Zhou, Y. J. Tian, O. Yanagisawa. Turbostratic carbon nitride prepared by pyrolysis of melamine. J. Mater. Sci., 2005, 40: 2645–2647
    [236] Q. X. Guo, Q. Yang, C. Q. Yi, L. Zhu, Y. Xie. Synthesis of carbon nitrides with graphite-like or onion-like lamellar structures via a solvent-free route at low temperatures. Carbon, 2005, 43: 1386–1391
    [237] D. R. Miller, J. J. Wang, E. G. Gillan. Rapid, facile synthesis of nitrogen-rich carbon nitride powders. J. Mater. Chem., 2002, 12: 2463–2469
    [238] J. F. Palacio, S. J. Bull, J. Neidhardt, L. Hultman. Nanoindentation response of high performance fullerene-like CNx. Thin Solid Films, 2006, 494: 63–68
    [239] J. R. Shi, Y. J. Xu, J. Zhang. Study on amorphous carbon nitride film prepared by facing target sputtering. Thin Solid Films, 2005, 483: 169–174
    [240] R. Ohta, T. Yokota, V. Anita, N. Saito, O. Takai. Synthesis of nitrogen-rich carbon nitride thin films via magnetic field-assisted inductively coupled plasma sputtering. Vacuum, 2006, 80: 752–755
    [241] M. Groenewolt, M. Antonietti. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater., 2005, 17: 1789–1792
    [242] S. H. Lim, H. I. Elim, X. Y. Gao, A. T. S. Wee, W. Ji, J. Y. Lee, J. Lin. Electronic and optical properties of nitrogen-doped multiwalled carbon nanotubes. Phys. Rev. B, 2006, 73: 045402–(1–6)
    [243] K. Xiao, Y. Q. Liu, P. A. Hu, G. Yu, Y. M. Sun, D. B. Zhu. n-type field-effect transistors made of an individual nitrogen-doped multiwalled carbon nanotube. J. Am. Chem. Soc., 2005, 127: 8614–8617
    [244] L. H. Chan, K. H. Hong, D. Q. Xiao, T. C. Lin, S. H. Lai, W. J. Hsieh, H. C. Shih. Resolution of the binding configuration in nitrogen-doped carbon nanotubes. Phys. Rev. B. 2004, 70: 125408–(1–7)
    [245] P. M. F. J. Costa, D. Golberg, M. Mitome, Y. Bando. Nitrogen-doped carbon nanotube structure tailoring and time-resolved transport measurements in a transmission electron microscope. Appl. Phys. Lett., 2007, 91: 223108–(1–3)
    [246] R. Avriller, S. Roche, F. Triozon, X. Blase, S. Latil. Low-dimensional quantum transport properties of chemically-disordered carbon nanotubes: From weak to strong localization regemes, Modern Phys. Lett. B, 2007, 21: 1955–1982
    [247] X. Y. Tao, X. B. Zhang, F. Y. Sun, J. P. Cheng, F. Liu, Z. Q. Luo. Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a CoxMg1?xMoO4 catalyst. Diamond Relat. Mater., 2007, 16: 425–430
    [248] X. C. Wu, Y. R. Tao, Y. N. Lu, L. Dong, Z. Hu. High-pressure pyrolysis of melamine route to nitrogen-doped conical hollow and bamboo-like carbon nanotubes. Diamond Relat. Mater., 2006, 15: 164–170
    [249] Y. J. Xiong, Z. Q. Li, Q. X. Guo, Y. Xie. Synthesis of multi-walled and bamboo-like well-crystalline CNx nanotubes with controllable nitrogen concentration (x = 0.05–1.02). Inorg. Chem., 2005, 44: 6506–6508
    [250] L. Shen, X. B. Zhang, Y. Li, X. F. Yang, J. H. Luo, G. L. Xu. Effect of organic additives in catalyst preparation on the growth of single-wall carbon nanotubes prepared by catalyst-assisted chemical vapour deposition. Nanotechnology, 2004, 15: 337–340
    [251] M. S. He, S. Zhou, J. Zhang, Z. F. Liu, C. Robinson. CVD growth of n-doped carbon nanotubes on silicon substrates and its mechanism. J. Phys. Chem. B, 2005, 109: 9275–9279
    [252] J. Liu, S. Webster, D. L. Carroll. Highly aligned coiled nitrogen-doped carbon nanotubes synthesized by injection-assisted chemical vapor deposition. Appl. Phys. Lett., 2006, 88: 123119–(1–3)
    [253] L. M. Cao, X. Y. Zhang, C. X. Gao, W. K. Wang, Z. L. Zhang, Z. Zhang, High-concentration nitrogen-doped carbon nanotube arrays, Nanotechnology, 2003, 14: 931–934
    [254] C. C. Tang, D. Golberg, Y. Bando, F. F. Xu, B. D. Liu. Synthesis and field emission of carbon nanotubular fibers doped with high nitrogen content. Chem. Commun., 2003: 3050–3051
    [255] Y. Miyamoto, M. L. Cohen, S. G. Louie. Theoretical investigation of graphitic carbon nitride and possible tubule forms. Solid State Commun., 1997, 102: 605–608
    [256] Q. X. Guo, Y. Xie, X. J. Wang, S. Y. Zhang, T. Hou, S. C. Lv. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chem. Commun., 2004: 26–27
    [257] C. B. Cao, F. L. Huang, C. T. Cao, J. Li, H. S. Zhu. Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route. Chem. Mater., 2004, 16: 5213–5215
    [258] M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W. K. Hsu, H. Terrones, Y. Q. Zhu, J. P. Hare, A. K. Cheetham, M. Ruhle, H. W. Kroto, D. R. M. Walton. Carbon nitride nanocomposites formation of aligned CxNy nanofibers. Adv. Mater., 1999, 11: 655–658
    [259] M. Terrones, H. Terrones, N. Grobert, W. K. Hsu, Y. Q. Zhu, J. P. Hare, H. W. Kroto, D. R. M. Walton, Ph. K. Redlich, M. Rühle, J. P. Zhang, A. K. Cheetham. Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Appl. Phys. Lett., 1999, 75: 3932–3934
    [260] K. Suenag, M. Yudasak, C. Colliex, S. Iijima. Radially modulated nitrogen distribution in CNx nanotubular structures prepared by CVD using Ni phthalocyanine. Chem. Phys. Lett., 2000, 316: 365–372
    [261] M. Mirkowska, E. Wierzbiński, K. Zdunek. Growth of nanopillar CNx layer during impulse plasma deposition. Surf. Coat. Technol., 2006, 200: 4448–4455
    [262] Z. Z. Yong, Z. X. Wang, J. G. Hu, C. L. Ren, Z. Y. Zhu. Carbon nitride nanowires with an onion-like cross-linked microstructure. Carbon, 2007, 45: 2134–2136
    [263] J. H. Yang, D. H. Lee, M. H. Yum, Y. S. Shin, E. J. Kim, C. Y. Park, M. H. Kwon, C. W. Yang, J. B. Yoo, H. J. Song, H. J. Shin, Y. W. Jin, J. M. Kim. Encapsulation mechanism of N2 molecules into the central hollow of carbon nitride multiwalled nanofibers. Carbon, 2006, 44: 2219–2223
    [264] J. Li, C. B. Cao, J. W. Hao, H. L, Qiu, Y. J. Xu, H. S. Zhu. Self-assembled one-dimensional carbon nitride architectures. Diamond Relat. Mater., 2006, 15: 1593–1600
    [265] J. Li, C. B. Cao, H. S. Zhu. Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes. Nanotechnology, 2007, 18: 115605–(1–6)
    [266] S. Tragla, K. Gibsona, J. Glasera, V. Duppelb, A. Simonb, H. J. Meyera. Template assisted formation of micro- and nanotubular carbon nitride materials. Solid State Commun., 2007, 141: 529–534
    [1] 成会明. 碳纳米管制备、结构、物性及应用. 北京:化学工业出版社,2002. 1–40
    [2] 张立德,解思深. 纳米材料和纳米结构:国家重大基础研究项目新进展. 北京:化学工业出版社,2005. 12–105
    [3] T. W. Ebbesen. Carbon nanotubes. Phys. Today, 1996, 49: 26–32
    [4] M. S. Dresselhaus, G. Dresselhaus, Ph. Avouris. Carbon Nanotubes: Synthesis, Structure, Properties, and Applicants. Berlin: Springer Press, 2001
    [5] Ph. Avouris, J. Appenzeller, R. Martel, S. J. Wind. Carbon Nanotube Electronics. Proc. IEEE, 2003, 91: 1772–1784
    [6] S. Iijima, T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603–605
    [7] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamyde la Chapelle, S. Lefrant, P. Deniard, R. Leek, J. E. Fischerk. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997, 388: 756–758
    [8] D. M. Gattia, M. V. Antisari, R. Marazzi. AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets. Nanotechnology, 2007, 18: 255604–(1–7)
    [9] A. Thess, R. Lee, P. Nikolave, H. J. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273: 483–487
    [10] F. Kokai, K. Takahashi, M. Yudasaka, R. Yamada, T. Ichihashi, S. Iijima. Growth dynamics of single-wall carbon nanotubes synthesized by CO2 laser vaporization. J. Phys. Chem. B, 1999, 103: 4346–4351
    [11] C. T. Kingston, Z. J. Jakubek, S. Denommee, B. Simard. Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume. Carbon, 2004, 42: 1657–1664
    [12] S. Enouz, O. Stephan, J. L. Cochon, C. Colliex, A. Loiseau. C-BN patterned single-walled nanotubes synthesized by laser vaporization. Nano Lett., 2007, 7: 1856–1862
    [13] J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, R. E. Smalley. Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett., 1998, 296: 195–202
    [14] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. J. Dai. Synthesis of individual single-walled carbon nanotubes on patterned siliconwafers. Nature, 1998, 395: 878–881
    [15] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett., 2002, 360: 229–234
    [16] I. Hinkov, S. Farhat, C. D. Scott. In?uence of the gas pressure on single-wall carbon nanotube formation. Carbon, 2005, 43: 2453–2462
    [17] P. B. Amama, M. R. Maschmann, T. S. Fisher, T. D. Sands. Dendrimer-templated Fe nanoparticles for the growth of single-wall carbon nanotubes by plasma-enhanced CVD. J. Phys. Chem. B, 2006, 110: 10636–10644
    [18] E. Mora, T. Tokune, A. R. Harutyunyan. Continuous production of single-walled carbonnanotubes using a supported ?oating catalyst. Carbon, 2007, 45: 971–977
    [19] A. Cassell, J. Raymakers, J. Kong, H. J. Dai. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B, 1999, 103: 6484–6492
    [20] M. Su, B. Zheng, J. Liu. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett., 2000, 322: 321–326
    [21] L. Song, L. J. Ci, L. Lv, Z. P. Zhou, X. Q. Yan, D. F. Liu, H. J. Yuan, Y. Gao, J. X. Wang, L. F. Liu, X. W. Zhao, Z. X. Zhang, X. Y. Dou, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv. Mater., 2004, 16: 1529–1534
    [22] 宋礼. 单层碳纳米管可控制备及其应用的研究[博士学位论文]. 北京:中国科学院物理研究所,2006
    [23] H. M. Cheng, F. Li, G. Su, H. Pan, L. He, X. Sun, M. S. Dresselhaus. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett., 1998, 72: 3282–3284
    [24] B. C. Satishkumar, A. Govindaraj, R. Sen, C. N. R. Rao. Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures. Chem. Phys. Lett., 1998, 293: 47–52
    [25] K. Bladh, L. K. L. Falk, F. Rohmund. On the iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase. Appl. Phys. A: Mater. Sci. Process, 2000, 70: 317–322
    [26] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett., 1999, 313: 91–97
    [27] M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio. Raman spectroscopy of carbon nanotubes. Phys. Rep., 2005, 409: 47–99
    [28] A. Kasuya, M. Sugano, T. Maeda, Y. Saito, K. Tohji, H. Takahashi, Y. Sasaki, M. Fukushima, Y. Nishina, C. Horie. Resonant Raman scattering and the zone-folded electronic structure in single-wall nanotubes. Phys. Rev. B, 1998, 57: 4999–5001
    [29] R. Saito, G. Dresselhaus, M. S. Dresselhaus. Trigonal warping effect of carbon nanotubes. Phys. Rev. B, 2000, 61: 2981–2990
    [30] A. Jorio, A. G. Souza, G. Dresselhaus, M. S. Dresselhaus, R. Saito, J. H. Hafner, C. M. Lieber, F. M. Matinaga, M. S. S. Dantas, M. A. Pimenta. Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering. Phys. Rev. B, 2001, 63: 245416–(1–4)
    [31] A. Jorio, M. A. Pimenta, A. G. S. Filho, R. Saito, G. Dresselhaus, M. S. Dresselhaus. Characterizing carbon nanotube samples with resonance Raman scattering. New J. Phys., 2003, 5: 139–(1–17)
    [32] 周振平. 单/双壁碳纳米管的可控制备及其共振拉曼散射研究[博士学位论文]. 北京:中国科学院物理研究所,2004
    [33] Y. Y. Zhang, H. B. Son, J. Zhang, M. S. Dresselhaus, J. Kong, Z. F. Liu. Raman spectra variation of partially suspended individual single-walled carbon nanotubes. J. Phys. Chem. C, 2007, 111: 1983–1987
    [34] M. S. Dresselhaus, P. C. Eklund. Phonons in carbon nanotubes. Adv. Phys., 2000, 49: 705–814
    [35] V. N. Popov, L. Henrard, P. Lambin. Electron-phonon and electron-photon interactions and resonant Raman scattering from the radial-breathing mode of single-walled carbon nanotubes. Phys. Rev. B, 2005, 72: 035436–(1–10)
    [36] R. Jishi, L. Venkataraman, M. S. Dresselhaus, G. Dresselhaus. Phonon modes in carbon nanotubules. Chem. Phys. Lett., 1993, 209: 77–82
    [37] S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, P. C. Eklund. Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett., 1998, 80: 3779–3782
    [38] J. Kürti, G. Kresse, H. Kuzmany. First-principles calculations of the radial breathing mode of single-wall carbon nanotubes. Rev. B, 1998, 58: R8869–R8872
    [39] H. Kuzmany, W. Plank, M. Hulman, C. Kramberger, A. Gruneis, T. Pichler, H. Peterlik, H. Kataura, Y. Achiba. Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur. Phys. J. B, 2001, 22: 307–320
    [40] M. Milnera, J. Kurti, M. Hulman, H. Kuzmany. Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes. Phys. Rev. Lett., 2000, 84: 1324–1327
    [41] J. Kürti, V. Zólyomi, M. Kertesz, G. Y. Sun. The geometry and the radial breathing mode of carbon nanotubes: Beyond the ideal behaviour. New J. Phys., 2003, 5: 125–(1–21)
    [42] A. Jorio, C. Fantini, M. S. S. Dantas, M. A. Pimenta, A. G. S. Filho, G. G. Samsonidze, V. W. Brar, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. ünlü, B. B. Goldberg, R. Saito. Linewidth of the Raman features of individual single-wall carbon nanotubes. Phys. Rev. B, 2002, 66: 115411–(1–8)
    [43] A. C. Ferrari, J. Robertson 编,谭平恒,李峰,成会明译. 碳材料的拉曼光谱——从纳米管到金刚石. 北京:化学工业出版社,2007. 40–61
    [44] A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, Y. Nishina. Evidence for size-dependent discrete dispersions in single-wall nanotubes. Phys. Rev. Lett., 1997, 78: 4434–4437
    [45] M. Pimenta, A. Marucci, S. A. Empedocles, M. G. Bawendi, E. B. Hanlon, A. M. Rao, P. C. Eklund, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus. Raman modes of metallic carbon nanotubes. Phys. Rev. B, 1998, 58: R16016–R16019
    [46] A. Jorio, G. Dresselhaus, M. S. Dresselhaus, M. Souza, M. Dantas, M. Pimenta, A. M. Rao, R. Saito, C. Liu, H. M. Cheng. Polarized Raman study of single-wall semiconducting carbon nanotubes. Phys. Rev. Lett., 2000, 85: 2617–2620
    [47] A. Jorio, M. A. Pimenta, A. G. S. Filho, G. G. Samsonidze, A. K. Swan, M. S. ünlü, B. B. Goldberg, R. Saito, G. Dresselhaus, M. S. Dresselhaus. Resonance Raman spectra of carbon nanotubes by cross-polarized light. Phys. Rev. Lett., 2003, 90: 107403–(1–4)
    [48] S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, K. Kneipp. Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys. Rev. B, 2001, 63: 155414–(1–8)
    [49] C. Y. Jiang, K. Kempa, J. L. Zhao, U. Schlecht, U. Kolb, T. Basché, M. Burghard, A. Mews. Strong enhancement of the Breit-Wigner-Fano Raman line in carbon nanotube bundles caused by plasmon band formation. Phys. Rev. B, 2002, 66: 161404–(1–4)
    [50] A. C. Ferrari, J. Robertson. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B, 2000, 61: 14095–14107
    [51] C. Thomsen. Second-order Raman spectra of single and multiwalled carbon nanotubes. Phys. Rev. B, 2000, 61: 4542–4544
    [52] A. G. S. Filho, A. Jorio, G. G. Samsonidze, G. Dresselhaus, M. A. Pimenta, M. S. Dresselhaus, A. K. Swan, M. S. ünlü, B. B. Goldberg, R. Saito. Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes. Phys. Rev. B, 2003, 67: 035427–(1–7)
    [53] V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. ünlü, B. B. Goldberg, A. G. S. Filho1, A. Jorio. Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes. Phys. Rev. B, 2002, 66: 155418–(1–10)
    [54] Z. P. Zhou, L. J. Ci, L. Song, X. Q. Yan, D. F. Liu, H. J. Yuan, Y. Gao, J. X. Wang, L. F. Liu, W. Y. Zhou, G. Wang, S. S. Xie. Random networks of single-walled carbon nanotubes. J. Phys. Chem. B, 2004, 108: 10751–10753
    [55] M. Pailleta, V. Jourdain, P. Poncharal, J. L. Sauvajol, A. Zahab, J. C. Meyer, S. Roth, N. Cordente, C. Amiens, B. Chaudret. Growth and physical properties of individual single-walled carbonnanotubes. Diamond Relat. Mater., 2005, 14: 1426–1431
    [56] L. X. Zheng, M. J. O’Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, Y. T. Zhu. Ultralong single-wall carbon nanotubes, Nat. Mater., 2004, 3: 673–676
    [57] S. Berber, Y. K. Kwon, D. Tománek. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett., 2000, 84: 4613–4617
    [58] H. D. Li, K. T. Yue, Z. L. Lian, Y. Zhan, L. X. Zhou, S. L. Zhang, Z. J. Shi, Z. N. Gu, B. B. Liu, R. S. Yang, H. B. Yang, G. T. Zou, Y. Zhang, S. Iijima. Temperature dependence of the Raman spectra of single-wall carbon nanotubes. Appl. Phys. Lett., 2000, 76: 2053–2055
    [59] X. G. Xiong, L. L Jaberansari, M. G. Hahm, A. Busnaina. Y. J. Jung. Building highly organized single-walled-carbon-nanotube networks using template-guided fluidic assembly. Small, 2007, 3: 2006–2010
    [60] J. P. Edgeworth, N. R. Wilson, J. V. Macpherson. Controlled growth and characterization of two-dimensional single-walled carbon-nanotube networks for electrical applications. Small, 2007, 3: 860–870
    [61] M. D. Lima, M. J. de Andrade, C. P. Bergmann, S. Roth. Thin, conductive, carbon nanotube networks over transparent substrates by electrophoretic deposition. J. Mater. Chem., 2008, 18: 776–779
    [62] M. Kaempgen, M. Lebert, M. Haluska, N. Nicoloso, S. Roth. Sonochemical optimization of the conductivity of single-wall carbon nanotube networks. Adv. Mater., 2008, 20: 616–620
    [63] W. J. Ma, L. Song, R. Yang, T. H. Zhang, Y. C. Zhao, L. F. Sun, Y. Ren, D. F. Liu, L. F. Liu, J. Shen, Z. X. Zhang, Y. J. Xiang, W. Y. Zhou, S. S. Xie. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett., 2007, 7: 2307–2311
    [64] 慈立杰. 单层/双层碳纳米管的选择性制备及表征[博士后工作报告]. 北京:中国科学院物理研究所,2002
    [65] J. F. Colomer, C. Stephan, S. Lefrant, G. V. Tendeloo, I. Willems, Z. Konya, A. Fonseca, C. Laurent, J. B. Nagy. Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem. Phys. Lett., 2000, 317: 83–89
    [66] Y. Li, X. B. Zhang, L. H. Shen, J. H. Luo, X. Y. Tao, F. Liu, G. L. Xu, Y. W. Wang, H. J. Geise, G. V. Tendeloo. Controlling the diameters in large-scale synthesis of single-walled carbon nanotubes by catalytic decomposition of CH4. Chem. Phys. Lett., 2004, 398: 276–282
    [67] S. J. Tans, A. R. M. Verschueren, C. Dekker. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393: 49–52
    [68] V. Zorbas, A. Ortiz-Acevedo, A. B. Dalton, M. M. Yoshida, G. R. Dieckmann, R. K. Draper, R. H. Baughman, M. Jose-Yacaman, I. H. Musselman. Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J. Am. Chem. Soc. 2004, 126: 7222–7227
    [69] J. Paaske, A. Rosch, P. W?lfle, N. Mason, C. M. Marcus, J. Nyg?rd. Non-equilibrium singlet- triplet Kondo effect in carbon nanotubes. Nat. Phys. 2006, 2: 460–464
    [70] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, 1997, 275: 187–191
    [71] S. Nie, S. R. Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1997: 1102–1106
    [72] G. S. Duesberg, W. J. Blau, H. J. Byrne, J. Muster, M. Burghard, S. Roth. Experimental observation of individual single-wall nanotube species by Raman microscopy. Chem. Phys. Lett., 1999, 310: 8–14
    [73] K. Kneipp, A. Jorio, H. Kneipp, S. D. M. Brown, K. Shafer, J. Motz, R. Saito, G. Dresselhaus, M. S. Dresselhaus. Polarization effects in surface-enhanced resonant Raman scattering of single-wallcarbon nanotubes on colloidal silver clusters. Phys. Rev. B, 2001, 63: 081401–(1–4)
    [74] S. Lefrant, I. Baltog, M. Baibarac, J. Y. Mevellec, O. Chauvet. SERS studies on single-walled carbon nanotubes submitted to chemical transformation with sulfuric acid. Carbon, 2002, 40: 2201–2211
    [75] S. Lefrant, M. Baibarac, I. Baltog, J. Y. Mevellec, L. Mihut, O. Chauvet. SERS spectroscopy studies on the electrochemical oxidation of single-walled carbon nanotubes in sulfuric acid solutions. Synth. Metal., 2004, 144: 133–142
    [76] S. Lefrant, I. Baltog, M. Baibarac. Surface-enhanced Raman scattering studies on chemically transformed carbon nanotube thin films. J. Raman Spectrosc., 2005, 36: 676–698
    [77] Z. P. Zhou, D. Y. Wan, X. Y. Dou, L. Song, X. Q. Yan, D. F. Liu, H. J. Yuan, Y. Gao, J. X. Wang, L. F. Liu, W. Y. Zhou, S. S. Xie. Surface-enhanced Raman scattering from the individual metallic single-walled carbon nanotubes. Physica E, 2005, 28: 360–364
    [78] M. Scolari, A. Mews, N. Fu, A. Myalitsin, T. Assmus, K. Balasubramanian, M. Burghard, K. Kern. Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles. J. Phys. Chem. C, 2008, 112: 391–396
    [79] K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, M. S. Dresselhaus. Surface-enhanced and normal Stokes and anti-Stokes Raman spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett., 2000, 84: 3470–3473
    [80] M. Moskovits. Surface-enhanced spectroscopy. Rev. Mod. Phys., 1985, 57: 783–826
    [81] A. Campion, J. E. Ivanecky III, C. M. Child, M. J. Foster. On the mechanism of chemical enhancement in surface-enhanced Raman-scattering. J. Am. Chem. Soc., 1995, 117: 11807–11808
    [82] A. Campion, P. Kambhampati. Surface-enhanced Raman scattering. Chem. Soc. Rev., 1998, 27: 241–250
    [83] M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, R. Saito. Review: Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 2002, 40: 2043–2061
    [84] A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett., 2001, 86: 1118–1121
    [85] M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, T. F. George. Enhanced Raman scattering by fractal clusters: Scale-invariant theory. Phys. Rev. B, 1992, 46: 2821–2830
    [86] V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, M. Moskovits. Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters. Phys. Rev. B, 1999, 59: 10903–10909
    [87] S. D. M. Brown, P. Corio, A. Marucci, M. S. Dresselhaus, M. A. Pimenta, K. Kneipp. Anti-Stokes Raman spectra of single-walled carbon nanotubes. Phys. Rev. B, 2000, 61: R5137–R5140
    [88] M. J. Peters, L. E. McNeil, J. P. Lu, D. Kahn. Structural phase transition in carbon nanotube bundles under pressure. Phys. Rev. B, 2000, 61: 5939–5944
    [89] S. B. Cronin, A. K. Swan, M. S. ünlü, B. B. Goldberg, M. S. Dresselhaus, M. Tinkham. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys. Rev. Lett., 2004, 93: 167401–(1–4)
    [90] W. Yang, R. Z. Wang, X. M. Song, B. Wang, H. Yan. Pressure-induced Raman-active radial breathing mode transition in single-wall carbon nanotubes. Phys. Rev. B, 2007, 75: 045425–(1–5)
    [91] Y. Y. Zhang, J. Zhang, H. B. Son, J. Kong, Z. F. Liu. Substrate-induced Raman frequency variation for single-walled carbon nanotubes. J. Am. Chem. Soc., 2005, 127: 17156–17157
    [92] H. Son, Y. Hori, S. G. Chou, D. Nezich, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, E. B. Barros. Environment effects on the Raman spectra of individual single-wall carbon nanotubes Suspended and grown on polycrystalline silicon. Appl. Phys. Lett., 2004, 85: 4744–4746
    [93] P. Corio, S. D. M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, M. S. Dresselhaus. Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces. Phys. Rev. B, 2000, 61: 13202–13211
    [94] P. V. Teredesai, A. K. Sood, A. Govindaraj, C. N. R. Rao. Surface enhanced resonance Raman scattering from radial and tangential modes of semiconducting single wall carbon nanotubes. Appl. Sur. Sci., 2001, 182: 196–201
    [95] M. A. Pimenta, E. B. Hanlon, A. Marucci, P. Corio, S. D. M. Brown, S. A. Empedocles, M. G. Bawendi, G. Dresselhaus, M. S. Dresselhaus. The anomalous dispersion of the disorder-induced and the second-order Raman bands in carbon nanotubes. Braz. J. Phys., 2000, 30: 423–427
    [96] M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, M. Endo. Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B, 2001, 59: R6585–R6588
    [1] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus. Electronic structure of chiral graphene tubules. Appl. Phys. Lett., 1992, 60: 2204–2206
    [2] J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker. Electronic structure of atomically resolved carbon nanotubes. Nature, 1998, 391: 59–62
    [3] S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, L. J. Georliga, C. Dekker. Individual single-wall carbon nanotubes as quantum wires. Nature, 1997, 386: 474–477
    [4] S. J. Tans, A. R. M. Verschueren, C. Dekker. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393: 49–52
    [5] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, R. E. Smalley. Single-electron transport in ropes of carbon nanotubes. Science, 1997, 275: 1922–1925
    [6] A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, E. H. Anderson, A. Zettl, P. L. McEuen. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett., 2000, 84: 6082–6085
    [7] N. Yoneya, K. Tsukagoshi, Y. Aoyagi. Charge transfer control by gate voltage in crossed nanotube junction. Appl. Phys. Lett., 2002, 81: 2250–2252
    [8] M. J. Biercuk, S. Garaj, N. Mason, J. M. Chow, C. M. Marcus. Gate-defined quantum dots on carbon nanotubes. Nano Lett., 2005, 5: 1267–1271
    [9] F. Liu, K. L. Wang, D. H. Zhang, C. W. Zhou. Noise in carbon nanotube field effect transistor. Appl. Phys. Lett., 2006, 89: 163116–(1–3)
    [10] H. S. Kim, B. K. Kim, J. J. Kim, J. O Lee, N. J. Park. Controllable modification of transport properties of single-walled carbon nanotube field effect transistors with in situ Al decoration. Appl. Phys. Lett., 2007, 91: 153113–(1–3)
    [11] J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. Cho, H. J. Dai. Nanotube molecular wires as chemical sensors. Science, 2000, 287: 622–625
    [12] P. G. Collins, K. Bradley, M. Ishigami, A. Zettl. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 2000, 287: 1801–1804
    [13] V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris. Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett., 2002, 80: 2773–2775
    [14] H. M. Manohara, E. W. Wong, E. Schlecht, B. D. Hunt, P. H. Siegel. Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications. Nano Lett., 2005, 5: 1469–1474
    [15] R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, R. E. Smalley. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature, 1997, 388: 255–257
    [16] M. Bockrath, J. Hone, A. Zettl, P. L. McEuen, A. G. Rinzler, R. E. Smalley. Chemical doping of individual semiconducting carbon-nanotube ropes. Phys. Rev. B, 2000, 61: 10606–10608
    [17] J. Kong, C. W. Zhou, E. Yenilmez, H. J. Dai. Alkaline metal-doped n-type semiconducting nanotubes as quantum dots. Appl. Phys. Lett., 2000, 77: 3977–3979
    [18] M. Shim, A. Javey, N. W. S. Kam, H. J. Dai. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J. Am. Chem. Soc., 2001, 123: 11512–11513
    [19] M. Radosavljevic, M. Freitag, K. V. Thadani, A. T. Johnson. Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors. Nano Lett., 2002, 2: 761–764
    [20] S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer. Carbon nanotube quantum resistors. Science, 1998, 280: 1744–1746
    [21] J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, H. J. Dai, R. B. Laughlin, L. Liu, C. S. Jayanthi, S.Y. Wu. Quantum interference and ballistic transmission in nanotube electron waveguides. Phys. Rev. Lett., 2001, 87: 106801–(1–4)
    [22] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Lieber. Carbon nanotube–based nonvolatile random access memory for molecular computing. Science, 2000, 289: 94–97
    [23] A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker. Logic circuits with carbon nanotube transistors. Science, 2001, 294: 1317–1320
    [24] Z. H. Chen, J. Appenzeller, Y. M. Lin, J. S. Oakley, A. G. Rinzler, J. Y. Tang, S. J. Wind, P. M. Solomon, Ph. Avouris. An integrated logic circuit assembled on a single carbon nanotube. Science, 2006, 311: 1735–1735
    [25] C. Kocabas, H. S. Kim, T. Banks, J.A. Rogers, A. A. Pesetski, J. E. Baumgardner, S. V. Krishnaswamy, H. Zhang. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. USA, 2008, 105: 1405–1409
    [26] A. Vijayaraghavan, K. Kanzaki, S. Suzuki, Y. Kobayashi, H. Inokawa, Y. Ono, S. Kar, P. M Ajayan. Metal-semiconductor transition in single-walled carbon nanotubes induced by low-energy electron irradiation. Nano Lett., 2005, 5: 1575–1579
    [27] F. Banhart. Irradiation effects in carbon nanostructures. Rep. Prog. Phys., 1999, 62: 1181–1221
    [28] S. Suzuki, K. Kanzaki, Y. Homma, S. Y. Fukuba. Low-acceleration-voltage electron irradiation damage in single-walled carbon nanotubes. Jpn. J. Appl. Phys., 2004, 43: L1118–L1120
    [29] M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, R. E. Smalley. The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol., 2003, 3: 81–86
    [30] W. Wenseleers, I. I. Vlasov, E. Goovaerts, E. D. Obraztsova, A. S. Lobach, A. Bouwen. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater., 2004, 14: 1105–1112
    [31] V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, J. Schmidt, Y. Talmon. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett., 2003, 3, 1379–1382
    [32] M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater., 2003, 2, 338–342
    [33] E. Anglaret, F. Dragin, A. Penicaud, R. Martel. Raman studies of solutions of single-wall carbon nanotube salts. J. Phys. Chem. B, 2006, 110, 3949–3954
    [34] J. E. Cao, Q. Wang, H. J. Dai. Electron transport in very clean, as-grown suspended carbonnanotubes. Nat. Mater., 2005, 4: 745–749
    [35] T. H. Tran, J. W. Lee, K. Lee, Y. D. Lee, B. K. Ju. The gas sensing properties of single-walled carbon nanotubes deposited on an aminosilane monolayer. Sens. Actuators B, 2008, 129: 67–71
    [36] M. Burghard, G. Duesberg, G. Philipp, J. Muster, S. Roth. Controlled adsorption of carbon nanotubes on chemically modified electrode arrays. Adv. Mater., 1998, 10: 584–588
    [37] W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. M. Li, H. J. Dai. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett., 2003, 3: 193–198
    [38] H. Lin, S. Tiwari. Localized charge trapping due to adsorption in nanotube field-effect transistor and its field-mediated transport. Appl. Phys. Lett., 2006, 89: 073507–(1–3)
    [39] C. J. Wang, Q. Cao, T. Ozel, A. Gaur, J. A. Rogers, M. Shim. Electronically selective chemical functionalization of carbon nanotubes: Correlation between Raman spectral and electrical responses. J. Am. Chem. Soc., 2005, 127: 11460–11468
    [40] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff, Ph. Avouris. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett., 2001, 87: 256805–(1–4)
    [41] T. Kanbara, T. Takenobu, T. Takahashi, Y. Iwasa, K. Tsukagoshi, Y. Aoyagi, H. Kataura. Contact resistance modulation in carbon nanotube devices investigated by four-probe experiments. Appl. Phys. Lett., 2006, 88: 053118–(1–4)
    [42] H. T. Soh, C. F. Quate, A. F. Morpurgo, C. M. Marcus, J. Kong, H. J. Dai. Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl. Phys. Lett., 1999, 75: 627–629
    [43] C. W. Zhou, J. Kong, H. J. Dai. Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters. Appl. Phys. Lett. 2000, 76: 1597–1599
    [44] C. W. Zhou, J. Kong, H. J. Dai. Intrinsic Electrical properties of individual single-walled carbon nanotubes with small band gaps. Phys. Rev. Lett., 2000, 84: 5604–5607
    [45] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett., 1998, 73: 2447–2449
    [46] J. Kong, C. Zhou, A. Morpurgo, H. T. Soh, C. F. Quate, C. Marcus, H. J. Dai. Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes. Appl. Phys. A: Mater. Sci. Process, 1999, 69: 305–308
    [47] L. Marty, A. Bonhomme, A. Iaia, E. André, E. Rauwel, C. Dubourdieu, A. Toffoli, F. Ducroquet, A. M. Bonnot, V. Bouchiat. Integration of self-assembled carbon nanotube transistors: Statistics and gate engineering at the wafer scale. Nanotechnology, 2006, 17: 5038–5045
    [48] A. Bezryadin, A. R. M. Verschueren, S. J. Tans, C. Dekker. Multiprobe transport experiments on individual single-wall carbon nanotubes. Phys. Rev. Lett., 1998, 80: 4036–4039
    [49] Z. H. Zhang, J. C. Peng, H. Zhang. Low-temperature resistance of individual single-walled carbon nanotubes: A theoretical estimation. Appl. Phys. Lett., 2004, 79: 3515–3517
    [50] I. Deretzis, A. L. Magna. Role of contact bonding on electronic transport in metal–carbon nanotube–metal systems. Nanotechnology, 2006, 17: 5063–5072
    [51] J. J. Palacios, P. Tarakeshwar, D. M. Kim. Metal contacts in carbon nanotube field-effect transistors: Beyond the Schottky barrier paradigm. Phys. Rev. B, 2008, 77: 113403–(1–4)
    [52] A. A. Odintsov. Schottky barriers in carbon nanotube heterojunctions. Phys. Rev. Lett., 2000, 85: 150–153
    [53] S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, Ph. Avouris. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett., 2002, 89: 106801–(1–4)
    [54] J. Appenzeller, J. Knoch, M. Radosavljevi?, Ph. Avouris. Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors. Phys. Rev. Lett., 2004, 92: 226802–(1–4)
    [55] R. V. Seidel, A. P. Graham, B. Rajasekharan, E. Unger, M. Liebau, G. S. Duesberg, F. Kreupl, W. Hoenlein. Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes. J. Appl. Phys., 2004, 96: 6694–6698
    [56] L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, B. M. Sliwinska. Phase separation in confined systems. Rep. Prog. Phys., 1999, 62: 1573–1659
    [57] M. Whitby, N. Quirke. Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol., 2007, 2: 87–94
    [58] M. S. P. Sansom, P. C. Biggin. Water at the nanoscale. Nature, 2001, 414: 156–159
    [59] G. Hummer, J. C. Rasaiah, J. P. Noworyta. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001, 414: 188–190
    [60] K. Koga, G. T. Gao, H. Tanaka, X. C. Zeng. Formation of ordered ice nanotubes inside carbon nanotubes. Nature, 2001, 412: 802–805
    [61] A. Berezhkovskii, G. Hummer. Single-file transport of water molecules through a carbon nanotube. Phys. Rev. Lett., 2002, 89: 064503–(1–4)
    [62] Y. C. Liu, Q. Wang. Transport behavior of water confined in carbon nanotubes. Phys. Rev. B, 2005, 72: 085420–(1–4)
    [63] Y. Maniwa, H. Kataura, M. Abe, E. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadozaki, Y. Okabe. Ordered water inside carbon nanotubes: Formation of pentagonal to octagonal ice-nanotubes. Chem. Phys. Lett., 2005, 401: 534–538
    [64] S. Ghosh, K. V. Ramanathan, A. K. Sood. Water at nanoscale confined in single-walled carbon nanotubes studied by NMR. Europhys. Lett., 2004, 65: 678–684
    [65] K. Matsuda, T. Hibi, H. Kadowaki, H. Kataura, Y. Maniwa. Water dynamics inside single-wall carbon nanotubes: NMR observations. Phys. Rev. B, 2006, 74: 073415–(1–4)
    [66] S. H. Mao, A. Kleinhammes, Y. Wu. NMR study of water adsorption in single-walled carbon nanotubes. Chem. Phys. Lett., 2006, 421: 513–517
    [67] A. I. Kolesnikov, J. M. Zanotti, C. K. Loong, P. Thiyagarajan. Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement. Phys. Rev. Lett., 2004, 93: 035503–(1–4)
    [68] N. R. de Souza, A. I. Kolesnikov, D. J. Burnham, C. K. Loong. Structure and dynamics of water confined in single-wall carbon nanotubes. J. Phys. Condens. Matter, 2006, 18: S2321–S2334
    [69] O. Byl, J. C. Liu, Y. Wang, W. L. Yim, J. K. Johnson, J. T. Yates. Unusual hydrogen bonding in water-filled carbon nanotubes. J. Am. Chem. Soc., 2006, 128: 12090–12097
    [70] W. Wenseleers, S. Cambré, J. ?ulin, A. Bouwen, E. Goovaerts. Effect of water filling on the electronic and vibrational resonances of carbon nanotubes: Characterizing tube opening by Raman spectroscopy. Adv. Mater., 2007, 19: 2274–2278
    [71] N. Naguib, H. H. Ye, Y. Gogotsi, A. G. Yazicioglu, C. M. Megaridis, M. Yoshimura. Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett., 2004, 4: 2237–2243
    [72] M. Majumder, N. Chopra, R. Andrews, B. J. Hinds. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature, 2005, 438: 44–44
    [73] J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, O. Bakajin. Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 2006, 312: 1034–1037
    [74] Y. Maniwa, K. Matsuda, H. Kyakuno, S. Ogasawara, T. Hibi, H. Kadowaki, S. Suzuki, Y. Achiba, H. Kataura. Water-filled single-wall carbon nanotubes as molecular nanovalves. Nat. Mater., 2007, 6: 135–141
    [75] A. Maiti, J. Andzelm, N. Tanpipat, P. von Allmen. Effect of adsorbates on field emission from carbon nanotubes. Phys. Rev. Lett., 2001, 87: 155502–(1–4)
    [76] D. Y. Lu, Y. Li, S. V. Rotkin, U. Ravaioli, K. Schulten. Finite-size effect and wall polarization in a carbon nanotube channel. Nano Lett., 2004, 4: 2383–2387
    [77] S. Ghosh, A. K. Sood, N. Kumar. Carbon nanotube flow sensors. Science, 2003, 299: 1042-1044
    [78] S. Ghosh, A. K. Sood, S. Ramaswamy, N. Kumar. Flow-induced voltage and current generation in carbon nanotubes. Phys. Rev. B, 2004, 70: 205423–(1–5)
    [79] G. Hummer. Water, proton, and ion transport: From nanotubes to proteins. Mol. Phys., 2007, 105: 201–207
    [80] P. Král, M. Shapiro. Nanotube electron drag in flowing liquids. Phys. Rev. Lett., 2001, 86: 131–134
    [81] A. Zahab, L. Spina, P. Poncharal, C. Marlière. Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat. Phys. Rev. B, 2000, 62: 10000–10003
    [82] J. J. Zhao, A. Buldum, J. Han, J. P. Lu. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology, 2002, 13: 195–200
    [83] P. S. Na, H. J. Kim, H. M. So, K. J. Kong, H. J. Chang, B. H. Ryu, Y. M. Choi, J. O. Lee, B. K. Kim, J. J. Kim. Investigation of the humidity effect on the electrical properties of single-walled carbon nanotube transistors. Appl. Phys. Lett., 2005, 87: 093101–(1–3)
    [84] W. H. Noon, K. D. Ausman, R. E. Smalley, J. P. Ma. Helical ice-sheets inside carbon nanotubes in the physiological condition. Chem. Phys. Lett., 2002, 355: 445–448
    [85] R. J. Mash, S. Joseph, N. R. Aluru, E. Jakobsson. Anomalously immobilized water a new water phase induced by confinement in nanotubes. Nano Lett., 2003, 3: 589–592
    [86] S. Vaitheeswaran, J. C. Rasaiah, G. Hummer. Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes. J. Chem. Phys., 2004, 121: 7955–7965
    [87] X. J. Gong, J. Y. Li, H. J. Lu, R. Z. Wan, J. C. Li, J. Hu, H. P. Fang. A charge-driven molecular water pump. Nat. Nanotechnol., 2007, 2: 709–712
    [88] J. Y. Li, X. J. Gong, H. J. Lu, D. Li, H. P. Fang, R. H. Zhou. Electrostatic gating of a nanometer water channel. Proc. Natl Acad. Sci. USA, 2007, 104: 3687–3692
    [89] J. Yang, F. Lu, L.W. Kostiuk, D. Y. Kwok. Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. J. Micromech. Microeng., 2003, 13: 963–970
    [90] A. Striolo. The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett., 2006, 6: 633–639
    [91] E. M. Kotsalis, J. H. Walther, P. Koumoutsakos. Multiphase water flow inside carbon nanotubes. Int. J. Multiphase Flow, 2004, 30: 995–1010
    [92] M.R. Babaa, N. D. Pavlovsky, E. McRae, K. M, Varlot. Physical adsorption of carbon tetrachloride on as-produced and on mechanically opened single walled carbon nanotubes. Carbon, 2004, 42: 1549–1554
    [1] S. Iijima, T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603–605
    [2] J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon. Solution properties of single-walled carbon nanotubes. Science, 1998, 282: 95–98
    [3] L. W. Liu, J. H. Fang, L. Lu, F. Zhou, H. F. Yang, A. Z. Jin, C. Z. Gu. Three-terminal carbon nanotube junctions: Current-voltage characteristics. Phys. Rev. B, 2005, 71: 155424–(1–4)
    [4] Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, C. S. Han. Transparent film heater using single-walled carbon nanotubes. Adv. Mater., 2007, 19: 4284–4287
    [5] W. Kim, H. C. Choi, M. Shim, Y. M. Li, D. W. Wang, H. J. Dai. Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes. Nano Lett., 2002, 2: 703–708
    [6] H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan. Direct synthesis of long single-walled carbon nanotube strands. Science, 2002, 296: 884–886
    [7] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 2004, 306: 1362–1364
    [8] G. Y. Zhang, D. Mann, L. Zhang, A. Javey, Y. M. Li, E. Yenilmez, Q. Wang, J. P. Mcvittie, Y. Nishi, J. Gibbons, H. J. Dai. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. USA, 2005, 102: 16141–16145
    [9] 韦进全,张先锋,王昆林. 碳纳米管宏观体. 北京:清华大学出版社,2006
    [10] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman. Solid C60: A new form of carbon. Nature, 1990, 347: 354–358
    [11] R. C. Haddon, A. F. Heberd, M. J. Rosseinsky, D. W. Murphy, S. J. Duclos, K. B. Lyons, B. Miller, J. M. Rosamilia, R. M. Fleming, A. R. Kortan, S. H. Glarum, A. V. Makhija, A. J. Muller, R. H. Eick, S. M. Zahurak, R. Tycko, G. Dabbagh, F. A. Thiel. Conducting films of C60 and C70 by alkali-metal doping. Nature, 1991, 350: 320–322
    [12] F. Diederich, C. Thilgen. Covalent fullerene chemistry. Science, 1996, 271: 317–324
    [13] S. E. Campbell, G. Luengo, V. I. Srdanov, F. Wudl, J. N. Israelachvili. Very low viscosity at the solid-liquid interface induced by adsorbed C60 monolayers. Nature, 1996, 382: 520–522
    [14] Y. R. Ma, P. Moriarty, P. H. Beton. Disorder-order ripening of C60 islands. Phys. Rev. Lett., 1997, 78: 2588–2591
    [15] R. E. Dinnebier, O. Gunnarsson, H. Brumm, E. Koch, P. W. Stephens, A. Huq, M. Jansen. Structure of haloform intercalated C60 and its influence on superconductive properties. Science, 2002, 296: 109–113
    [16] J. Tersoff, R. S. Ruoff. Structural properties of a carbon-nanotube crystal. Phy. Rev. Lett., 1994, 73: 676–679
    [17] P. Delaney, H. J. Choi, J. Ihm, S. G. Louie, M. L. Cohen. Broken symmetry and pseudogaps in ropes of carbon nanotubes. Nature, 1998, 391: 466–468
    [18] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. la Chapelle, S. Lefrant, P. Deniard, R. Leek, J. E. Fischerk. Large-scale production of single-walled carbon nanotubes by the electric-arctechnique. Nature, 1997, 388: 756–758
    [19] D. M. Gattia, M. V. Antisari, R. Marazzi. AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets. Nanotechnology, 2007, 18: 255604–(1–7)
    [20] A. Thess, R. Lee, P. Nikolave, H. J. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273: 483–487
    [21] C. T. Kingston, Z. J. Jakubek, S. Denommee, B. Simard. Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume. Carbon, 2004, 42: 1657–1664
    [22] H. M. Cheng, F. Li, G. Su, H. Pan, L. He, X. Sun, M. S. Dresselhaus. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett., 1998, 72: 3282–3284
    [23] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett., 2002, 360: 229–234
    [24] I. Hinkov, S. Farhat, C. D. Scott. In?uence of the gas pressure on single-wall carbon nanotube formation. Carbon, 2005, 43: 2453–2462
    [25] D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater., 2006, 5: 987–994
    [26] M. Motta, A. Moisala, I. A. Kinloch, A. H. Windle. High performance fibres from ‘dog bone’ carbon nanotubes. Adv. Mater., 2007, 19: 3721–3726
    [27] K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle. High-performance carbon nanotube fiber. Science, 2007, 318: 1892–1895
    [28] L. Song, L. J. Ci, L. Lv, Z. P. Zhou, X. Q. Yan, D. F. Liu, H. J. Yuan, Y. Gao, J. X. Wang, L. F. Liu, X. W. Zhao, Z. X. Zhang, X. Y. Dou, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv. Mater., 2004, 16: 1529–1534
    [29] W. J. Ma, L. Song, R. Yang, T. H. Zhang, Y. C. Zhao, L. F. Sun, Y. Ren, D. F. Liu, L. F. Liu, J. Shen, Z. X. Zhang, Y. J. Xiang, W. Y. Zhou, S. S. Xie. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett., 2007, 7: 2307–2311
    [30] S. S. Xie, L. Song, L. J. Ci, Z. P. Zhou, X. Y. Dou, W. Y. Zhou, G. Wang, L. F. Sun. Controllable preparation and properties of single-/double-walled carbon nanotubes. Sci. Technol. Adv. Mater., 2005, 6: 725–735
    [31] 宋礼. 单层碳纳米管可控制备及其应用的研究[博士学位论文]. 北京:中国科学院物理研究所,2006
    [32] L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Prra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W. Hwang, R. H. Hauge, J. E. Fischer, R. E. Smalley. Macroscopic, neat, single-walled carbon nanotube fibers. Science, 2004, 305: 1447–1450
    [33] J. Tang, L. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, S. Iijima. Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure. Phy. Rev. Lett., 2000, 85: 1887–1889
    [34] Y. Maniwa, K. Matsuda, H. Kyakuno, S. Ogasawara, T. Hibi, H. Kadowaki, S. Suzuki, Y. Achiba, H. Kataura. Water-filled single-wall carbon nanotubes as molecular nanovalves. Nat. Mater., 2007, 6: 135–141
    [35] L. Grigorian, K. A. Williams, S. Fang, G. U. Sumanasekera, A. L. Loper, E. C. Dickey, S. J. Pennycook, P. C. Eklund. Reversible intercalation of charged iodine chains into carbon nanotube ropes. Phy. Rev. Lett., 1998, 80: 5560–5563
    [36] A. Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba. Gas adsorptionin the inside and outside of single-walled carbon nanotubes. Chem. Phys. Lett., 2001, 336: 205–211
    [37] A. M. Cassell, J. A. Raymakers, J. Kong, H. J. Dai. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B, 1999, 103: 6484–6492
    [38] J. H. Hafner, M. J. Bronikowski, R. B. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, R. E. Smalley. Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett., 1998, 296: 195–202
    [39] S. C. Lyu, B. C. Liu, S. H. Lee, C. Y. Park, H. K. Kang, C. W. Yang, C. J. Lee. Large-scale synthesis of high-quality single-walled carbon nanotubes by catalytic decomposition of ethylene. J. Phys. Chem. B, 2004, 108: 1613–1616
    [40] W. I. F. David, R. M. Ibberson, J. C. Matthewman, K. Prassides, T. J. S. Dennis, J. P. Hare, H. W. Kroto, R. Taylor, R. M. Walton. Crystal structure and bonding of ordered C60. Nature 1991, 353: 147–149
    [41] A. C. Ferrari, J. Robertson 编,谭平恒,李峰,成会明译. 碳材料的拉曼光谱——从纳米管到金刚石. 北京:化学工业出版社,2007. 48–51
    [42] J. A. Misewich, R. Martel, Ph. Avouris, J. C. Tsang, S. Heinze, J. Tersoff. Electrically induced optical emission from a carbon nanotube FET. Science, 2003, 300: 783–786
    [43] Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler. Transparent, conductive carbon nanotube films. Science, 2004, 305: 1273–1276
    [44] P. W. Barone, S. Baik, D. A. Heller, M. S. Strano. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater., 2005, 4: 86–92
    [45] M. S. Dresselhaus, G. Dresselhaus, Ph. Avouris. Carbon Nanotubes: Synthesis, Structure, Properties, and Applicants. Berlin: Springer Press, 2001
    [46] A. Fujiwara, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba. Photoconductivity in semiconducting single-walled carbon nanotubes. Jpn. J. Appl. Phys., 2001, 40: L1229–L1231
    [47] I. A. Levitsky, W. B. Euler. Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination. Appl. Phys. Lett., 2003, 83: 1857–1859
    [48] Y. Zhang, S. Iijima. Elastic response of carbon nanotube bundles to visible light. Phy. Rev. Lett., 1999, 82: 3472–3475
    [49] S. X. Lu, B. Panchapakesan. Photoconductivity in single wall carbon nanotube sheets. Nanotechnology, 2006, 17: 1843–1850
    [50] G. T. Liu, Z. Liu, Y. C. Zhao, K. H. Zheng, H. B. Huang, W. J. Ma, C. Z. Gu, L. F. Sun, S. S. Xie. Large photocurrent generated by a camera flash in single-walled carbon nanotubes. J. Phys. D: Appl. Phys., 2007, 40: 6898–6901
    [51] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett., 1998, 73: 2447–2449
    [52] A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H. J. Dai. High-k dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater., 2002, 1: 241–246
    [53] S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, P. L. McEuen. High performance electrolyte gated carbon nanotube transistors. Nano Lett., 2002, 2: 869–872
    [54] D. H. Lien, W. K. Hsu, H. W. Zan, N. H. Tai, C. H. Tsai. Photocurrent amplification at carbon nanotube–metal contacts. Adv. Mater., 2006, 18: 98–103
    [55] O. J. Korovyanko, C. X. Sheng, Z. V. Vardeny, A. B. Dalton, R. H. Baughman. Ultrafast spectroscopy of excitons in single-walled carbon nanotubes. Phy. Rev. Lett., 2004, 92: 017403–(1–4)
    [56] M. E. Itkis, F. Borondics, A. P. Yu, R. C. Haddon. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 2006, 312: 413–416
    [57] L. Grigorian, G. U. Sumanasekera, A. L. Loper, S. L. Fang, J. L. Allen, P. C. Eklund. Giant thermopower in carbon nanotubes: A one-dimensional Kondo system. Phys. Rev. B, 1999, 60: R11309–R11312
    [58] R. S. Muller, T. I. Kamins, M. Chan. Device Electronics for Integrated Circuits. New York: Wiley Press, 2002
    [1] M. Kawaguchi. B/C/N materials based on the graphite network. Adv. Mater., 1997, 9: 615–625
    [2] V. N. Khabashesku, J. L. Zimmerman, J. L. Margrave. Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater., 2000, 12: 3264–3270
    [3] M. H. V. Huynh, M. A. Hiskey, J. G. Archuleta, E. L. Roemer. Preparation of nitrogen-rich nanolayered, nanoclustered, and nanodendritic carbon nitrides. Angew. Chem. Int. Ed., 2006, 44: 737–739
    [4] R. S. Hosmane, M. A. Rossman, N. J. Leonard. Synthesis and structure of tri-s-triazine. J. Am. Chem. Soc., 1982, 104: 5497–5499
    [5] A. J. Stevens, T. Koga, C. B. Agee, M. J. Aziz, C. M. Lieber. Stability of carbon nitride materials at high pressure and temperature. J. Am. Chem. Soc., 1996, 118: 10900–10901
    [6] B. V. Lotsch, W. Schnick. Thermal conversion of guanylurea dicyanamide into graphitic carbon nitride via prototype CNx precursors. Chem. Mater., 2005, 17: 3976–3982
    [7] A. Y. Liu, M. L. Cohen. Prediction of new low compressibility solid. Science, 1989, 245: 841–842
    [8] D. M. Teter, R. J. Hemley. Low-compressibility carbon nitrides. Science, 1996, 271: 53–55
    [9] A. Y. Liu, M. L. Cohen. Structural properties and electronic structure of low compressibility materials: β-Si3N4 and hypothetical β-C3N4. Phys. Rev. B, 1990, 41: 10727–10734
    [10] Y. Miyamoto, M. L. Cohen, S. G. Louie. Theoretical investigation of graphitic carbon nitride and possible tubule forms. Solid State Commun., 1997, 102: 605–608
    [11] M. Mattesini, S. F. Matar. Density-functional theory investigation of hardness, stability, and eletron-energy-loss spectra of carbon nitride with C11N4 stoichiometry. Physical Review B, 2002, 65: 075110-(1-14)
    [12] S. Muhl, J. M. Méndz. A review of the preparation of carbon nitride films. Diamond Relat. Mater., 1999, 8: 1809–1830
    [13] M. Jelínek, W. Kulisch, M. P. D. Ogletree, J. Lancok, L. Jastrabik, D. Chvostova, C. Popov, J. Bulir. Mechanical and optical properties of CNx films with high N/C ratio. Appl. Phys. A: Mater. Sci. Process, 2001, 73: 167–170
    [14] L. W. Yin, Y. Bando, M. S. Li, Y. X. Liu, Y. X. Qi. Unique single-crystalline beta carbon nitride nanorods, Adv. Mater., 2003, 15: 1840–1844
    [15] M. Kawaguchi, S. Yagi, H. Enomoto. Chemical preparation and characterization of nitrogen-rich carbon nitride powders. Carbon, 2004, 42: 345–350
    [16] D. R. Miller, J. R. Holst, E. G. Gillan. Nitrogen-rich carbon nitride network materials via the thermal decomposition of 2,5,8-triazido- s-heptazine. Inorg. Chem., 2007, 46: 2767–2774
    [17] T. Sekine, H. Kanda, Y. Bando, M. Yokoyama, K. Hojou. A graphitic carbon nitride. J. Mat. Sci. Lett., 1990, 9: 1376–1378
    [18] M. R. Wixom. Chemical preparation and shock wave compression of carbon nitride precursors. J. Am. Ceram. Soc., 1990, 73: 1973-1978
    [19] H. Montigaud, B. Tamguy, G. Demazeau, I. Alves, S. Courjault. C3N4: Dream or reality? Solvothermal synthesis as microscopic samples of the C3N4 graphitic form. J. Mater. Sci., 2000, 35: 2547–2552
    [20] D. R. Miller, J. J. Wang, E. G. Gillan. Rapid, facile synthesis of nitrogen-rich carbon nitride powders. J. Mater. Chem., 2002, 12: 2463–2469
    [21] M. Groenewolt, M. Antonietti. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater., 2005, 17: 1789–1792
    [22] Y. C. Zhao, D. L.Yu, H. W. Zhou, Y. J. Tian, O. Yanagisawa. Turbostratic carbon nitride prepared by pyrolysis of melamine. J. Mater. Sci., 2005, 40: 2645–2647
    [23] Q. X. Guo, Q. Yang, C. Q. Yi, L. Zhu, Y. Xie. Synthesis of carbon nitrides with graphite-like or onion-like lamellar structures via a solvent-free route at low temperatures. Carbon, 2005, 43: 1386–1391
    [24] E. Kroke, M. Schwarz, E. H. Bordon, P. Kroll, B. Noll, A. D. Norman. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem., 2002, 26: 508–512
    [25] B. V. Lotsch, M. D?blinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations—Structural characterization of a carbon nitride polymer. Chem. Eur. J., 2007, 13: 4969–4980
    [26] A. Vinu, K. Ariga, T. Mori, T. Nakanishi, S. Hishita, D. Golberg, Y. Bando. Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride. Adv. Mater., 2005, 17: 1648–1652
    [27] C. Donnet, A. Erdemir. Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol., 2004, 180: 76–84
    [28] F. Goettmann, A. Fischer, M. Antonietti, A. Thomas. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction. Angew. Chem. Int. Ed., 2006, 45: 4467–4471
    [29] H. Z. Zhao, M. Lei, X. Yang, J. K. Jian, X. L. Chen. Route to GaN and VN assisted by carbothermal reduction process. J. Am. Chem. Soc., 2005, 127: 15722–15723
    [30] J. L. Zimmerman, R. Williams, V. N. Khabashesku, J. L. Margrave. Synthesis of spherical carbon nitride nanostructures. Nano Lett., 2001, 1: 731–734
    [31] C. B. Cao, F. L. Huang, C. T. Cao, J. Li, H. S. Zhu. Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route. Chem. Mater., 2004, 16: 5213–5215
    [32] Y. Miyamoto, M. L. Cohen, S. G. Louie. Theoretical investigation of graphitic carbon nitride and possible tubule forms. Solid State Commun., 1997, 102: 605–608
    [33] M. Terrones, P. M. Ajayan, F. Banhart, X. Blase, D. L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. K. Redlich, M. Rühle, T. Seeger, H. Terrones. N-doping and coalescence of carbon nanotubes: Synthesis and electronic properties. Appl. Phys. A: Mater. Sci. Process, 2002, 74: 355–361
    [34] W. Q. Han, P. K. Redlich, T. Seeger, F. Ernst, M. Rühle, N. Grobert, W. K. Hsu, B. H. Chang, Y. Q. Zhu, H. W. Kroto, D. R. M. Walton, M. Terrones, H. Terrones. Aligned CNx nanotubes by pyrolysis of ferrocene/C60 under NH3 atmosphere. Appl. Phys. Lett., 2000, 77: 1807–1809
    [35] R. Czerw, M. Terrones, J. C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Rühle, D. L. Carroll. Identification of electrondonor states in n-doped carbon nanotubes. Nano Lett., 2001, 1: 457–460
    [36] M. S. He, S. Zhou, J. Zhang, Z. F. Liu, C. Robinson. CVD growth of n-doped carbon nanotubes on silicon substrates and its mechanism. J. Phys. Chem. B, 2005, 109: 9275–9279
    [37] M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W. K Hsu, H. Terrones, Y. Q. Zhu, J. P. Hare, A. K. Cheetham, M. Ruhle, H. W. Kroto, D. R. M. Walton. Carbon nitride nanocomposites formation of aligned CxNy nanofibers. Adv. Mater., 1999, 11: 655–658
    [38] K. Suenag, M. Yudasak, C. Colliex, S. Iijima. Radially modulated nitrogen distribution in CNx nanotubular structures prepared by CVD using Ni phthalocyanine. Chem. Phys. Lett., 2000, 316: 365–372
    [39] Q. X. Guo, Y. Xie, X. J. Wang, S. Y. Zhang, T. Hou, S. C. Lv. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chem. Commun., 2004: 26–27
    [40] Y. J. Xiong, Z. Q. Li, Q. X. Guo, Y. Xie. Synthesis of multi-walled and bamboo-like well-crystalline CNx nanotubes with controllable nitrogen concentration (x = 0.05-1.02). Inorg. Chem., 2005, 44: 6506–6508
    [41] J. Li, C. B. Cao, J. W. Hao, H. L, Qiu, Y. J. Xu, H. S. Zhu. Self-assembled one-dimensional carbon nitride architectures. Diamond Relat. Mater., 2006, 15: 1593–1600
    [42] J. Li, C. B. Cao, H. S. Zhu. Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes. Nanotechnology, 2007, 18: 115605–(1–6)
    [43] L. Yang, P. W. May, L. Yin, J. A. Smith, K. N. Rosser. Ultra fine carbon nitride nanocrystals synthesized by laser ablation in liquid solution. J. Nanoparticle Res., 2007, 9: 1181–1185
    [44] T. Komatsu. Attempted chemical synthesis of graphite-like carbon nitride. J. Mater. Chem., 2001, 11: 799–801
    [45] H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, W. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zou, G. Zhang, P. Bex. High-pressure pyrolysis study of C3N6H6: A route to preparing bulk C3N4. J. Phys. Condens. Matter, 2002, 14: 11269–11273
    [46] L. Costa, G. Camino. Thermal behaviour of melamine. J. Therm. Anal., 1988, 34: 423–429
    [47] G. van er Plaats, H. Soons, R. Snellings. The thermal behaviour of melamine. Second European Symposium on Thermal Analysis, London, 1981: 215–218
    [48] B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick. Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-atate NMR, and theoretical atudies. J. Am. Chem. Soc., 2003, 125: 10288–10300
    [49] B. V. Lotsch, W. Schnick. New light on an old story: Formation of melam during thermal condensation of melamine. Chem. Eur. J., 2007, 13: 4956–4968
    [50] T. Matsui, M. Yudasaka, R. Kikuchi, Y. Ohki, S. Yoshimura. Two kinds of nitrogen atoms in nitrogen-substituted, highly crystalline graphite prepared by chemical vapor deposition. Appl. Phys. Lett., 1994, 65: 2145–2147
    [51] Z. X. Zhang, H. J. Yuan, J. J. Zhou, D. F. Liu, S. D. Luo, Y. M. Miao, Y. Gao, J. X. Wang, L. F. Liu, L. Song, Y. J. Xiang, X. W. Zhao, W. Y. Zhou, S. S. Xie. Growth mechanism, photoluminescence, and field-emission properties of ZnO nanoneedle arrays. J. Phys. Chem. B, 2006, 110: 8566–8569
    [52] D. Papadimitriou, G. Roupakas, C. A. Dimitriadis, S. Logothetidis. Raman scattering and photoluminescence of nitrogenated amorphous carbon films. J. Appl. Phys., 2002, 92: 870–875
    [53] D. R. Miller, D. C. Swenson, E. G. Gillan. Synthesis and structure of 2,5,8-triazido-s-heptazine: An energetic and luminescent precursor to nitrogen-rich carbon nitrides. J. Am. Chem. Soc., 2004, 126: 5372–5373
    [54] A. Kraft, A. C. Grimsdale, A. B. Holmes. Electroluminescent conjugated polymers-Seeing polymers in a new light. Angew. Chem. Int. Ed., 1998, 37: 402–428
    [55] T. Miteva, A. Meisel, W. Knoll, H. G. Nothofer, U. Scherf, D. C. Muller, K. Meerholz, A. Yasuda,D. Neher. Improving the performance of polyfluorene-based organic light-emitting diodes via end-capping. Adv. Mater., 2001, 13: 565–570
    [56] X. D. Bai, E. G. Wang, J. Yu, H. Yang. Blue–violet photoluminescence from large-scale highly aligned boron carbonitride nanofibers. Appl. Phys. Lett., 2000, 77: 67–69
    [57] J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, A. Stocking. Organic electroluminescent devices. Science, 1996, 273: 884–888
    [58] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, S. Q. Feng. Nanoscale silicon wires synthesized using simple physical evaporation. Appl. Phys. Lett., 1998, 72: 3458–3460
    [59] H. Z. Zhang, D. P. Yu, Y. Ding, Z. G. Bai, Q. L. Hang, S. Q. Feng. Dependence of the silicon nanowire diameter on ambient pressure. Appl. Phys. Lett., 1998, 73: 3396–3398
    [60] Y. Jiang, Y. Wu, S. Y. Zhang, C. Y. Xu, W. C. Yu, Y. Xie, Y. T. Qian. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J. Am. Chem. Soc., 2000, 122: 12383–12384
    [61] Y. Yang, Z. Hu, Y. J. Tian, Y. N. Lü, X. Z. Wang. Y Chen. High-yield production of quasi-aligned carbon nanotubes by catalytic decomposition of benzene. Nanotechnology, 2003, 14: 733–737
    [62] A. A. Elguézabal, W. Antúnez, G. Alonso, F. P. Delgado, F. Espinos, M. M. Yoshida. Study of carbon nanotubes synthesis by spray pyrolysis and model of growth. Diamond Relat. Mater., 2006, 15: 1329–1335
    [63] Y. J. Tian, Z. Hu, Y. Yang, X. Z. Wang, X. Chen, H. Xu, Q. Wu, W. J. Ji, Y. Chen. In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J. Am. Chem. Soc., 2004, 126: 1180–1183
    [64] H. Chen, Y. Yang, Z. Hu, K. F. Huo, Y. W. Ma, Yi Chen, X. S. Wang, Y. N. Lu. Synergism of C5N six-membered ring and vapor-liquid-solid growth of CNx nanotubes with pyridine precursor. J. Phys. Chem. B, 2006, 110: 16422–16427

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700