用户名: 密码: 验证码:
碳酸盐岩气藏开发早期连通性及治水对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸盐岩气藏非均质性强,在开发早期由于生产时间短,气田面临连通单元不明确、气水关系不清楚等诸多难题。由于这些难题的困扰,在生产井出水后不能准确作出相应的治水对策,这可能会严重影响生产,甚至关井停产。
     四川LG气田为碳酸盐岩气藏,目的层位为飞仙关和长兴组。为克服水体锥进,气田对气、水层连通的生产层段,均采用射开水层、气水合采的方式生产,在生产的同时依靠气体自身能量尽可能多的将地层水带出,从而降低水体锥进的风险。由于射开水层,连通水层的气井在初期便面临大量产水的情况,甚至高产井LG2完全水淹的严重后果。不同的井产水情况不同。由于对各生产井之间连通性不了解,无法判断出水类型,从而不能判断该气田应该采取避射水层控制产量的治水对策,还是该采取射开水层、气水合采的治水对策。事实证明,清楚划分气藏连通单元及明确出水机理,对于研究射开水层、气水同采是否适合于该气田是非常必要的。
     论文利用钻井资料、测井资料、压力资料、MDT资料、联井剖面、水化学分析及生产动态等资料,划分了研究区内的连通单元,及各连通单元相应的驱动类型,分析研究了生产井产水机理及特征。根据各生产井水气比及变化情况,总结了三种产水类型的出水特征,分别是:A型(强水侵型)、B型(弱水侵型)和C型(平稳型)。
     分析讨论了各连通单元的储层特征及其相对应的产水类型,认为A型产水特征对应连的通单元储层发育裂缝形成高渗透带;B型和C型产水特征对应连通单元储层不发育裂缝,属于低渗储层。
     采用气田实际情况参数,应用理论数值模拟的方法对储层发育裂缝和不发育裂缝两种情况的连通单元,分别模拟避射水层开采和射开水层气水同采两种情况。分析对比模拟结果,认为对于裂缝发育并沟通气、水层的情况,避射水层开采的最终采收率高,气井稳产期更长。因此,建议对LG2井单元,采用避射水层,控制产量的方法遏制水体锥进。对于裂缝不发育的LG001-3井单元、LG001-1井单元、LG001-18井单元和LG001-2井单元,数值模拟计算结果表明,射开水层、气水同采的方法能提高气藏的最终采收率,并且可以延长气井的稳产期。建议对LG001-3井单元、LG001-1井单元、LG001-18井单元和LG001-2井单元采用射开水层、气水同采的治水对策。
     通过研究,对区块内各井所属连通单元及产水类型有了较为明确的认识。对于裂缝发育单元,建议采取避射水层、控制产量的治水对策,而裂缝不发育的单元建议采取射开水层、气水合采的治水对策。本次研究为气田大规模成功开发提供可靠的依据。
Carbonate gas reservoir is strong of heterogeneity. In the early development , because production time is short, gas field faces the problems,such as connected units are not clear, relationship of gas and water is not clear. Because of these problems, when producing well produces water, ways to control water could not be took correctly. It perhaps seriously affect production, even closed in production.
     Sichuan LG gas field is carbonate gas reservoir, and the formations of interest are T1f and P2ch. To overcome water coning, in this gas field all the wells in which gas bearing formations connected water bearing formation, the water bearing formations were perforated. Both gas and water are producted. When gas produces, it also carries as much more water as they can. This way could overcome water coning. Because water bearing formations were perforated, the wells connect water produce much water at early stage, even high capacity well LG2 was submerged by water. Different well has diferent situation. As the connectivity among the wells is not clear, the producing water types are not known. As a result, it is not sure to know that wether produce with avoiding perforating water bearing formation is better or perforating water bearing formation. The facts show that make sure the connected units and mechanism of water are important for study perforating water bearing formation.
     Files such as drilling, logging, pressure, MDT, water chemistry and producing etc. are used in the article to classify the connected units, and their drive types, and studied the water mechanisms and features of each producing well. According to the WGR and its changes, three types of water are summed up, typeA(strong water invasion),typeB(weak water invasion),typeC(steady water invasion).
     The reservoir features and water types of each connected units are coMPared. It shows that stype A was caused by the fractures forming high permeability zone. There are no fractures in the units met stype B and stype C with low permeability.
     By concept numerical simulation, the true parameters of the gas field were adopted, reservior with fractures and reservior without fractures were separately simulated to produce by avoiding perforating water bearing formations and perforating water bearing formations. CoMParing the results, the way of avoiding perforating water bearing formations and controling production should be used to the unit LG2 with fractures, because it caused to higher recovery and longer period of stabilized production. For the units without fractures such as unit LG001-3, unit LG001-1, unit LG001-18 and unit LG001-2, the simulated result shows that perforating water bearing formations has higher recovery and longer period of stabilized production. So this method was suggested.
     Through study, the connected units among each well are more clearly. Avoiding perforating water bearing formations and controling production was suggested in unit with fractures, and perforating water bearing formations was suggested in unit without fractures. This study supplies reliable basis for large-scale successful development.
引文
[1]江怀友,宋新民,王元等.世界海相碳酸盐岩油气勘探开发现状与展望[J].海洋石油.2008,28(4):6-7.
    [2]张钊,陈明强,高永利.应用示踪技术评价低渗透油藏油水井间连通关系[J].西安石油大学学报(自然科学版),2006,21(3):48-51.
    [3]邓英尔,刘树根,麻翠杰.井间连通性的综合分析方法[J].断块油气田,2003,10(5):50-53.
    [4]张德民,李国蓉,汤鸿伟.碳酸盐岩油藏井间连通性研究方法[J].内蒙古石油化工,2010,6:98-100.
    [5]魏历灵,康志宏.碳酸盐岩油藏流动单元研究方法探讨[J].新疆地质,2005,23(2):169-172.
    [6]童孝华,匡建超.油气藏工程基础[M].北京.石油工业出版社,1996:27-30.
    [7]杨敏.塔河油田4区岩溶缝洞型碳酸盐岩储层井间连通性研究[J].新疆地质,2004,22(2):196-198.
    [8]张枝焕、王铁冠.油藏分割性的地球化学研究[J].天然气勘探与开发,1998,26(2):53-62.
    [9]贾孟强.川东北地区碳酸盐岩气层识别方法研究[J],测井技术,2008,32(4):328-333.
    [10]孙建孟,王永刚.地球物理资料综合应用[M].东营:中国石油大学出版社,2000.
    [11]吕明胜,杨庆军,陈开远.塔河油田奥陶系碳酸盐岩储集层井间连通性研究[J],田奥陶系碳酸盐岩储集层,2006,27(6):731-732.
    [12] Deng Ying’er,Liu Ciqun.Numerical Simulation of Unsteady Flow Through Porous Media with Moving Boundary.Ins:Zhang Fenggan. Proceedings of the Third International Conference on Fluid Mechanics.Beijing:Beijing Institute of Technology Press,1998.759-765.
    [13]鲁新便.缝洞型碳酸盐岩油藏开发描述及评价[D].成都理工大学,2004.
    [14]谭承军,吕景英.塔河油田碳酸盐岩油藏产能特征与储集层类型的相关性[J].油气地质与采收率,2001,8(3):43-45.
    [15]闫晓芳,蔡忠贤.油气藏描述内容及方法—以塔河碳酸盐岩缝洞型油藏描述为例[J].重庆科技学院学报(自然科学版),2005,7(3):19-21.
    [16]赵良孝等.碳酸盐岩储层测井评价技术[M].北京:石油工业出版社,2003.
    [17] Peters K E,Fowler M G.Application of petroleum geoche-mistry to exploration and reservoir management[J].Organic Geochemistry,2002,33:5-36.
    [18] RobertG . Loueks . PaleoeaveCarbonateReservoirs : Oring , Burial一DePthModifieations,SPatialComPlexity,andReservoir ImPlieation.AAPGBullletin,Vol.83,No.ll,P.1795-1834
    [19]王鸿勋,张琪.采油工艺原理(修订版)[M].石油工业出版社,1989.
    [20]蒋炳南.塔里木盆地北部油气田勘探与开发论文集[C].北京:地质出版社,2000:56-68.
    [21]王毅忠,刘庆文.计算气井最小携液临界流量的新方法[J],大庆石油地质与开发,2007,26(6):82-85.
    [22]罗利,胡培毅,周政英.碳酸盐岩裂缝测井识别方法[J],石油学报,2001,22(3):32-34.
    [23]柏松章著.碳酸盐岩潜山油田开发[M].石油工业出版社,1996.
    [24] HemtonMR, Constrainson Arabian Plate Motion and Extension History of the Red Sea[J].Tectonics,1987,6(6):687-705.
    [25]张希明.新疆塔河油田奥陶系缝洞型油藏特征[J].石油勘探与开发,2001,28(5):32-36.
    [26]曲林,曲俊耀.排水采气工艺选型的探讨[J].钻采工艺,2005,28(2):49-51.
    [27]司马立强.测井地质应用技术[M].北京:石油工业出版社,2002.
    [28]曾文冲.油气藏储集层测井评价技术[M].北京:石油工业出版社,1991.
    [29]李淑荣,朱留方,李国雄,川东北海相碳酸盐岩储层测井评价技术[J].测井技术,2008,32 (4) :337-341.
    [30]贾文玉,田素月.成像测井技术与应用[M].北京:石油工业出版社,2000.
    [31]童亨茂.成像测井资料在构造裂缝预测和评价中的应用[J].天然气工业, 2006, 26(9): 58-61.
    [32]陈钢花,毛克宇.利用地层微电阻率成像测井识别裂缝[J].测井技术,1999,23 (4) :279-281 ,298.
    [33]丁次乾.矿场地球物理[M].北京:石油大学出版社,2008.
    [34]陆大卫,宁从前.MDT测井技术在我国陆上油气勘探中的应用[J].中国石油勘探, 2003, 8 (1): 58-66.
    [35]林梁.电缆地层测试器资料解释理论与地质应用[M].北京:石油工业出版社, 1994: 177-182.
    [36]孙向阳.沉积盆地中地层水化学特征及其地质意义[J].天然气劫探与开发,2001,24(4):47-52.
    [37]刘方槐,颜婉荪.油气田水文地质学原理北京石油工业出版社[M],北京:石油工业出版社.1991.
    [38]蔡春芳.塔中古生界油田水的成因和混合的证据[J].地球化学,2009,29(5):504-510.
    [39] Toth J. Cross-Formational Gravity-Flow of Groundwater: A Mechanism of the Transport and Accumulation of Petroleum (The Genelized Hydraulic Theory of Petroleum Migration), AAPG Studies inGeol,1980,(10).
    [40]曾溅辉,吴琼,杨海军.塔里木盆地塔中地区地层水化学特征及其石油地质意义[J],石油与天然气地质,2008,29(2):223-229.
    [41]周晓芬.塔里木盆地北部油田水特征离子及意义[J].石油与天然气地质, 2000, 21 (4) : 372-374.
    [42]车继明,郭平,樊建明.高温气藏及凝析气藏气中水含量测试与计算[J].天然气勘探与开发,2008,31(2):44-48.
    [43]李士伦,王鸣华,何江川.气田及凝析气田开发[M ].石油工业出版社,2001.
    [44]王俊奇.天然气含水量计算的简单方法[J].石油与天然气化工, 1994, 23 (3) : 192– 193
    [45]诸林,白剑,王治红.天然气含水量的公式化计算方法[J].天然气工业, 2003, 23 (3) : 118– 120.
    [46]何晓东,邹绍林,卢晓敏.边水气藏水侵特征识别及机理初探[J].天然气工业, 2006,26(3):87-89.
    [47]李喜平,梁生,李君.边水气藏开发过程中的气水关系分析[J].天然气工业;2000;20 (增刊) :99~101.
    [48]陈志海,戴勇,郎兆新.缝洞性碳酸盐岩油藏储渗模式及其开采特征[J].石油勘探与开发;2005;32 (3) :101-105
    [49]周兴熙.初论碳酸盐岩网络状油气藏——以塔里木盆地轮南奥陶系潜山油气藏为例[J].石油勘探与开发,2000,27 (3) :528.
    [50]张希明.新疆塔河油田下奥陶统碳酸盐岩缝洞型油气藏特征[J].石油勘探与开发,2001,28 (5) :17-22.
    [51]范高尔夫.拉特T D.裂缝油藏工程基础[M].陈钟祥,金玲年,秦同洛(译).北京:石油工业出版社,1989.397-403.
    [52]王毅忠,刘庆文.计算气井最小携液临界流量的新方法[J],大庆石油地质与开发,2007,26 (6):82-85.
    [53] Turner R G,Analysis and Prediction ofMinimum Flow Raft for the Continuous Removal ofLiquids from GasWells[J] .JPT, 1969: 75-82.
    [54] COLEMAN S B, et al. A new look at p redicting gas wellload up[J].published in JPT, SPE 20280,1991,56 - 59.
    [55] L iM ING.New View on continuous removal liquids from gas wells[J].SPE70016,2001.33 - 37.
    [56]冯异勇,贺胜宁.裂缝性底水气藏气井水侵动态研究[J].天然气工业,1998,18(3):40-44.
    [57]蒋平.底水锥进预测及底水治理决策技术研究[D],西南石油大学,2006
    [58]孙志道.裂缝性有水气藏开采特征和开发方式优选[J],石油勘探与开发,2002,29(4):69-71.
    [59]关文龙,李敬松,李相方.低渗底水气藏射开水层气水合采新方法[J],天然气工业, 2003,23 (5):79-82.
    [60]朱中谦,宋文杰.提高砂岩底水油藏原油采收率的新方法[J].新疆石油地质,2001,22(2):144-146
    [61] Schols,R.S.An Empirical Formula for the Critical Oil Production Rate[J].Erdoel Erdgas,Z,1972,88(1):6-11
    [62]李传亮.利用矿场资料确定底水油藏油井临界产量的新方法[J].石油钻采工艺,1993,15(5):59-62
    [63]李传亮.修正DUPUIT临界产量公式[J].石油勘探与开发,1993,20(4):91-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700