用户名: 密码: 验证码:
若干强关联电子体系中反常铁磁行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性现象的研究是凝聚态物理中一个基础但重要的领域。特别是在强关联电子体系中,自旋自由度通常与电子轨道态、晶体和能带结构,以及电子输运等性质相互耦合、影响,造成许多丰富而且奇特的物理现象。对这些现象的研究有助于提高人们对强关联电子体系中复杂相互作用的认识。因此,本论文对多个具有反常铁磁性的强关联电子体系进行了详细的研究,揭示了其中反常铁磁性以及相关现象的起因。
     首先,我们研究了RTiO_3(R =稀土)体系中自旋序和轨道序的相互耦合,以及局域结构畸变对它们的影响。在此体系中,随着稀土离子半径的连续减小,RTiO_3中Ti~(3+)(t2g1, S = 1/2)离子的自旋序从反铁磁(R = La, Pr, Nd, Sm)转变为铁磁(R = Gd,…, Lu, Y)。通过对一系列高质量单晶样品的热导率测试,首次从实验上证实了此体系中t2g轨道序的存在,而且与自旋序同时发生;结合对磁性和比热数据临界行为的分析,提出了局域结构畸变对自旋序的改变具有重要影响,并给出了铁磁有序时轨道序和自旋序的形式。特殊的晶体场环境对自旋有序的行为具有重要影响。A位1:3占位有序的钙钛矿CaCu_3Ge_4O_(12)就是一个典型的例子,其中A位的Cu~(2+) (t2g6eg3, S = 1/2)离子具有反常的平面四配位晶场环境,而且在Tc = 12 K发生铁磁有序。通过对Tc附近磁性和比热数据临界行为的详细分析,发现CaCu_3Ge_4O_(12)是一个非常罕见的具有短程交换作用的三维伊辛铁磁体。
     然后,本论文重点对第二(4d)和第三(5d)过渡金属钙钛矿氧化物中的反常铁磁现象进行了系统研究。在4d过渡金属钙钛矿氧化物中,SrRuO_3是发现的第一个铁磁金属,Tc高达165 K,然而具有相同结构的CaRuO_3却是顺磁金属。为了理解它们截然不同的磁行为,我们利用高温高压技术成功制备了一系列碱土钌酸盐ARuO_3钙钛矿(A = Ca→Sr→Ba),不仅连续改变了A位碱土离子的平均半径,而且在保持相同时引入离子半径方差σ2,系统研究了此体系的磁有序温度Tc和磁性临界行为随着、σ2、静水压和非静水压,以及合成条件等因素的变化,揭示出ARuO_3的铁磁性对局域晶格应力和无序非常敏感:只有当的键长处于平衡状态时Tc最高,无论键长受到压缩还是拉伸应力都会使Tc降低,而且临界等温磁化曲线的系统变化证明了ARuO_3中铁磁性的本质是海森堡局域自旋磁性,而不是斯通纳巡游电子磁性。在此工作的基础上,我们继续对Sr1-zPbzRuO_3钙钛矿体系进行了研究,因为铁磁性随着Pb的掺杂迅速消失的问题没有解决。我们同样利用高温高压技术制备了一系列样品,通过系统测试分析结构、磁性、电阻率和热电势等性质,结合压力下的实验,澄清了Pb的6s孤对电子与Ru 4d轨道电子的杂化使得能带展宽,从而使铁磁性迅速消失。在5d过渡金属氧化物中,9R BaIrO_3是发现的第一个铁磁体,Tc高达180 K,而且其铁磁有序的同时伴随着电荷密度波的形成。借助于高温高压技术,我们系统探索了9R BaIrO_3在高压下的结构变化,发现了三个新相,即5H、6H和3C,其中5H相的结构是通过从头算方法首次确定。通过系统研究它们的磁性、电学输运和热学等性质随着结构的变化,发现随着c轴方向共角连接的八面体数量的增加,能带逐渐展宽,BaIrO_3的基态从Tc = 180 K的铁磁绝缘体(9R),经过Tc = 50 K的铁磁金属(5H),转变为接近量子临界点的交换增强的顺磁金属(6H)。
     最后,我们研究了巡游电子铁磁体MnSi中量子临界涨落对热电势的影响。其铁磁有序温度Tc随压力增加会降低,在Pc≈1.5 GPa时会降到零温,压力下的电阻率测试表明在P > Pc时MnSi转变为非费米液体,即出现了量子临界相变,从而备受关注。我们制备了MnSi单晶样品,首次系统测试了其压力下热电势S(T)的变化,发现S(T)在Pc附近显著提高,并且符合S/T∝-lnT的关系,从而给出了热电势增强是来源于量子临界涨落的重要实验证据。
     除了对各种反常铁磁现象深入的研究,本论文还对具有层状结构的钴氧化物NaCo2O4和Ca3Co4O9热电材料进行了初步探索。我们利用冷高压成型技术制备出具有高度织构的NaCo2O4陶瓷。相对于其它方法制备的陶瓷样品,冷高压成型后制备出的样品具有较高的织构度和致密度,使得电阻率降低,热电势提高,有助于提高热电性能。对于Ca3Co4O9,我们发现其在TMS≈400 K处的金属-半导体转变具有一级相变的特征,具体表现为电阻率曲线的热滞、差热分析曲线(DSC)上的吸热/放热峰,以及热膨胀系数的尖峰。利用维里定理对此金属-半导体转变的一级相变特征进行了解释,即[CoO2]平面内巡游电子到局域电子的转变伴随着平衡键长的不连续增加。此模型也可以解释高温热电性能的提高。
One of the fundamental yet important research fields in the condensed matter physics is to study the magnetic phenomena. Especially, in the strongly correlated electronic systems, the spin degree of freedom is strongly coupled and interplayed with the orbital, lattice, band structure, and electronic transport properties, yielding many rich and peculiar phenomena. Studies on these phenomena can improve our understanding on the complicated interactions involved in the strongly correlated electronic systems. Therefore, in this dissertation we studied in detail on several strongly correlated electronic systems with unusual ferromagnetism and revealed their origins.
     First, we studied the coupling of spin and orbital orderings as well as the influence of the local structural distortion in the RTiO3 (R = Rare earth) system. With decreasing the size of R3+ ions, the magnetic ordering of Ti3+ (t2g1, S = 1/2) ions changes from antiferromagentic for R = La, Pr, Nd, Sm to ferromagnetic for R = Gd,…, Lu, Y. By measuring the thermal conductivity on a series of high-quality single crystals, we provided the first experimental evidence of the t2g orbital ordering occurring simultaneously at the spin-ordering temperature in this system. Analysis of the critical behaviors based on the magnetic and specific-heat data enabled us to realize the important role of local structural distortion on the changes of spin ordering with decreasing the rare-earth size, and also to construct the patterns of spin and orbital ordering for the ferromagnetic compounds. A special crystal-field environment can give rise to unusual behaviors of spin ordering. One of the most typical examples we found is the A-site 1:3 ordered perovskite CaCu_3Ge_4O_(12), where the A-site Cu~(2+)(t2g6eg3, S = 1/2) ions with an unusual square-planar coordination are ordered ferromagnetically below Tc = 12 K. A detailed analysis on the critical behaviors based on the magnetic and specific-heat data near Tc revealed that CaCu_3Ge_4O_(12) is a very rare example of three-dimensional short-rang-interaction Ising ferromagnet.
     Then, we focused on the unusual ferromagnetic phenomena in the 4d and 5d transition-metal perovskite oxides. Among the 4d transition-metal oxides, SrRuO3 is the first known metallic ferromagnet with Tc as high as 165 K. On the other hand, the isostructural CaRuO3 does not show any magnetic ordering down to the lowest temperature. In order to understand such a peculiar magnetic behavior, we have successfully prepared a series of ARuO_3 perovskites under high-pressure and temperature conditions. We not only changed continuously the average A-cation size from Ca through Sr all the way to Ba, but also introduced the size varianceσ2 while keeping the constant. A systematic study on the ferromagnetic transition temperature Tc and the critical behavior as a function of ,σ2, hydrostatic versus non-hydrostatic pressures, as well as the synthesis conditions revealed that the ferromagnetism in the perovskite ruthenates is very sensitive to the local structural strain and disorder; the highest Tc occurs only at the composition where the and bond lengths reach equilibrium whereas either compressive or tensile stress reduces Tc. The evolution of the isothermal magnetization curves demonstrated that the nature of the ferromagnetism in the perovskite ARuO_3 is the Heisenberg localized-spin ferromagnetism rather than the Stoner itinerant-electron ferromagnetism. Furthermore, we continued to study the disappearance of ferromagnetism in the perovskite Sr1-zPbzRuO_3 system synthesized under high-pressure and temperature conditions. Measurements of the structural, magnetic, and electronic transport properties under ambient and/or high pressures revealed that the disappearance of ferromagnetism upon Pb doping arises from the bandwidth broadening due to the orbital hybridization between the Pb 6s lone-pair and Ru 4d electrons. Among the 5d transition-metal oxides, 9R BaIrO_3 is the first known ferromagnet with Tc as high as 180 K. In addition, it was found that the ferromagnetic transition is accompanied with the formation of a charge density wave. Aided by the high-pressure and temperature technique, we explored systematically the high-pressure sequences of the 9R BaIrO_3 and discovered three new polytypes, i.e. 5H, 6H, and 3C phases, in which the structure of 5H phase was determined for the first time by an ab initio procedure. A systematic study on their magnetic, electrical transport, and thermodynamic properties showed that with increasing the ratio of corner-shared octahedra along the c axis, or with increasing the bandwidth, the ground state of BaIrO_3 polytypes changes from a ferromagnetic insulator with Tc = 180 K for the 9R phase, through a ferromagnetic metal with Tc = 50 K for the 5H phase, finally to an enhanced Pauli paramagnetic metal approaching a quantum critical point for the 6H phase.
     Finally, we investigated the influence of quantum critical phase fluctuations on thermopower of the itinerant-electron ferromagnet MnSi, which shows a quantum critical point at Pc≈1.5 GPa when the ferromagnetic transition temperature Tc is suppressed to zero temperature and the resistivity exhibits non-Fermi-liquid behavior. For the first time, we measured the thermopower S(T) under high pressure on a single-crystal MnSi and found that S(T) is enhanced dramatically near Pc and follows exactly the well-known S/T∝-lnT dependence, thus providing an important experimental evidence for the enhanced thermopower owing to the quantum critical phase fluctuations.
     Besides the above extensive investigations on the anomalous ferromagnetism, we also explored the thermoelectric cobaltites NaCo2O4 and Ca3Co4O9 with layered structure in this dissertation. We have obtained a highly textured NaCo2O4 ceramic with the help of a cold-pressing technique. Compared to the ceramic samples prepared with other methods, our samples exhibit higher degree of texture and density, which reduces the resistivity and increases the thermopower, leading to an enhancement of the thermoelectric performance. For the Ca3Co4O9, we found that the metal-simeconductor transition at TMS≈400 K is of first-order characterized by the thermal hysteresis in the resistivity curves, the endo/exothermic peaks on the differential scanning calorimetry (DSC) curves, and the sharp peak in the thermal expansion coeffcieintα(T). The first-order character of the metal-semiconductor transition can be rationalized from the Virial theorem, i.e. a discontinuous increase of the mean bond length is associated with the transition from itinerant to localized electrons within the [CoO2] planes. This model can also account for the enhancement of the thermoelectric performance above TMS.
引文
[1]黄昆.固体物理学[M].人民教育出版社, 1979.
    [2] Stoner E C. Collective Electron Ferromagnetism[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1938, 165(922): 372-414.
    [3] Wohlfarth E P. Very Weak Itinerant Ferromagnets; Application to ZrZn2[J]. J. Appl. Phys. 1968, 39(2): 1061-1066.
    [4] Moriya T. Spin Fluctuations in Itinerant Electron Magnetism[J]. Berlin, Springer-Verlag, 1985.
    [5] Arrott A. Criterion for Ferromagnetism from Observation of Magnetic Isotherms[J]. Phys. Rev. 1957, 108(6): 1394-1396.
    [6] Arrott A, Noakes J E. Approximate Equation of State for Nickel near Its Critical Temperature[J]. Phys. Rev. Lett. 1967, 19(14): 786-789.
    [7] Stanley H E. Introduction to Phase Transitions and Critical Phenomena[M]. New York, Oxford University Press, 1971.
    [8] Yang F Y, Chien C L, Li X W, et al. Critical Behavior of Epitaxial Half-Metallic Ferromagnetic CrO2 Films[J]. Phys. Rev. B 2001, 63(9): 092403.
    [9] Ghosh K, Lobb C J, Greene R L. Critical Phenomena in the Double-Exchange Ferromagnet La0.7Sr0.3MnO3[J]. Phys. Rev. Lett. 1998, 81(21): 4740-4743.
    [10] Zener C. Interaction Between the d-Shell in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure[J]. Phys. Rev. 1951, 82(3): 403-405.
    [11] Goodenough J B, Longo J M. Crystallographic and Magnetic Properties of Perovskite and Perovskite Related Compounds. Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology[M]. Berlin, Springer, 1970.
    [12] Komarek A C, Roth H, Cwik M, et al. Magnetoelastic Coupling in RTiO3 (R=La, Nd, Sm, Gd, Y) Investigated with Diffraction Techniques and Thermal Expansion Measurements[J]. Phys. Rev. B 2007, 75(22): 224402.
    [13] Zhou J -S, Goodenough J B. Universal Octahedral-Site Distortion in Orthorhombic Perovskite Oxides[J]. Phys. Rev. Lett. 2005, 94(6): 065501.
    [14] Goodenough J B. Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3[J]. Phys. Rev. 1955, 100(2): 564-573.
    [15] Goodenough J B. Magnetism and the Chemical Bond[M]. New York,Interscience-Wiley, 1963.
    [16] Zhou J -S, Goodenouhg J B. Intrinsic Structural Distortion in Orthorhombic Perovskite Oxides[J]. Phys. Rev. B 2008, 77(13): 132014.
    [17] Ulrich C, Khaliullin G, Okamoto S, et al. Magnetic Order and Dynamics in an Orbitally Degenerate Ferromagentic Insulator[J]. Phys. Rev. Lett. 2002, 89(16): 167202.
    [18] Ozaki Y, Ghedira M, Chenavas J, et al. High-Pressure Synthesis and Bond Lengths of Calcium Copper Germanium Oxide [CaCu3](Ge4)O12[J]. Acta. Cryst. 1977, B33: 3615-3617.
    [19] Shiraki H, Saito T, Yamada T, et al. Ferromagnetic Cuprates CaCu3Ge4O12 and CaCu3Sn4O12 with A-site Ordered Perovskite Structure[J]. Phys. Rev. B 2007, 76(14): 140403.
    [20] Shimakawa Y, Shiraki H, Saito T. Unusual Ferromagnetic to Antiferromagngetic Transitions in Cu2+ (S=1/2) Cubic Spin Lattice of A-site Ordered Perovskites[J]. J. Phys. Soc. Jpn. 2008, 77(11): 113702.
    [21] Longo J M, Raccah P M, Goodenouhg J B. Magnetic Properties of SrRuO3 and CaRuO3[J]. J. Appl. Phys. 1968, 39(2): 1327-1328.
    [22] Mazin I I, Singh D J. Electronic Structure and Magnetism in Ru-Based Perovskites[J]. Phys. Rev. B 1997, 56(5): 2556-2571.
    [23] Jin C -Q, Zhou J -S, Goodenough J B, et al. High-Pressure Synthesis of the Cubic Perovskite BaRuO3 and Evolution of Ferromagnetism in ARuO3 (A=Ca, Sr, Ba) Ruthenates[J]. PNAS 2008, 105(20): 7115-7119.
    [24] Rodriguez-Martinez L M, Attfield J P. Cation Disorder and Size Effects in Magnetoresistive Manganese Oxide Perovskites[J]. Phys. Rev. B 1996, 54(22): R15622-R15625.
    [25] Attfield J P, Kharlanov A L, McAllister J A. Cation Effects in Doped La2CuO4 Superconductors[J]. Nature, 1998, 394: 157-159.
    [26] Kim D, Zink B L, Hellman F, et al. Mean-Field Behavior with Gaussian Fluctuations at the Ferromagnetic Phase Transition of SrRuO3[J]. Phys. Rev. B 2003, 67(10): 100406(R).
    [27] Zhou J -S, Matsubayashi K, Uwatoko Y, et al. Critical Behavior of the Ferromagnetic Perovskite BaRuO3[J]. Phys. Rev. Lett. 2008, 101(7): 077206.
    [28] Lindsay R, Strange W, Chamberland B L, et al. Weak Ferromagnetism in BaIrO3[J]. Solid State Commun. 1993, 86(11): 759-763.
    [29] Cao G, Crow J E, Guertin R P, et al. Charge Density Wave Formation Accompanying Ferromagentic Ordering in Quasi-One-Dimensional BaIrO3[J]. Solid State Commun. 2000, 113: 657-662.
    [30] Whangbo M–H, Koo H -J. Structural and Electronic Features of BaIrO3 Causing the Simultaneous Occurance of Weak Ferromagnetism and Charge Density Wave Formation[J]. Solid State Commun. 2001, 118: 491-495.
    [31] Brooks M L, Blundell S J, Lancaster T, et al. Unconventional Magnetic Properties of the Weakly Ferromagnetic Metal BaIrO3[J]. Phys. Rev. B 2005, 71(22): 220411(R).
    [32] Maiti K, Singh R S, Medicherla V R R, et al. Sampathkumaran. Origin of Charge Denisty Wave Formation in Insulators from a High Resolution Photoemission Study of BaIrO3[J]. Phys. Rev. Lett. 2005, 95(1): 016404.
    [33] Nakano T, Terasaki I. Giant Nonlinear Conduction and Thyristor-like Negative Differential Resistance in BaIrO3 Single Crystals[J]. Phys. Rev. B 2006, 73(19): 195106.
    [34] Kida T, Senda A, Yoshii S, et al. Unconventional Critical Behavior in the Weak Ferromagent BaIrO3[J]. EPL 2008, 84: 27004.
    [35] Lohneysen H V, Rosch A, Vojta M, et al. Fermi-Liquid Instabilities at Magnetic Quantum Phase Transitions[J]. Rev. Mod. Phys. 2007, 79(3): 1015-1075.
    [36] Goodenough J B, Kafalas J A, M.Longo J. High-Pressure Synthesis: Preparative Methods in Solid State Chemistry[M]. New York and London, Academic Pressm, Inc., 1972.
    [37] Alonso J A, Martinez-Lope M J, de la Calle C, et al. High-Pressure Synthesis and Study of the Crystal and Magnetic Structures of the Distorted SeMO3 (M=Mn, Co, Ni, Zn) Perovskites[J]. J. Phys.: Conf. Series 2008, 121: 032004.
    [38] Kanamaru F, Miyamoto H, Minura Y, et al. Synthesis of a New Perovskite CaFeO3[J]. Mat. Res. Bull. 1970, 5: 257-262.
    [39] Alonso J A, Martnez-Lope M J, Casais M T, et al. Metal-Insulator Transition, Structural and Microstructural Evolution of RNiO3 (R=Sm, Eu, Gd, Dy, Ho, Y) Perovskites: Evidence for Room-Temperature Charge Disproportionation in Monoclinic HoNiO3 and YNiO3[J]. J. Am. Chem. Soc. 1999, 121(20): 4754-4762.
    [40] Zhou J -S, Archibald W, Goodenough J B. Approach to Curie-Weiss Paramganetism in the Metallic Perovskites La1-xNdxCuO3[J]. Phys. Rev. B 2000, 61(5): 3196-3199.
    [41] Yamaura K, Takayama-Muromachi E. Enhanced Paramagnetism of the 4d Itinerant Electrons in the Rhodium Oxide Perovskite SrRhO3[J]. Phys. Rev. B 2002, 64(22): 224424.
    [42] Slack G. New Materials and Performance Limits for Thermoelectric Cooling in CRC. Handbook of Thermoeleectric[M]. London: CRC Press Inc., 1995.
    [43] Terasaki I, Sasago Y, Uchinokura K. Large Thermoelectric Power in NaCo2O4 Single Crystal[J]. Phys. Rev. B 1997, 56(20): R12685-R12687.
    [44] Takahata K, Iguchi Y, Tanaka D, et al. Low Thermal Conductivity of the Layered Oxide (Na,Ca)Co2O4: Another Example of a Phonon Glass and an Electron Crystal[J]. Phys. Rev. B 2000, 61(19): 12551-12555.
    [45] Tajima S, Tani T, Isobe S, et al. Thermoelectric Properties of Highly Textured NaCo2O4 Ceramics Processed by the Reactive Templated Grain Growth (RTGG) Method[J]. Materials Science and Engineering B. 2001, 86: 20-25.
    [46] Ito M, Nagira T, Furamoto D, et al. Synthesis of NaxCo2O4 Thermoelectric Oxide with Crystallographic Anisotropy by Chemical Solution Process[J]. Science and Technology of Advanced Materials. 2004, 5: 125-131.
    [47] Li S W, Funahashi R, Matsubara I, et al. High Temperature Thermoelectric Oxide Ca9Co12O28[J]. J. Mater. Chem. 1999, 9: 1659-1660.
    [48] Masset A C, Michel C, Maignan A, et al. Misfit-Layered Cobaltite with an Anisotropy Giant Magnetoresistance: Ca3Co4O9[J]. Phys. Rev. B 2000, 62(1): 166-175.
    [49] Walker D, Carpenter M A, Hitch C M. Some Simplification to Multianvil Devices for High Pressure Experiments[J]. Am. Mineral. 1990, 75: 1020-1028.
    [50] Walker D. Lubrication, Gasketing, and Precision in Multianvil Experiments[J]. Am. Mineral. 1991, 76: 1092-1100.
    [51] Huppertz H. Multianvil High-Pressure/High-Temperature Synthesis in Solid State Chemistry[J]. Z. Kristallogr. 2004, 219: 330-338.
    [52] Zhou J -S, Ren Y, Yan J -Q, et al. Frustrated Superexchange Interaction Versus Orbital Order in a LaVO3 Crystal[J]. Phys. Rev. Lett. 2008, 100(4): 046401.
    [53] Khaliullin G. Orbital Order and Fluctuations in Mott Insulators[J]. Prog. Theor. Phys. Suppl. 2005, 160: 155-202.
    [54] Mizokawa T, Fujimori A. Electronic Structure andd Orbital Ordering in Perovskite-type 3d Transition-Metal Oxides Studied by Hartree-Fock Band-Strcutre Calculations[J]. Phys. Rev. B 1996, 54(8): 5368-5380.
    [55] Mochizuki M, Imada M. G-type Antiferromagnetism and Orbital Ordering due to the Crystal Field from the Rare-Earth Ions Induced by the GdFeO3-type Distortion in RTiO3 Where R = La, Pr, Nd, and Sm[J]. J. Phys. Soc. Jpn. 2004, 73(7): 1833-1850.
    [56] Keimer B, Casa D, Ivanov A, et al. Spin Dynamics and Orbital State in LaTiO3[J]. Phys. Rev. Lett. 2000, 85(18): 3946-3949.
    [57] Akimitsu J, Ichikawa H, Eguchi N, et al. Direct Observation of Orbital Ordering in YTiO3 by Means of the Polarized Neutron DiffractionTechnique[J]. J. Phys. Soc. Jpn. 2001, 70(12): 3475-3478.
    [58] Itoh M, Tsuchiya M, Tanaka H, et al. Orbital Ordering and Local Magnentic Properties of Mott-Hubbard Insulators YTiO3 and LaTiO3: NMR Study[J]. J. Phys. Soc. Jpn. 1999, 68(8): 2783-2789.
    [59] Nakao H, Wakabayashi Y, Kiyama T, et al. Quantitative Determination of the Atomic Scattering Tensor in Orbitally Ordered YTiO3 by Using a Resonant X-ray Scattering Technique[J]. Phys. Rev. B 2002, 66(18): 184419.
    [60] Tsuji N, Ito M, Sakurai H, et al. Magnetic Compton Profile Study of Orbital Ordering State of 3d Electrons in YTiO3[J]. J. Phys. Soc. Jpn. 2008, 77(2): 023705.
    [61] Iga F, Tsubota M, Sawada M, et al. Determination of the Orbital Polarization in YTiO3 by Using Soft X-Ray Linear Dichroism[J]. Phys. Rev. Lett. 2004, 93(25): 257207.
    [62] Cwik M, Lorenz T, Baier J, et al. Crystal and Magnetic Structure of LaTiO3: Evidence for Nondegenerate t2g Orbitals[J]. Phys. Rev. B 2003, 68(6): 060401(R).
    [63] Hemberger J, Nidda H -A K v, Fritsch V, et al. Evidence for Jahn-Teller Distortions at the Antiferromagnetic Transition in LaTiO3[J]. Phys. Rev. Lett. 2003, 91(6): 066403.
    [64] Iliev M N, Litvinchuk A P, Abrashev M V, et al. Phonons and Magnetic Excitations in the Mott Insulators LaTiO3[J]. Phys. Rev. B 2004, 69(17): 172301.
    [65] Yan J -Q, Zhou J -S, Goodenough J B. Unusually Strong Orbital-Lattice Interactions in the RVO3 Perovskites[J]. Phys. Rev. Lett. 2004, 93(23): 235901.
    [66] Zhou J -S, Goodenough J B, Gallardo-Amores J M, et al. Hexagonal versus Perovskite Phase of Manganite RMnO3 (R=Y, Ho, Er, Tm, Yb, Lu) [J]. Phys. Rev. B 2006, 74(1): 014422.
    [67] Stern H. Thermal Conductivity at the Magnetic Transition[J]. J. Phys. Chem. Solid. 1965, 26(1): 153-161.
    [68] Martin J J, Dixon G S. Thermal Transport in EuO[J]. Phys. Status Solidi B 1972, 54(2): 707-712.
    [69] Fritsch V, Hemberger J, Eremin M V, et al. Magnetization and Specific Heat of LaTiO3[J]. Phys. Rev. B 2002, 65(21): 212405.
    [70] Feiner L F, Oles A M. Quantum Melting of Magnetic Ordering due to Orbtial Fluctuations[J]. Phys. Rev. Lett. 1997, 78(14): 2799-2802.
    [71] Khaliullin G, Maekawa S. Orbital Liqiud in Three-Dimensional Mott Insulator:LaTiO3[J]. Phys. Rev. Lett. 2000, 85(18): 3950-3953.
    [72] Zhou J -S, Goodenough J B, Yan J -Q, et al. Superexchange Interaction in Orbitally Fluctuating RVO3[J]. Phys. Rev. Lett. 2007, 99(15): 156401.
    [73] Kouvel J, Fisher M E. Detailed Magnetic Behavior of Nickel Near Its Curie Point[J]. Phys. Rev. 1964, 136(6A): 1626-1632.
    [74] B. Widom. Degree of the Crtical Isotherm[J]. J. Chem. Phys. 1964, 41(6): 1633-1634.
    [75] Lashley J C, Hundley M F, Migliori A, et al. Crtical Examination of Heat Capacity Measurements Made on a Quantum Design Physical Property Measurement System[J]. Cryogenics 2003, 43: 369-378.
    [76] Connelly D L, Loomis J S, Mapother D E. Specific Heat of Nickel Near the Curie Temperature[J]. Phys. Rev. B 1971, 3(3): 924-934.
    [77] Baker G A, Jr. Further Application of the Pade Approximant Method to the Ising and Heisneberg Models[J]. Phys. Rev. 1963, 129(1): 99-102.
    [78] Holmes L M, Johansson T, Guggenheim H J. Ferromagnetism in LiTbF4[J]. Solid State Commun. 1973, 12: 993-997; Als-Nielsen J, Homes L M, Guggenheim H J. Wave-Vector Dependent Susceptibility at T>Tc in a Dipolar Ising Ferromagnet[J]. Phys. Rev. Lett. 1974, 32(11): 610-613; Als-Nielsen J, Homes L M, Larsen F K, et al. Spontaneous Magnetization in the Dipolar Ising Ferromagent LiTbF4[J]. Phys. Rev. B 1975, 12(1): 191-197.
    [79] Kim Y J, Wakimoto S, Shapiro S M, et al. Neutron Scattering Study of Antiferromagnetic Order in CaCu3Ti4O12[J]. Solid State Commun. 2002, 121: 625-629.
    [80] Griffiths R B. Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet[J]. Phys. Rev. Lett. 1969, 23(1): 17-19.
    [81] Lufaso M W, Woodward P M. Prediction of the Crystal Structures of Perovskites Using the Software Program SPuDS[J]. Acta Cryst. 2001, B57: 725-738.
    [82] O’Keeffe M, Hyde B G. Some Structures Topologically Related to Cubic Perovskite (E21), ReO3 (D09) and Cu3Au (L12) [J]. Acta Cryst. 1977, B33: 3802-3813.
    [83] Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides[J]. Acta Cryst. 1976, A32: 751-767.
    [84] Shikano M, Huang T K, Inaguma Y, et al. Pressure Dependence of the Magnetic Transition Temperature for Ferromagentic SrRuO3[J]. Solid State Commun. 1994, 90(2): 115-119.
    [85] Hamlin J J, Deemyad S, Schilling J S, et al. Ac Susceptibility Studies of the Weak Itinerant Ferromagnet SrRuO3 under High Pressure to 34 GPa[J]. Phys. Rev. B 2007, 76(1): 014432.
    [86] E. P. Wohlfarth. Forced Magnetostriction in the Band Model of Magnetism[J]. J. Phys. C.: Solid State Phys. 1969, 2(2): 68-74.
    [87] Grosche F M, Pfleiderer C, McMullan G J, et al. Crtical Behavior of ZrZn2[J]. Physica B 1995, 206-207: 20-22.
    [88] Takashima S, Nohara M, Ueda H, et al. Robustness of Non-Fermi-Liquid Behavior near the Ferromagnetic Crtical Point in Clean ZrZn2[J]. J. Phys. Soc. Jpn. 2007, 76(4): 043704.
    [89] Koyama K, Goto T, Kanomata T, et al. Observation of an Itinerant Metamagnetic Transition in MnSi under High Pressure[J]. Phys. Rev. B 2000, 62(2): 986-991.
    [90] Niklowitz P G, Beckers F, Lonzarich G G. Spin-fluctuation-dominated Electrical Transport of Ni3Al at High Pressure[J]. Phys. Rev. B 2005, 72(2): 024424.
    [91] Grewe J, Schilling J S, Ikeda K, et al. Anomalous Behavior of the Weak Itinerant Ferromagnet Sc3In under Hydrostatic Pressure[J]. Phys. Rev. B 1989, 40(13): 9017-9024.
    [92] Bloch D. The 10/3 Law for the Volume Dependence of Superexchange[J]. J. Phys. Chem. Solid. 1966, 27: 881-885.
    [93] Rozenberg M J, Kotliar G, Zhang X Y. Mott-Hubbard Transition in Infinite Dimensions. II[J]. Phys. Rev. B 1994, 49(15): 10181-10193.
    [94] Kafalas J A, Longo J M. Pressure-Induced Pyrochlore to Perovskite Transformation in the Sr1-xPbxRuO3 System[J]. Mat. Res. Bull. 1970, 5: 193-198.
    [95] Kimber S A J, Rodgers J A, Wu H, et al. Metal-Insulator Transition and Orbital Order in PbRuO3[J]. Phys. Rev. Lett. 2009, 102(4): 046409.
    [96] Blatt S J, Schroeder P A, Foiles C L. Thermoelectric Power of Metals[M]. New York, Plenum, 1976.
    [97] MacDonal D K C. Thermoelectricity: An Introduction to the Principles[M]. New York, Wiley, 1962.
    [98] Zhou J -S, Archibald W., Goodenough J. B.. Pressure Dependence of Thermoelectric Power in La1-xNdxCuO3[J]. Phys. Rev. B 1998, 57(4): R2017-R2020.
    [99] Mountstevens E H, Attfield J P, Redfern S A T. Cation-Size Control of Structural Phase Transition in the Perovskites[J]. J. Phys.: Condens. Matter.2003, 15: 8315-8326.
    [100] Howard C J, Knight K S, Kennedy B J, et al. The Structural Phase Transition in Strontium Zirconate Revisited[J]. J. Phys.: Condens. Matter. 2000, 12: L677-L683.
    [101] Kennedy B J, Hunter B A, Hester J R. Synchrontron X-ray Diffraction Reexamination of the Sequence of High-Temperature Phase in SrRuO3[J]. Phys. Rev. B 2002, 65(22): 224103.
    [102] Mitchell R H. Perovskites, Modern and Ancient[M]. Almaz Press, Inc. 2002.
    [103] Longo J M, Kafalas J A, Arnott R J. Structure and Properties of the High- and Low-Pressure Forms of Strontiun Iridate(IV) [J]. J. Solid State Chem. 1971, 3(2): 174-179.
    [104] Chamberland B L. A Study on the BaIrO3 System[J]. J. Less-Common. Met. 1991, 171(2): 377-294.
    [105] Altomare A, Burla M C, Giacovazzo G, et al. EXTRA: A Program for Extracting Structure-Factor Amplitudes from Powder Diffraction Data[J]. J. Appl. Cryst. 1995, 28: 842-846; A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli. SIR92-A Program for Automatic Solution of Crystal Structure by Direct Methods[J]. J. Appl. Cryst. 1994, 27: 435.
    [106] Roisnel T, Rodriguez-Carvajal J. WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis[J]. Mater. Sci. Forum. 2001, 378-381: 118-123.
    [107] Powell A V, Battle P D. A Time-of-flight Powder Neutron Diffraction Study of non-Stoichiometry in Barium Iridate BaIrO3-δ[J]. J. Alloy. Compound. 1996, 232(1-2): 147-153.
    [108] Brese N E, O’Keeffe M. Bond-Valence Parameters for Solids. Acta Cryst. 1991, B47: 192-197; I. D. Brown, D. Altermatt. Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database[J]. Acta. Cryst. 1985, B41: 244-247.
    [109] Foo M L, Huang Q, Lynn J W, et al. Synthesis, Structure and Physical Properties of Ru Ferrites: BaMRu5O11 (M=Li and Cu) and BaM’2Ru4O11 (M’=Mn, Fe, Co) [J]. J. Solid State Chem. 2006, 179(2): 563-572.
    [110] Jordan N A, Battle P D. Structural Chemistry and Magnetic Properties of Hexagonal Perovskites BaIrxMn1-xO3, x=0.3, 0.4, 0.5[J]. J. Mater. Chem. 2003, 13(9): 2220-2226.
    [111] Longo J M, Kafalas J A. Pressure-Induced Structrual Changes in the System Ba1-xSrxRuO3[J]. Mat. Res. Bull. 1968, 3(8): 687-692.
    [112] Dance J M, Tressaud A. Structure Formation by Cation Substitution inFluorinated Hexagonal Perovskite I. The Cesium Nickel Manganese Fluoride (CsNi1-xMnxF3) System[J]. Mat. Res. Bull. 1979, 14(1): 37-43.
    [113] Vente F J, Battle P D. Structural Chemistry and Electronic Properties of the Hexagonal Perovskites BaIr1-xCoxO3-δ(x = 0.5, 0.7, 0.8) [J]. J. Solid State Chem. 2000, 152(2): 361-373.
    [114] Miranda L, Feteira A, Sinclair D C, et al. Study of the Structrual, Magentic, and Electrical Properties of the 5H Hexagonal-Type Perovskite BaMn0.2Co0.8O2.80[J]. Chem. Mater. 2008, 20(8): 2818-2828.
    [115] Paoli J M D, Alonso J A, Carbonio R E. Synthesis and Structure Refinement of Layered Perovskites Ba5-xLaxNb4-xTixO15 (x = 0, 1, 2, 3, and 4) Solid Solutions[J]. J. Phys. Chem. Solid. 2006, 67(7): 1558-1566.
    [116] Kini N S, Bentien A, Ramakrishnan S, et all. Specific Heat and Transport Study of the Co-existence of Charge-Density-Wave and Weak Ferromagnetism in BaIrO3[J]. Physica B 2005, 359-361: 1264-1266.
    [117] Zumsteg F C, Parks R D. Electrical Resistivity of Nickel near the Curie Point[J]. Phys. Rev. Lett. 1970, 24(10): 520-524.
    [118] Cava R J, Batlogg B, Krajewski J J, et al. Antiferromagentism and Metallic Conductivity in Nb12O29[J]. Nature 1991, 350: 598-600.
    [119] Zhou J -S, Goodenough J B, Dabrowski B. Pressure-Induced Non-Fermi-Liquid Behavior of PrNiO3[J]. Phys. Rev. Lett. 2005, 94(22): 226602.
    [120] Smith R P, Sutherland M, Lonzarich G G, et al. Marginal Breakdown of the Fermi-Liquid State on the Border of Metallic Ferromagnetism[J]. Nature, 2008, 455: 1220-1223.
    [121] Paul I, Kotliar G. Thermoelectric Behavior near the Magnetic Quantum Crtical Point[J]. Phys. Rev. B 2001, 64(18): 184414.
    [122] Daou R, Cry-Choiniere O, Laliberte F, et al. Thermopower Across the Stripe Critical Point of La1.6-xNd0.4SrxCuO4: Evidence for a Quantum Critical Point in a Hole-Doped High-Tc Superconductor[J]. Phys. Rev. B 2009, 78(18): 180505(R).
    [123] Wilson K G. The Renormalization Group: Critical Phenomena and the Kondo Problem[J]. Rev. Mod. Phys. 1975, 47(4): 773-840.
    [124] Takano M, Nasu S, Abe T, et al. Pressure-Induced High-Spin to Low-Spin Transition in CaFeO3[J]. Phys. Rev. Lett. 1991, 67(23): 3267-3270.
    [125] Zhao J G, Yang L X, Mydeen K, et al. Effects of Pressure on Electrical Property of BaIrO3[J]. Solid State Commun. 2008, 148(9-10): 361-364.
    [126] Nakano T. Mott-Insulator to Charge-Transferred Insulator Transition in theStrongly Correlated Oxide BaIrO3. Koatsuryoku no Kagaku to Gijutsu[J]. 2008, 18(1): 62-68.
    [127] Ishikawa Y, Tajima K, Bloch D, et al. Helical Spin Structure in Manganese Silicide MnSi[J]. Solid State Commun. 1976, 19(6): 525-528.
    [128] Bak P, Jensen M H. Theory of Helical Magnetic Strucutres and Phase Transitions in MnSi and FeGe[J]. J. Phys. C: Solid State Phys. 1980, 13(31): L881-885.
    [129] Nakanishi O, Yanase A, hasegawa A, et al. The Origin of the Helical Spin Density Wave in MnSi[J]. Solid State Commun. 1980, 35(12): 995-998.
    [130] Doiron-Leyraud N, Walker I R, Taillefer L, et al. Fermi-Liquid Breakdown in the Paramagnetic Phase of a Pure Metal[J]. Nature, 2003, 425: 595-599.
    [131] Pfleiderer C, McMullan G J, Julian S R, et al. Magnetic Quantum Phase Transition in MnSi under Hydrostatic Pressure[J]. Phys. Rev. B 1997, 55(13): 8330-8338.
    [132] Stishov S M, Petrova A E, Khasanov S, et al. Heat Capacity and Thermal Expansion of the Itinerant Helimagnet MnSi[J]. J. Phys.: Condens. Matter. 2008, 20: 235222.
    [133] Mena F P, van der Marel D, Damascelli A, et al. Heavy Carries and non-Drude Optical Conductivity in MnSi[J]. Phys. Rev. B 2003, 67(24): 241101(R).
    [134] Lee M, Onose Y, Tokura Y, et al. Hidden Constant in the Anomalous Hall Effect of High-Purity Magnet MnSi[J]. Phys. Rev. B 2007, 75(17): 172403.
    [135] Miyake A, Villaume A, Haga Y, et al. Pressure Collapse of the Magnetic Ordering in MnSi via Thermal Expansion[J]. J. Phys. Soc. Jpn. 2009, 78(4): 044703.
    [136] Pfleiderer C, Reznik D, Pintschovius L, et al. Partial Order in the non-Fermi-Liquid Phase of MnSi[J]. Nature, 2004, 427:227-231.
    [137] Yu W, Zamborszky F, Thompson J D, et al. Phase Inhomogeneity of the Itinerant Ferromagnet MnSi at High Pressure[J]. Phys. Rev. Lett. 2004, 92(8): 086403.
    [138] Uemura Y J, Goko T, Gat-Malureanu I M, et al. Phase Seperation and Suppression of Critical Dynamics at Quantum Phase Transition of MnSi and (Sr1-xCax)RuO3[J]. Nature Phys. 2007, 3: 29-35.
    [139] Takatsu H, Yoshizawa H, Yonezawa S, et al. Critical Behavior of the Metallic Triangular-Lattice Heisenberg Antiferromagnet PdCrO2[J]. Phys. Rev. B 2009, 79(10): 104424.
    [140] Kadowaki K, Woods S B. Universal Relationship of the Resistivity and Specific Heat in Heavy-Fermion Compounds[J]. Solid State Commun. 1986,58(8): 507-509.
    [141] Cheng J -G, Zhou J -S, Goodenough J B, et al. Spin fluctuations in antiferromagnetic metal Nb12O29[J]. Phys. Rev. B 2009, 80(13): 134428.
    [142] Gooch M, Lv B, Lorenz B, et al. Evidence of Quantum Criticality in the Phase Diagram of KxSr1-xFe2As2 from Measurements of Transport and Thermoelectricity[J]. Phys. Rev. B 2009, 79(10): 104504.
    [143] Huang Q, Khaykovich B, Chou F C, et al. Structural Transition in NaxCoO2 with x near 0.75 due to Na Rearrangement[J]. Phys. Rev. B 2004, 79: 134115.
    [144] Limelette P, Hardy V, Auban-Senzier P, et al. Strongly Correlated Properties of the Thermoelectric Cobalt Oxide Ca3Co4O9[J]. Phys. Rev. B 2005, 71: 233108.
    [145] Lotgering F K. Topotactical Reactions with Ferrimagnetic Oxides Having Hexagonal Crystal Structures-I[J]. J. Inorg. Nucl. Chem. 1959, 9(2): 113-123.
    [146] Motohashi T, Naujalis E, Ueda R, et al. Simultaneously Enhanced Thermoelectric Power and Reduced Resistivity of NaxCo2O4 by Controlling Na Nonstoichiometry[J]. Appl. Phys. Lett. 2001, 79(10): 1490-1482.
    [147] Kawa T, Iguchi Y, Itoh T, et al. Na-Site Substitution Effects on the Thermoelectric Properties of NaCo2O4[J]. Phys. Rev. B 1999, 60: 10584-10587.
    [148] Kurosaki K, Muta H, Uno M, et al. Thermoelectric Properties of NaCo2O4[J]. J. Alloy. Comp. 2001, 315(1-2): 234-236.
    [149] Mkiyazaki Y, Onoda M, Oku T, et al. Modulated Structure of the Thermoelectric Compound [Ca2CoO3]0.62CoO2[J]. J. Phys. Soc. Jpn. 2002, 71(2): 491-497.
    [150] Sugiyama J, Itahara H, Tani T, et al. Magnetism of Layered Cobalt Oxides Investigated by Muon Spin Rotation and Relaxation[J]. Phys. Rev. B 2002, 66(13): 134413.
    [151] Sales B C, Jin R, Affholter K A, et al. Magnetic, Thermodynamic, and Transport Characterization of Na0.75CoO2 Single Crystals[J]. Phys. Rev. B 2004, 70(17): 174419.
    [152] Nguyen H C, Goodenough J B. Localized-Itinerant Electronic Transition in the Perovskite System La1-xCaxVO3[J]. Phys. Rev. B 52(12): 8776-8787.
    [153] Brinkman W F, Rice T M. Application of Gutzwiller’s Variational Method to the Metal-Insulator Transition[J]. Phys. Rev. B 1970, 2(10): 4302-4304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700