用户名: 密码: 验证码:
异步电动机高频斩波串级调速系统模型及特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型的节能调速技术,斩波串级调速技术因其节能效率高、控制功率小、结构简单、安全可靠等优点,逐渐受到人们的重视,尤其是在高压大容量异步电动机调速方面,展现出良好的节能前景,越来越多地被应用到了多种工业现场。
     目前,对斩波串级调速系统在结构和控制设计方面多从经验出发,缺乏深入、详尽的理论分析依据。针对以上不足,本文从稳态、动态回路特性,机械特性,控制方法,系统功率因数计算、无功补偿、谐波分析以及新型电力电子装置对其逆变部分的改造等多方面对斩波串级调速系统做以深入、系统的分析和总结,如下所述:
     深入分析了斩波串级调速系统的主回路各主要电量之间的输入输出稳态关系,借助各主要电量在一个斩波周期平均以及纹波特性,给出系统主电路参数选择的原则和工程计算方法;参照传统串级调速方法给出了两种计算、绘制系统机械特性的工程实用方法,说明了斩波串级调速系统优于传统串级调速系统机械特性的原因。
     建立了斩波串级调速系统在一个斩波周期平均条件下的数学模型,分析了平波电感、电容、转差率等回路结构参量对母线直流脉动和电容电压波动的影响;给出了斩波串级调速系统双闭环控制设计方法,并通过仿真实验加以验证。
     利用Graham-Schonholzer和Dobinson方法对斩波串级调速系统定、转子电流,逆变侧电流的谐波特性加以分析计算,总结了定、转子电流、逆变侧电流的谐波特点、变化趋势,给出了各次谐波的估算公式;解释了入网电流振荡的原因。
     阐释了斩波串级调速系统功率因数低的原因,画出了两类负载情况下的系统矢量变化示意图;借助大容量、高压异步电动机一般使用Γ型电路等效的特点,给出了另一计算系统功率因数的思路,最后参照计算结果完成了系统无功补偿的工程设计算例,并通过仿真试验加以验证,也说明该方法具有一定的工程实用价值。
     说明了电压型SPWM三相VSR变流设备的工作原理,分析了其在三相静态坐标和两相动态d-q坐标时的数学模型。以此为基础,总结了SPWM电压型三相VSR变流器的电压、电流双闭环控制方法;给出了三相VSR在四象限工况下的重要参数的设计方法,并通过仿真加以验证。
     将三相VSR变流器技术应用在了斩波串级调速系统的逆变部分,使其工作在容性逆变工况,产生容性无功功率补偿系统无功,从而提升系统的功率因数,同时利用三相VSR输出电流近似正弦波的特点改善系统谐波,达到了提升系统特性的目的,并给出了仿真验证,该方法的验证成功对斩波串级调速系统技术未来的发展有着重要意义。
As a kind of new energy saving technology, the chopped wave cascade speed control driver system is given more and more attentions to, and used in various industrial sites gradually, because of higher energy converstion efficient, lower controlling power, simple structure and safty, reliablility and so on merits, which unfolds the good application prospect, particularly in the high-voltage and large content asynchronous motor velocity regulation aspect.
     At present, the design about structure and control parameters of the chopped wave cascade speed control system resorts experience, lacking a deep thorough theoretics analysis basis. In view of existing situation, the deep systemical analysis and summary about the chopped wave cascade speed control system is finished in this paper such as the main circuit steady and dynamic properties, mechanical characters, control parameter design, system power factor calculation, reactive power compensation, harmonic current analysis and new type electronics and electric devices application to the inverter, and so on.
     The relationship between the input and output of the main electrical quantities in steady state is analysed thoroughly. By means of the the mean value in one cut period and ripple wave features of the main electrical quantities, the engineering calculation methods and selection principles are given. The two practical ways to compute and draw the mechanical characteristic curve are put forward according to the theory of the traditional cascade speed control system adopting shift-phase triggle mode. The reasons of the chopped wave mode mechanical characters superior to the shift-phase mode mechanical characters is illustrated.
     The methmatical model under the mean in one cut period of the chopped wave cascade speed control system is built up. The impact on the pulsation of the bus direct current and the capacitor voltage from the inductance and the capacitor and the slip ratio is analysed. The double closed-loops controlling design method is given about the chopped wave cascade speed control system, meanwhile, which is verified by the simulation model.
     Using the Graham-Schonholzer and Dobinson methods to calculate and study the harmonic features of the stator, the rator and the inverter sides. The relevant features and changing trend about the above harmonic currents is summarized. The various order harmonic current estimate formula is given and the reasons about the current vibration entering into the electric net is explained.
     The reasons about the lower power factor of the chopped wave cascade speed control system are explained. The system vector graph under two types of load is drawn. In view ofΓequivalent circuit, another method about computering the power factor is put up forward, and according to which, the engineering design to compensate system reactive power by capacitor is finished. At last, the compensatation design is verified by simulation model, and which proves its practicability.
     The principle of three-phases VSR is illustrated. The mathmetics models in three dimension static coordinate and d-q rotation coordinate of VSR are discussed. On base of that, the voltage and current double closed-loops designing way is deduced and summarized. The key parameters design way of VSR is offered under four quadrantal work conditions, and which is proved by simulation.
     Three phases VSR is applied in the chopped wave cascade speed control system to make capacitive reactive power to compensate the system reactive power in order to promote the power factor. Meanwhile, because the output current from the VSR is similar to the sine wave, the harmonic is repressed effectively, and the gain of improving the system features is attained, which is significant to the future development of the chopped wave cascade speed control system.
引文
[1]李华德.交流调速控制系统[M].北京:电子工业出版社,2003. 1、2、6章
    [2]孙金水.斩波内馈串级调速系统的基础研究[D].保定:华北电力大学,2007.
    [3]许彦龙.升压斩波式串级调速系统的研究[D].保定:华北电力大学,2006.
    [4]于精卫.斩波式内反馈串级调速系统的研究[D].包头:内蒙古科技大学,2008.
    [5]赵忠生.内反馈串级调速系统的研究及应用[D].保定:华北电力大学,2005.
    [6]马长啸.高功率因数斩波式内反馈串级调速系统研究[D].保定:华北电力大学,2007.
    [7]谢胜利.串级调速系统谐波与功率因数的仿真研究[D].保定:华北电力大学,2007.
    [8]江友华.高压大功率异步电动机驱动风机、泵类负载调速技术的研究[D].上海:上海大学,2006.
    [9]邱阿瑞,柴建云,孟朔,王善铭.现代电力传动与控制[M].北京:电子工业出版社,2004,l、2、4、8章
    [10](美)BimalK.Bose(著).Modem power Electronics and AcDrives.王聪,赵金,于庆广,程红(译).现代电力电子学与交流传动[M].北京:机械工业出版社,2005,1-8章
    [11]陈伯时,陈敏逊.交流调速系统[M].北京:机械工业出版社,2003,1-5章
    [12]王志良.电力电子新器件及其应用技术[M].北京:国防工业出版社,1995
    [13]曲永印.电力电子变流技术[M].北京:冶金工业出版社,2002,1-8章
    [14]张燕宾.电机变频调速图解[M].北京:中国电力出版社,2003,1、2、8、9章
    [15]马小亮.大功率风机、泵节能调速发展方向探讨[J].电气传动,1999,29(147):3-6.
    [16]马小亮,刘志强.高功率因数串级调速系统的研究[J],电力电子技术,2002,36(1):l-3.
    [17]马小亮,王春杰.大功率风机和泵的调速传动[J].自动化博览,2003 20 (5): 1-4.
    [18]姜泓,赵洪恕.电力拖动交流调速系统(第二版)[M].武汉:华中科技大学出版社,1996.
    [19]张少军,杜金城.交流调速原理及应用[M].北京:中国电力出版社,2003.
    [20]秦晓平,王克成.感应电动机的双馈调速和串级调速[M].北京:机械工业出版社.1990.30~74.
    [21]巩保峰.内反馈式串级调速系统的理论研究及系统设计[D].保定:华北电力大学,2004.
    [22]崔健.斩波式串级调速系统的研究与改进[D].保定:华北电力大学,2002.
    [23]刘志强,刘进永.高功率因数斩波式串级调速系统的研究.基础自动化[J].2001,8(5):54~56.
    [24]佟纯厚.交流电动机晶闸管调速系统[M].北京:机械工业出版社,1988.205~210.
    [25]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998.
    [26]权广力.三相高功率因数电压型PWM整流器的研究[D].济南:山东大学,2006.
    [27]王久和,李华德,王立明.电压型PWM整流器直接功率控制系统.中国电机工程学报[J].2006,26(18):54~60.
    [28]张兴. PWM整流器及其控制策略的研究[D].合肥:合肥工业大学,2003
    [29]张崇巍,张兴. PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [30]刘志刚,叶斌,梁军.电力电子学[M].北京:清华大学出版社;北京交通大学出版社,2004.6
    [31]陈道深,许大中.高功率因数异步电力晶闸管串级调速系统性能分析[J].电工技术学报,1988,3(1):57~60.
    [32]周渊深,宋永英,朱希荣.交流调速系统与MATLAB仿真[M].北京:中国电力出版社,2003
    [33]蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,2004
    [34]杨俊和.绕线式异步电动机串级调速的单片机模糊控制[D].大连海事大学硕士学位论文,2002.
    [35]王兆安,黄俊.电力电子技术(第四版)[M].北京:机械工业出版社,2001
    [36]陈庆协.次同步晶闸管串级调速系统功率因数的研究.矿山机械[J],2005,33(3):77~78.
    [37]魏泽国.可控硅串级调速的原理及应用[M].北京:冶金工业出版社,1985.
    [38]林渭勋.电力电子技术基础[M].北京:机械工业出版社,1990.
    [39]赵金,徐金榜,罗冷,万淑芸.新可逆PWM整流器主电路参数设计仿真[J].华中科技大学学报(自然科学版),2004, 32(2):38-40.
    [40]史伟伟,蒋全,胡敏强等.三相电压型PWM整流器的数学模型和主电路设计[J].东南大学学报(自然科学版),2002, 32 (1) : 50-55.
    [41]张兴等.PWM可逆变流器空间电压矢量控制技术的研究[J].中国电机工程学报,2001、21(10):101-106.
    [42]熊健,张凯,裴雪军.一种改进的PWM整流器间接电流控制方案仿真[J].电工技术学报,2003, 18 (1) : 57-63.
    [43]江友华,曹以龙,龚幼民.斩波双闭环控制在内反馈串级调速系统中的应用[J].电气传动,2006,36(6):16-18.
    [44]谢军,王清灵.绕线式异步电动机转子斩波串级调速系统的研究[J],安徽理工大学学报(自然科学版),2004:71-75.
    [45]屈维谦.交流调速的功率控制原理[J].华北电力大学学报,2002,29(3):39-43.
    [46]江友华,曹以龙,龚幼民.PWM整流技术在新型内反馈串级调速装置中的应用[J].变频器世界,2004,11:39-42.
    [47]杨振铭.串级调速系统的谐波和抑制[J].电气传动,1989,19(6):50-55
    [48]王清灵.串级调速系统斩波器主电路的分析[J].电力电子技术,1990,26(3):26~31.
    [49]张广溢,惠毅.可控硅串级调速系统的工程设计[J],电气传动,1985.
    [50]周培立,任荣格.内反馈式串级调速节能技术[J].石油和化工节能,2008,(4):16~18.
    [51]甄亚,王兵树,殷利杰.斩波串级调速系统功率因数的分析[J].电机与控制应用, 2009, 36(2):25~29.
    [52]刘颖.内反馈斩波串级调速系统转速控制的研究[J].仪器仪表与分析监测,2009,(3):5~7.
    [53]张峰,林永君,张少伟. SVPWM在现代串级调速系统中的仿真研究[J].信息化纵横,2009,(14):64~66
    [54]贾华,于精卫,高振宇.基于PWM整流技术的内反馈串级调速系统[J].机械工程与自动化,2008,2(1):150~154.
    [55]苑亚敏,王艾萌,徐文.斩波串级调速系统换相失败的分析与仿真[J].电力科学与工程,2008,24(1):19~22.
    [56]刘观起,孙金水,万军.基于IGBT斩波控制的内反馈串级调速系统的研究[J].电力科学与工程,2008,24(1):37~40.
    [57]马长啸,王艾萌,石新春.内反馈串级调速系统使用PWM整流器的方法研究[J].电力科学与工程,2008,24(3):9~12.
    [58]郭建军.串级调速的发展与现状[J].装备制造技术,2008,(7):110~111,126.
    [59]孔鹏,刘丛,万军. IGBT有源逆变在内反馈串级调速系统中的应用[J].华北电力大学学报,2008,35(5):11-15.
    [60]卞国成.串级调速与变频调速的技术特征比较[J].江苏冶金,2008,36(6):81-82.
    [61]谭文毕,张海涛,张泽普.一种提高内反馈串级调速系统功率因数的方法[J].山东电力技术,2007,(1):40-41,44.
    [62]马永光,张晓东,王兵树,许畅.串级调速电机的动态模型与仿真[J].电机与控制应用,2007, 31(4):11~14.
    [63]周德贤,王一华.晶闸管内反馈串级调速与高频斩波串级调速对比[J].电机与控制应用,2007, 34(2): 42~45.
    [64]屈维谦.串级调速的再讨论[J].电气传动与自动化,2007, 29(3): 1~6.
    [65]谢军,孙忠献,温晓玲.斩波串级调速系统主电路的分析[J].机电工程,2007,24(9): 81~82.
    [66]尚德彬,刘华伟,刘桂兰,赵红艳. SEC高频斩波串级调速技术的应用及发展趋势[J].电器开关,2007, (6):50~53.
    [67]郑有根,郭小渝.串级调速系统功率因数研究[J].陕西理工学院学报,2005,21(3):56~58.
    [68]柳毛继,曹以龙. PWM整流器在内反馈串级调速系统中的应用[J].微计算机信息(测控自动化), 2005, 21(8-1): 108~110.
    [69]张少军.带辅助换流环节的串级调速系统的机械特性研究[J].北京建筑工程学院学报,2002,18(1):60~62.
    [70]张少军,刘静统.一种高功率因数串级调速系统等效电路及逆变器换流过程分析[J].北京建筑工程学院学报,2001,17(2):1~2.
    [71]樊立萍,袁德成.一种改善串级调速系统功率因数的有效方法[J].沈阳化工学院学报,1999,13(4):296~300.
    [72]张成,康鹏举.晶闸管串级调速系统的整定及动态仿真[J].宁夏工学院学报,1995,6(3-4):84~87.
    [73]刘波春,周士跃.绕线型异步电动机的串级调速及其节能[J].江苏电机工程,1994,13(3):18~22.
    [74]张成,康鹏举.串级调速系统调节器自整定研究[J].宁夏工学院学报,1995,7(1-2):89~93.
    [75]王励涛,吕晶波,张雅秋.内反馈串级调速电动机及应用[J].中小型电机,1997,24(1):48~51.
    [76]冯大力,姜长泓,冯江.改进的串级调速系统[J].吉林工学院学报,1994,15(3):34~39.
    [77]廖凡,乔毅,赵恒连,纪世友.绕线式感应电机串级调速系统功率因数分析[J].大连铁道学院学报,1991,12(3):82~89.
    [78]钮小明.绕线式感应电机串级调速系统功率因数分析[J].铁道学报,1995,17卷增刊:8~14.
    [79]张锡憬,陶维青.串级调速双闭环系统动态响应的计算机分析及综合[J].安徽工学院学报,1986,5(1):101~116.
    [80]孙学才.串级调速异步电动机调速特性的一般公式[J].江苏电机工程,1991,10(1):60~65.
    [81]魏泽国,舒怀林,陈志恒.低同步串级调速感应电动机数学模型和稳态谐波转矩分析[J].西安矿业学院学报,1988,(3):106~115.
    [82]王福庆.双闭环串级调速系统的工程法设计[J].西安冶金建筑学院学报,1992,24(1):104~110.
    [83]唐宝乾,汪佳斌.绕线式转子异步电动机可控硅串级调速系统的运行分析[J].江苏工学院学报,1985,(4): 1~12.
    [84]陈道深,许大中.三次谐波辅助换流的高功率因数异步电动机串级调速系统[J].电气传动,1989(1):21~24,62.
    [85]刘志刚,和敬涵.功率因数补偿式绕线异步电机串级调速方法研究[J].铁道学报,2004,26(3):51~54.
    [86]郑有根,张莲,彭诗迪.新型三相四线制串级调速系统的建模与仿真[J].辽宁工程技术大学学报,2006,25(24):226~229.
    [87]刘观起,巩宝峰,万军.内反馈串级调速电动机数学模型的建立与仿真[J].华北电力大学学报,2005,32(1):6~8,27.
    [88]江友华,宁宇,吴国祥.基于状态空间平均模型的全数字双闭环斩波内馈串级调速系统[J].控制理论与应用,2007,24(1):109~112.
    [89]张晓东,王兵树,马永光,候晓勇.斩波串级调速系统机械特性曲线研究[J].机电工程,2006,23(12):55-56,59.
    [90]杨德刚,赵良炳,刘润生.三相高功率因数整流器的建模及闭环控制[J].电力电子技术,1999,(5): 49~51.
    [91]胡学芝.三相电压型PWM整流器间接电流控制方法改进及仿真[J].湖北大学学报(自然科学版),2006,22(4):12-14,17.
    [92]洪涛.晶闸管串级调速技术在矿井通风机节能改造上的应用.煤矿自动化,2000(1):12~14.
    [93]黄俊锋.内反馈串级调速电机及控制装置技术.电工技术,2004(10):47~48.
    [94]沈均洪.内反馈串级调速系统在热电厂锅炉风机上的应用.节能,2004(11):41~42.
    [95]屈维谦.斩波式内反馈调速及其功率控制原理见:孙流芳,EACS'98第九届全国电气自动化电控系统学术年会论文集.北京:机械工业出版社,1998.71~79.
    [96]王久和.电压型PWM整流器的非线性控制[M].北京:机械工业出版社,2008. 1、2、3、4章.
    [97]洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真[M].北京:机械工业出版社,2006.
    [98]张英书,叶文孙.电工技术[M].北京:机械工业出版社,1990.
    [99]王君艳.交流调速[M].北京:高等教育出版社,2003,8.
    [100]杜藏,骆源.科学计算语言MATLAB简明教程[M].天津:南开大学出版社,1998.
    [101]张建民,曹艳.自动控制原理[M].北京:中国电力出版社,2004.
    [102]汪国梁.电机学[M].北京:机械工业出版社,2005.
    [103]陈伯时.电力拖动自动控制系统——运动控制系统[M].北京:机械工业出版社,2003,8.
    [104]同济大学数学教研室.高等数学(上、下) [M].北京:高等教育出版社,1992,4.
    [105]徐德鸿,马皓,汪槱生.电力电子技术[M].北京:科学出版社,2006,8.
    [106]张卫平.开关变换器的建模与控制[M].北京:中国电力出版社,2008,6.
    [107]金以慧.过程控制[M].北京:清华大学出版社,1993,4.
    [108]柴肇基,马俊峰,范正翘,朱震莲.电力传动与调速系统[M].北京:北京航天航空大学出版社,1992,9.
    [109]李雅轩,杨秀敏,李艳萍.电力电子技术[M].北京:中国电力出版社,2005,2.
    [110]陈建业.电力电子电路的计算机仿真[M].北京:清华大学出版社,2003,10.
    [111]徐德鸿.电力电子系统建模与控制[M].北京:机械工业出版社,2007,5.
    [112]林飞、杜欣.电力电子应用技术的MATLAB仿真[M].北京:中国电力出版社,2009,1.
    [113]林渭勋.现代电力电子技术[M].北京:机械工业出版社,2006,1.
    [114]陈国呈. PWM逆变技术及应用[M].北京:中国电力出版社,2007,7.
    [115]龚银河,刘从立,开关滞时对SPWM逆变嚣输出波形的影响[J]西安:电力电子技术,1996,5.30(2):l~4.
    [116]陈坚.电力电子变换和控制技术[M].北京:高等教育车版设,2004.
    [117] SPWM电压型逆变电路谐波仿真分析[J].机电工程,2000,17(6):50~53.
    [118]佟为明,等.SPWM电压源逆变器变压变频过程的谐波分析[J].电力电子技术,1995,29(3):47~57
    [119]佟为明,等.开关变频电源的谐波问题及谐波抑制技术[J].电气自动化,1996,18(3):40~61.
    [120]吴忠,等.自然采样SPWM电源的谐波分析及抑制策略[J].电网技术,2001,25(4):17~20.
    [121]刘丛立. SPWM逆变器的谐波分析[J].西安矿业学院学报,1993,(2):179~185.
    [122]陈坚.交流电机数学模型及调速系统[M].北京:国防工业出版社,1989:189~199.
    [123]高琴妹.SPWM电压型逆变器输出电压谐波分析[J].上海电器技术,1997,(3):39~43.
    [124]陈颖,张俊洪. SPWM逆变电源的谐波分析及抑制策略[J].船电技术,2005,(1):28~30.
    [125]李勇. SPWM三相变频调速电路的谐波分析[J].内江师范学院学报,2005,20(2):20~24.
    [126]陈坚.电力电子学[M].北京:高等教育出版社,2002.
    [127]颜斌,陈希有.变频器输出RLC正弦波滤波器的工程设计[J].电机与控制学报,2002,(3):257~260.
    [128]范正翘.电力传动与自动控制系统[M].北京:北京航空航天大学出版社,2003.201~202.
    [129] (奥地利]George j.Wakileh.电力系统谐波[M].徐政译.北京:机械工业出版社,2003.
    [130]詹跃东.电机及拖动基础[M].重庆:重庆大学出版社,2002,120~124.
    [131]刘凤君.正弦波逆变器[M].北京:科学出版社,2002.
    [132]陈国呈.PWM变频调速及软开关电力变换技术[M].北京:机械工业出版社,2003.
    [133]李新君,张敏.三相SPWM逆变器的谐波分析及其抑制策略[J].防爆电机,2008,43(1):18~20,32.
    [134]雷竞业.绕线型异步电动机串级调速系统分析[J].中国科技信息(工程论坛),2005,(18):107,131.
    [135]黄发忠,于孝廷.三相桥式全控整流电路中的谐波分析[J].山东科学,2005,18(6):50~54.
    [136]胡家骥.可控硅串级调速动力制动电枢反应的理论分析[J].中南矿业学院学报,1982,(s3):7~11.
    [137]FRANZO G, MAZZUCCHELLI M, PAUGLISI L.Analysis of PWM techniques using uniform sampling in variable-speed electrical drives with large speed range. IEEE Trans Ind. Appl, 1985, IA-2l(4):966~974.
    [138]SOZER Y,TORREY D A,REVA S.New inveter output filter topology for PWM motor drives [A]. Applied Power Electronics Conference and Exposition (APEC 2000) [C]. New Orleans, LA, USA: IEEE,2000,Vo1.2):9l1~9l7.
    [139]Hammam J, Van Der Merwe F S. Voltage harmonics generated by voltage-fed inverters using PWM natural sampling [J]. IEEE Transactions on Power Electronics,1988,3(3):297~302.
    [140]Von JOUANNE A, RENDUSARAD A. ENJETI P N.Filtering techniques to minimize the effect of long motor leads on PWM inveter-feed ac motor drive systems[J].IEEE Trans on Industry Applications,1996,32(4):919~926.
    [141]wu CM, LAu W, CHUNG H S. Analytical technique for calculating the output harm onics of an H-bridge inveter with dead time. IEEE Trans on Circuits andSystems, 1999,46(5):617~627.
    [142]Fukuda S, waji Y.Introduction of the harmonic distortion determining factor and its application to evaluating real time PWM inverters[J].IEEE Transactionon Industry Applications,1995,31(1):149~154.
    [143]E.Akpinar and p.pillay. Modeling and performance of slip energy recovery induction motor drives using a linearization technique. IEEE Trans. on Energy Conversion,March1993,8(3):668~698.
    [144]JawadFaiz,H.Barati and Eyup Akpinar. Harmonic analysis and Performance improvement of slip energy recovery induction motor drives .IEEE Trans. On Power Electronics, May, 2001, 16(3):410~427.
    [145]Seshagiri R.Doradla. A new slip power recovery scheme with Improved supply power factor. IEEE Trans on power Electronics, April, 1988, 3(2):200~207.
    [146]Akpjnar E. Pillay P. Modeling And Performance of slip Energy Recovery Induction Motor Drives .IEEE Traps on Energy Conversion 1990(5):203~210.
    [147]Zhu zu tong,Hong ding guo and Chen Yu sheng. A new PWM type GTO Seherbius industrial device with high power factor. Industry Applications Society and Annual Meeting,1989,Vol. l,843~847.
    [148]S.Klaka,M.Frecher. The Integrated gate commutated Thyristor:a new high-efficiency high power switch for series or snubber-less operation. EPE conf.97,1997 :442~446.
    [149]Seshagiri R. Doradla and Sudarshan Chakravorty. A new slip power recovery scheme with improved supply power factor. IEEE Trans on Power Electronics, 2001, Vol .3(NO.2) : 200~206.
    [150]A.W. Green,J.T. Boys,G.F. Gates.3-phase voltage sourced reversible rectifier. IEEE Proceedings, Vol. 135, Pt. B, No. 6, NOVEMBER 1.
    [151]Eugenio Wernekinck, Atsuo Kawamura , and Richard Hoft. A High Frequency AC/DC Converter with Unity Power Factor and Minimum Harmonic Distortion. IEEE Transactions on Power Electronics, 1991,Vol. 6(No. 3):364~370.
    [152]Jinbang Xu, Jin Zhao, Ling Luo, Xiaozhen Ma, Shuyun Wan. A New Control Strategy of Unity Power Factor for Three-phase PWM Rectifier System. The 3Oth Annual Conference of the IEEE Industrial Electronics Society, November, 2004,709~714.
    [153]Diego R. Veas, Juan W. Dixon, and Boon-Teck Ooi. A Novel Load Current Control Method for a LeadingPower Factor Voltage Source PWM Rectifier. Ieee Transactions on Power electronics. March 1994,Vol. 9, No. 2(153~159).
    [154] Rusong, Shashi B. Dewan, and Dorgon R.Slemon.A PWM AC-to-DC Converter with Fixed Switching Frequency. IEEE Transactions on Industry Applications, Vol. 26. No. 5, 1990,880~885.
    [155]G. D. Marques, and Pedro Verdelho. A Simple Slip-Power Recovery System with a DC Voltage Intermediate Circuit and Reduced Harmonics on the Mains. IEEE Transactions on Industrial Electronics, Vol. 47, No. 1, February 2000,123~132.
    [156]Boon Teck Ooi, John C. Salmon, Juan W. Dixon, and Ashok B. Kulkarni. A Three-Phase Controlled-Current PWM Converterwith Leading Power Factor. IEEE Transactions on Industry Applications, Vol. ia-23, No. 1January/February 1987,78~84.
    [157]Dong-Choon Lee, and Dae-Sik Lim.AC Voltage and Current Sensorless Control of Three-Phase PWM Rectifiers. IEEE Transactions on Power Electronics, Vol. 17, No. 6, November 2002,883~890.
    [158]Thomas G. Habetler, and Deepakraj M. Divan. Angle Controlled Current Regulated Rectifiers for AC/AC Converters. IEEE TRANSACTIONS ON POWER ELECTRONICS. VOL. 6, NO. 3, JULY 1991,463~469.
    [159]Juan W. Dixon, Ashok B. Kulkarni, Masahiro Nishimoto, and Boon-Teck Ooi. Characteristics of a Controlled-Current PWM Rectifier-Inverter Link. IEEE Transactions on Industry Applications. Vol. IA-23, No. 6. November/December 1987,1022~1028.
    [160]V. B. Sriram,Sabyasachi SenGupta, and Amit Patra. Indirect Current Control of a Single-Phase Voltage-Sourced Boost-Type Bridge Converter Operated in the Rectifier Mode. IEEE Transactions on Power Electronics, Vol. 18, No. 5, 2003,1137~1137.
    [161]Juan W. Dixon and Boon-Teck Ooi. Indirect Current Control of a Unity Power Factor A sinusoidal Current Boost Type Three-phase Rectifier. IEEE Transactions on Industrial Electronics, Vol. 35, No. 4, November 1988,508~515.
    [162]Zixin Li, Ping Wang ,Yaohua Li, Congwei Liu, Haibin Zhu, Longcheng Tan.Instantaneous Power Based Control of Three-Phase PWM Rectifier under Distorted Source Voltages. IEEE International Symposium on Industrial Electronics 2009,1234~1239.
    [163]Mariusz Malinowski, Marek Jasinski, and Marian P. Kazmierkowski. Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation (DPC-SVM). IEEE Transactions on Industrial Electronics, Vol. 51, No. 2, April 2004,447~454.
    [164]D.M.Vilathgamuwa, S.R. Wall,R.D.Jackson. Variable Structrue Control of Voltage Sourced Reversible Rectifier. IEE Proc.Electr. Power Appl., Vol. 143, No.1, January 1996,18~24.
    [165]Maria G. Ioannides, John A. Tegopoulos.Optimal Efficiency Slip-Power Recovery Drive, IEEE Transactions on Energy Conversion, VOl. 3, No. 2, June 1988:342~348.
    [166]M.G. Ioannides, P.J. Papadopoulos. Speed and Power Factor Controller for AC Adjustable Speed Drives.IEEE Transactions on Energy Conversion, Vol. 6, No. 3, September 1991:469~475.
    [167]Yifan Tang, Longya Xu.Stability Analysis of a Slip Power Recovery System under Open Loop and Field Orientation Control.IEEE IAS 2006:558~564.
    [168]Yilan Tang, Longya Xu.Slip Power Recovery System Stability.IEEE Industry Application Magazine May/June I995: 14~20.
    [169]Sato Y., Kataoka T. State feedback control of current type PWM AC-to-DC converters. Industry Applications Society Annual Meeting, 1991.Vol(1), Page(s):840~846.
    [170]Yiqiang Chen, Boon-Teck Ooi. Multimodular multilevel rectifier/inverter link with independent reactive power control. IEEE Transactions on Power Delivery, Vol. 13, No. 3, July 1998: 902~908.
    [171]S. C. Peak and A. B. Plunkett, Transistorized PWM induction motor drivesystem, IEEE Trans. Ind. Appl., vol. IA-19, pp. 379-387, May/June 1983.
    [172]Choi J W ,Sui S K. Fast current controller in three phase AC/DC boost converter using d-q axis crosscoupling[J]. IEEE Trans on Power Electron. 1998, 13(1): 179~185.
    [173]Diego R.Veas,Juan W.Dixion. Novel Load Current Control Method for a Leading Power Factor Voltage Source PWM Rectifier[J]. IEEE Trans.on Power Electronics,1994 9(2):153~158.
    [174]Rusong Wu, S.B.Dewan and G.R.Slemen. Analysis of an AC-to-DC Voltage Source Converter Using Phase and Amplitude Control [J]. IEEE Trans.on IA, 1991, 27 (2):355-36 3.
    [175]Reinhold A.,Errath. Conversion of a fixed speed drive to an adjusting speed drive using a slip energy recovery system.May 1998 Page(s):107~127.
    [176]A.Lavi and R.J. Polge. Induction motor speed control with static inverter in the rotor.IEEE Trans.on Power Apparatus and Systems,January 1966,Vol.85:76~84.
    [177]Toshihiko Noguchi, Hiroaki Tomiki, Seiji Kondo. Direct power control of PWM converter without power source voltage sensors, IEEE Trans Ind. Appl,1998,34(3):473~479.
    [178]J.Gordon, Kettle borough and IvorR.Smith. Fast Calculation of Harmonic Torque Pulsations in a VSI induction Motor Drive .IEEE Transactions on industrial Electronics, Dec.1993, 40(6):561~569.
    [179]Xinhui Wu, Sanjib K. Panda, Jianxin Xu. Effect of Pulse-Width Modulation Schemes on the Performance of Three-Phase Voltage Source Converter. The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON).2007: 2026~2031.
    [180] A.Lavi and R.J.polge. Induction motor speed control with static inverter in the rotor. IEEE Trans, on Power Apparatus and Systems, January1966,Vol.85:76~84.
    [181]Slip power recover in an induction motor by the use of a thyristor Inverter IEEE Trans. On Industry and General Applications, January1969, Vol.5:74~82.
    [182]LiQingfu, ChenShikun. The Performance Analysis of A Chopper Controlled Thyristor Seherbius. Proeeedings of the third Chinese international conference on Electrical Machines . Xi’an: International Academic Publishers.1999.803~806.
    [183]On the Harmonics of the Slip Energy Recovery Drive. Power Engineering Review, IEEE Volume 21, Issue 4, April 2001 Page(s):55 ~ 57.
    [184]K.M.Smith ,and K.M.Smedley. Engineering Design of Lossless Passive Soft Switching Methods for PWM Converters Part I:With Minimum Voltage Stress Circuit Cells .IEEE Trans.on Power Electronics, 2001, 16 (3) :336~344.
    [185]A. DAVID GRAHAM, and EMIL T. SCHONHOLZER. Line Harmonics of Converters with DC-Motor Loads. IEEE TRANS ON INDUSTRY APPLICATIONS, VOL. IA-19, NO. 1, JANUARY/FEBRUARY 1983: 84~93.
    [186]L.G. Dobinson, C.Eng., M.I.E.R.E. Closer Accord Harmonics. ELECTRONICS POWER,1975, 15th,May:567~572.
    [187]D.J. Tylavsky, B.S.E.Sci., M.S.E.E., and F.C. Trutt, M.S.E.E. Terminal behaviour of the uncontrolled R-L 3-phase bridge rectifier. IEEE PROC, Vol. 129, No. 6, 1982:337~343.
    [188]E. Akpinar, P. Pillay, Starting transients in slip energy recovery inductionmotor drives-part: Formulation and Modeling. IEEE Transactions on Energy Conversion, Vol. 7. No.1, March 1992:238~244.
    [189]R. W u I S. B. DAvmman, d G. R. Slanon, Analysis of an ac-to-dc voltage source converter using PWM with phase and amplitude control. IEEE Trans.Ind Applicat. vol.27, no.2, pp.355-364, Mar./Apr. 1991.
    [190]Vladimir. Blasko, Vikram. Kaura, A new mathematical model and control of a three-phase ac-dc voltage source converter. IEEE Trans. Power Electron., vol.12, no.1, pp.116~122, Jan.1997.
    [191]V. Kaura, V. Blasko, Operation of Voltage Soure Converter at Increased Utility Voltage. IEEE Trans. Power Electron., vol.12, no.1, pp.132~137, Jan.1997.
    [192]Yan Guo, Xiao Wang H.C.Lee. and B.K.OOL. Pole-Placement Control of Voltage-Regulated PWM Rectifier Through Real-Time Multiprocessing IEEE Transaction on Industrial Electronics. Vol.41. No.2. April 1994. pp224~230.
    [193]A.Buse ,and J.hoky. Miltiloop control of a unity power factor fast switch AC to DC converter. Proc, PESC conf.1982: pp171-179.
    [194]N. R Zargari and G..Joos, Performance ivestigation of a current controlled voltage regulated PWM Recitifer in ratating and stationary frame.Proc. IEEE Annu. Conf. Industrial Electronics Society, 1993: pp.1193-1197.
    [195] Mariusz Malinowski, Marek Jasin′ski, and Marian P. Kazmierkowski, Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation. IEEE Transactions on Industrial Electronics, Vol. 51, No. 2, April 2004:447~454.
    [196]E. Akpinar, R. E. Trahan, A. D. Nguyen. Modeling and analysis of closed-loop slip energy recovery induction motor drive using a linearization technique. IEEE Transactions on Energy Conversion, Vol. 8, No. 4, December 1993:688~697.
    [197]C. T. Pan, Modelling and analysis of a three phase PWM AC-DC converter without current sensor, IEE Proceedings,Vol 40, No. 3, May, 1993.
    [198]H Sugimoto, S Moriinoto, and M Yano, A high performance control method of a voltage-type PWM converter, in Conf. Rec. IEEE PESC'88, pp 360~368, 1988.
    [199]A.Nabae, H.Nakano, Y.Okamura, A novel control strategy of the inverter with sinusoidal voltage and current outputs, Conference Records on PESC'94, vol.1, pp.154~159, June 1994.
    [200]H.Komurcugil and O.Kukrer, Lyapunov-based control for three phase PWM AC/DC voltage-source converters, IEEE Trans. Power Electron.,Vol. 13, pp. 801~813, Sept, 1998.
    [201]Tzann-Shin Lee, Lagrangian modeling and passivity-based control of three-phase AC/DC voltage-source converters, IEEE Trans. Power Electron., Vol. 51, no. 4, pp. 892~902, August, 2004.
    [202]Ned Mohan, Tore M. Undeland and William P. Robbins. Power Electronics, Converters, Applications, and Design, John wiley and Sons, Inc, 2003.
    [203]K. Taniguchi and H. Irie, Trapezoidal modulating signal for three-phase PWM inverter, IEEE Trans. on Ind.Electronics, Vol. IE-33, No. 2, May 1986, pp. 193~200.
    [204] J.S. Kim and S.-K. Sul, New control scheme for AC-DC-AC converterwithout DC link electrolytic capacitor, in IEEE PESC Conf. Rec., 1993,pp. 300~306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700