用户名: 密码: 验证码:
配电变压器一体化静止无功补偿器(DT-STATCOM)关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统规模的迅速扩大和现代电力电子技术的快速发展,静止无功补偿技术(STATCOM)已经成为电力系统节能降耗和电能质量控制领域的研究热点之一。目前,STATCOM技术主要存在着两种发展趋势:用于高压输电系统无功补偿及电压支持的高压大功率STATCOM技术和用于配电网终端用户无功就地补偿的配电网STATCOM (D-STATCOM)技术。高压大功率STATCOM因电压等级较高、容量较大而必须采用多重化或链式结构,致使其结构复杂、成本昂贵、安全可靠性不高;D-STATCOM技术则因接入电压较低,使其补偿容量不高或补偿电流较大,而且为了满足就地补偿的需要使得设备安装极为分散,设备的总体利用率较低、相互之间缺乏协调控制、大量使用时存在着资源浪费以及因技术不完善带来新的谐波污染等问题。
     针对STATCOM技术应用和发展过程中的上述问题,本文在国家高技术研究发展计划(863计划)先进能源技术领域高效节能与分布式供能技术专题探索导向类项目《配电变一体化STATCOM节能新技术研究》(2009AA05Z208)的资助下,以配电网中高低电压等级交汇处的配电变压器(尤其是箱式变电站中的配电变压器)作为无功补偿和电能质量控制的关键节点,提出了一种将配电变压器与电力电子静止无功补偿单元相集成,构成一体化结构的新型配点变压器-静止无功补偿技术(Distribution Transformer STATCOM, DT-STATCOM)。该补偿技术不仅能够充分利用配电变压器的富余容量实现对变压器及其负载的集中动态补偿,同时随着大量配电变压器(尤其是箱式变电站)在配电网中的广泛分布而又具备一定的分散性,易于实现相互协调控制;通过配电变压器-静止无功补偿单元一体化设计方案,可灵活选择静止补偿单元的连接电压,扩大了电力电子器件的选型范围,有利于技术经济指标的优化选择;紧凑的一体化结构有效降低了补偿装置的体积和成本,提高装置整体效率。为了实现DT-STATCOM系统的设计目标,发挥其技术优势,本文围绕DT-STATCOM技术的基本原理和各环节的关键技术展开了分析和研究。
     DT-STATCOM系统的静止无功补偿单元需要利用配电变压器的富余容量进行无功补偿和电能质量控制,改变了变压器绕组中原有的电流分布,因此需要避免因补偿而造成变压器过载的情况。对此,文中对变压器负载率与DT-STATCOM可补偿容量间的约束关系进行了理论研究,论证了现有配电变压器负载率下,采用DT-STATCOM实现无功补偿的可行性。
     在DT-STATCOM系统的结构设计中,需要通过在配电变压器的高压绕组设置连接抽头,实现静止无功补偿单元与变压器的一体化结构。然而由于配电变压器绕组具有多种联结组型式而给该一体化结构方式的设计造成了一定困难。文中针对变压器不同的联结组型式及其特点,分别研究了单组和多组连接抽头的一体化结构方式,实现了不同变压器联结组条件下的一体化结构设计。同时,为了适合较大的连接电压选择范围和不同DT-STATCOM一体化结构,分析和比较了多种静止补偿单元的拓扑结构型式,论证了DT-STATCOM主电路采用中性点箝位三电平结构的合理性。
     DT-STATCOM静止无功补偿单元的交流输出侧与配电变压器连接,不仅有助于缩小补偿装置的整体体积,而且可以将变压器漏抗作为输出滤波器的一部分,从而获得更好的滤波效果。本文在分析LCL滤波器各元件参数对补偿效果作用机理的基础上,提出了适用于DT-STATCOM一体化结构的多约束条件滤波器设计方法,并通过仿真分析验证了其有效性。文中还对高压大功率STATCOM、D-STATCOM和DT-STATCOM展开了比较分析,进一步论证了DT-STATCOM技术具有较好的技术经济性。
     补偿指令电流检测是实现无功补偿和电能质量控制的基础,由于DT-STATCOM系统特殊的一体化结构,导致补偿指令电流检测过程中补偿信息的检测点和补偿输出接入点分别位于变压器的不同端口。由于这两端口之间间隔了变压器的绕组,各端口的电压和电流信号存在着幅值和相位的偏差,因而传统的基于瞬时无功功率理论的p-q检测法和ip-iq检测法不再适用。因此,本文提出了三种跨端口补偿电流检测方法,能够根据配电变压器不同端口的电气量信息,实现补偿功率或补偿电流的跨变压器端口转换。同时,针对配电网普遍存在的电压畸变的现实情况,分析了其对三种跨端口补偿电流检测方法的影响。理论和仿真研究表明,DT-STATCOM采用跨端口ip-iq检测法可以取得更为优良的整体性能。
     DT-STATCOM系统是一种复杂的非线性系统,其交流输出和直流电压之间存在着较强的耦合关系。论文结合DT-STATCOM的运行特点,采用了前馈解耦控制策略,实现了电流内环的解耦,有效简化了控制器的设计。脉冲触发控制的效果直接影响着DT-STATCOM系统的动态补偿性能。论文对三角载波比较、滞环电流比较和无差拍等三种典型脉冲触发控制方法进行了对比研究,说明了滞环电流比较控制策略是最为适合的DT-STATCOM系统脉冲触发方式。为了降低滞环比较控制中功率器件开关频率的波动,文中对其进行了改进和优化,实现了变环宽准恒频的滞环比较控制方法,有效改善了其对DT-STATCOM系统滤波环节造成的不利影响。
     DT-STATCOM系统是一个交直流混合的复杂离散系统,而且其静止无功补偿单元与配电变压器特殊的一体化结构方式,使得其动态补偿过程和控制方式均与传统无功补偿装置有着显著的不同。为了检验上述DT-STATCOM设计方案和控制策略的正确性,本文构建了适合DT-STATCOM一体化结构的配电变压器仿真模型,并利用电力系统仿真模块与S函数模块混合编程技术,实现DT-STATCOM控制系统的实时采样计算和脉冲触发控制。仿真结果表明,DT-STATCOM系统可实现无功功率的快速动态补偿和电能质量的有效控制。
     在上述理论研究和仿真分析的基础上,研制开发了DT-STATCOM系统的动模样机和试验平台,开展了DT-STATCOM系统空载损耗试验、无功补偿动模试验、谐波抑制动模试验和系统不平衡电流补偿动模试验。动模试验结果验证了DT-STATCOM技术的正确性和有效性。
     论文最后对课题研究进行了总结,并对下一步拟开展的主要工作进行了展望。
With the rapid development of the power system and the modern power electronic technique, the STATCOM has been the hot spot of and power quality control. Recently there were two major trends of STATCOM technology:one is the high voltage and large power STATCOM technology and another is local compensation D-STATCOM technology. However, the high voltage and large power STATCOM must adopted multiple converters or chain structure to meet the high voltage level. That made the STATCOM structure complicated, expensive and low safty. Because of the low connect voltage, the D-STATCOM's capacity was limited and its compensation current became large. In order to fulfill the local compensation, the D-STATCOM was very dispersing. It led to the low utilization rate, lack co-operation, resource waste and harmonic pollution.
     Toward the characteristic and problems of STATCOM technology, this paper consider the intersection point of high voltage and low voltage is the most ideal, flexible, and effective location for reactive power compensation and power quality control. Many distribution transformers were set in this point and connect two different voltage power grids. And it's easy for hierarchically and partitioning controlling. Using the windings characteristic of transformer, an integration design of transformer and STATCOM could be put forward. And this integration technology can provide a new solution for reactive power compensation and power quality improvement of power system. So this paper proposed a new technology:it integrated the distribution transformer and the static var compensator (Distribution Transformer STATCOM, DT-STATCOM). This technology take full advantage of the surplus capacity of distribution transformer to compensate the reactive power; by setting the connect voltage flexible, it extended the switching devices selection, which benefit the economic and technical indicators; the integration structure reduce the volume and cost of compensation device. Revolve around the DT-STATCOM, this paper discuss about the basic theory and key technology.
     The DT-STATCOM use the surplus capacity of transformer to compensate reactive power and control the power quality. So it will change the current distribution of transformer winds. It is important to avoid the transformer overload. Toward that, this paper researched the mathematical relation of load ratio and DT-STATCOM capacity and realized the compensation under the normal operation. The DT-STATCOM need the connect taps to realize the integration structure. But the transformer had many winding structure, which made the integration design difficult. This paper researched the single group and multi-group connection taps integration structure based on different link group of transformer. On the same time, in order to suitable for the different DT-STATCOM structure and the tap voltage selection range, the paper analized and research the topology of compensation units. The result showed that the NPC structure was the most economical and practical topology. Besides, the DT-STATCOM connected with the transformer, it can reduce the volume of equipment and could take use of the leakage reactance as the parts of the output filter. So the paper analized the mechanism of LCL filter first, and then proposed the multi-restrictions design method. The simulations demonstrated the effectiveness. The paper also compared the highvoltage STATCOM, D-STATCOM and DT-STATCOM. The result showed that the DT-STATCOM had better technology and economy.
     The compensation instruction curren detection was the basis of reaction power compensation and power quality control. But because of the special structure of DT-STATCOM, the compensation current detection point and the compensation current injection point was located at different ports of the transformer. The two ports septum transformer's windings, so the voltage and current of the tow ports has deviation on amplitude and phasor. That led the traditional p-q and ip-iq detection method was not suitable. Toward that, the paper proposed three crossing-ports command current detection method. Based on the thdory derivation and the simulation, the paper analyzed the detection accuracy of different method. According to the analysis and the simulation, we defined the application of three crossing-ports detection methods. Use the detection method, the paper designed the control method and follow-up control of DT-STATCOM.
     The DT-STATCOM is a complicated nonlinear system, the AC output and the DC voltage has strong coupling relationship.The paper combined the characteristic of DT-STATCOM operation, adopted the feedforward decoupling strategy. It could realize the decoupling of inner current ring, which could simplified the design of the control system. The PWM pulses trigger strategy influence the compensation effect directly. The paper compared triangle carrier compare strategy, hysteresis comparison and deadbeat strategy. The result showed that the hysteresis comparison is the most suitable trigger strategy. In order to reduce the waveform of switching frequency, the paper optimized the hysteresis comparison method and realized the variable hysteresis quasi constant frequency comparison strategy. It improved the adverse effect of DT-STATCOM filter.
     The DT-STATCOM was acomplicated hybrid DC-ACA discrete system. And because of the special integrated structure of transformer and compensation units, the dynamic compensation and control strategy was different from the traditional equipment.Inorder to examine the DT-STATCOM proposal mentioned above, the paper built up a DT-STATCOM simulating model with simulink workbox in MATLAB. The main contents of the simulation model are as follows:establishion the DT-STATCOM simulation system based on multi-tap primary winding access mode and the three-level NPC based inverter circuit. Take advantage of mixed programme technology of simulation model and S function, the simulation model realized the real time sampling calculation and pulse trigger control. The simulation results showed that, the DT-STATCOM could compensation the reactive power quickly and control the power quality effectively.
     On the foundation of simulating research, a dynamic-simulating experiment system was built with multi-tap winding distribution transformer and DT-STATCOM module. With the experiment system, the paper carried out no-load loss test, reaction power compensation test, harmonic restrict test and three-phase umbalance compensation test. The experiment results verify the correction and validity of DT-STATCOM.
引文
[1]中国科学院可持续发展战略研究组.2010中国可持续发展战略报告——探索中国特色的低碳道路[M].北京:科学出版社,2010.
    [2]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2005
    [3]李林川,刘娜,顾丽梅.考虑静态电压稳定裕度的配电系统无功补偿优化配置[J].电工技术学报,2008,23(4):119-124.
    [4]王淳,程浩忠,陈恳.配电网动态无功补偿的整体优化算法[J].电工技术学报,2008,23(2):109-114.
    [5]中国电力年鉴2010[M].北京:中国电力出版社,201 0.
    [6]国家高技术研究发展计划(863计划)——先进能源技术领域智能电网关键技术研发(一期).重大项目申请指南,2010.
    [7]姜齐荣,沈斐,韩英铎.现代电能质量控制技术[J].电力电子技术,2004,38(6):2-7
    [8]肖国春,刘进军,王兆安.电能质量及其控制技术的研究进展[J].电力电子技术,2000,12(6):58-60
    [9]朱桂萍,王树民.电能质量控制技术综述[J].电力系统自动化,2002,26(19):18-31
    [10]许树楷,宋强,刘文华,等.配电系统大功率交流电弧炉电能质量问题及方案治理研究[J].中国电机工程学报,2007,27(19):93-98
    [11]Thomas S.Key, Jih-Shen Lai. IEEE and International Standards Impact on Power Electronic Equipment Design[C]. Proc. of IECON'98, Aachen, Germeny, 1998:430-436
    [12]Akagi H. Prospects of New Technologies for Power Electronics in The 21st Century[C]. IEEE/PES Transmission and Distribution Conference And Exhibition 2002, Asia Pacific,2002(2):1399-1404
    [13]Ren F, Zolper J C. Wide Energy Bandgap Electronic Devices[M]. River Edge, NJ: world scientific Pub,2003
    [14]McCalley J.D., Vittal V., Abi-Samra N. An overview of risk based security assessment, in Proceeding of IEEE Power Engineering Society Summer Meeting, 1999.Edmonton, Canada,1999.
    [15]Sermanson V., Maruejouls N., Lee S, et al. Probalilistic reliability assessment of the North American Eastern Interconnection Transmission Grid, in Proceeding of CIGRE Conf. Paris, France,2002.
    [16]Hingorani N G. Network Access and Future of Power Transmission [J]. EPRI Journal,1986,April-May:45-52
    [17]FACTS working group. Proposed Terms and Definitions for Flexible AC Transmission System (FACTS)[J]. IEEE Transactions on Power Delivery,1997, 12(4):1848-1853
    [18]韩英铎,姜齐荣,乐健.现代电力与FACTS&DFACTS技术[J].电力设备,2003,4(1):5-10
    [19]何大愚.用户电力技术及柔性交流输电技术[J].电网技术,1995,19(12):59-63
    [20]黄振华,陈建业.可控串补(TCSC)技术的应用进展[J].国际电力,2005,9(3):53-58
    [21]刘文华,姜齐荣,梁旭±20MVarSTATCOM总体设计[J].电力系统自动化,2000,10(23):14-18
    [22]Cavaliere C A, Watanabe E H, Aredes M. Multi-Pulse STATCOM Operation under Unbalanced Voltages. Proc of IEEE Power Engineering Society Winter Meeting[C]. New York,2002,1(1):567-572
    [23]M I Marei, E F Ei-Saadany, M M A Salama. Dynamic Performance of An Enhanced STATCOM Current Control Scheme for Reactive Power Compensation[C]. IEEE CCECE,2003,1(1):359-362
    [24]Tambey N, Kothari M L. Damping of Power System Oscillations with Unified Power Flow Controller [J]. IEE Proceedings:Generation,Transmission and Distribution, 2003,150(2):129-140
    [25]Wang H F. Interactions and Multivariable Design of Multiple Control Functions of a Unified Power Flow Controller [J]. International Journal of Electrical Power & Energy Systems,2002,24(7):591-600
    [26]江全元,邹振宇,曹一家.基于极大极小值原理的UPFC控制器设计[J].电力系统自动化,2005,29(14):23-28
    [27]文小玲,尹项根.双三点式STATCOM的电压电流波形分析[J].电气传动,2008,38(12):11-14,57
    [28]谭甜源,姜齐荣,李刚,赖宇翔,吴春晖,许树楷.基于电流跟踪控制的三电平DSTATCOM装置的控制方法[J].电力系统自动化,2007,31(4):61-65
    [29]范高锋迟永宁赵海翔王伟胜戴慧珠.用STATCOM提高风电场暂态电压稳定性[J].电工技术学报,2007,22(11):158-162
    [30]Sen K K. STATCOM:Theory, Modeling, Application[C].IEEE PES Winter Meeting Proceedings,1999:1177-1183
    [31]S M Muyeen, Mohammad Abdul Mannan, Mohad Hasan Ali, et al. Stabilization of Grid Connected Wind Generator by STATCOM [J]. IEEE PES 2005:1584-1589
    [32]Muyeen S M, Ali M H, Takahashi R, et al. Stabilization of Wind Farms Connected With Multi Machine Power System by Using STATCOM[C], Proceedings of the IEEE Power Tech Conference, Lausanne,2007,299-304.
    [33]江辉彭建春.联营与双边交易混合模式下的输电网损耗分配方法及其特性[J].中国电机工程学报,2006,26(8):49-54
    [34]鲁广明,鲍海,杨以涵,张芳,王小君.输电网网损分摊方法的比较研究[J].华东电力,2008,36(5):37-40
    [35]江辉,周有庆,彭建春,黄纯.基于节点电纳摄动的通用配电网损耗分配方法[J].中国电机工程学报,2005,25(6):42-48
    [36]刘钊,肖白露,康勇,等.基于D-STATCOM的串联解耦控制[J].电力自动化设备,2009,29(5):78-81.
    [37]Blazic B, Paoic I. Improved D-STATCOM Control for Operation with Unbalanced Currents and Voltages[J]. IEEE Trans, on Power Delivery,2006,21(1):225-223.
    [38]涂春鸣,李慧,唐杰,等.电网电压不对称对D-STATCOM的影响分析及抑制[J].电工技术学报,2009,24(8):114-121.
    [39]G W Moon. Predictive Current Control of Distribution Static Compensator for Reactive Power Compensation[J]. IEE Proc. Gener. Transm.Distrib,146(5):515-520
    [40]杨晓萍马少军钟彦儒.预测电流控制的DSTATCOM控制器设计与实现[J].电力电子技术,2006,40(3):33-35
    [41]代亚培罗安彭楚武吴传平.神经元PID电压空间矢量技术在DSTATCOM中的应用[J].电工电能新技术,2010(1):76-80
    [42]刘海波毛承雄陆继明王丹.四桥臂三相四线制并联型APF-STATCOM[J]电力系统保护与控制,2010(16):11-17
    [43]Jin Taotao, Chen Xiaofan, Smedley K M. A New One-cycle Controlled FACTS element with the function of STATCOM and Active Power Filter[C]. Industrial Electronics Society,2003. IECON'03.The 29th Annual Conference of the IEEE.2003:2634-2638
    [44]Ucar M, Ozdemir E, Kale M, An Analysis of Three-phase Four-wire Active Power Filter for Harmonic Elimination Reactive Power Compensation and Load Balancing under Non-ideal Mains Voltage[C]. Proc of the 35th Annual IEEE Power Electronics Specialists Conference PESC.2004:3089-3094
    [45]Takeda M, Ikeda K, Teramoto A, etal. Harmonic Current and Reactive Power Compensation with and Active Filter[C]. IEEE PESC'98. Fukuho-ka, Japan:1998: 1174-1179
    [46]Kanaan H Y, AI-Haddad K. A Linear Decoupling Multiple-loops Control Scheme Applied to a Three-phase Series Active Power Filter for Voltage Harmonic Cancellation Reactive Power Compensation[C].11th International Conference on Harmonice and Quality of Power. New York,2004:299-304
    [47]忻兰苑张志学章志兵.多重化单相STATCOM控制方法的研究[J].大功率变流技术,2010,1:50-53
    [48]梁旭,刘文华,陈建业,王仲鸿.基于多重化逆变器的静止无功发生器直流侧电流分析[J].电工技术学报,2000,15(1):52-56
    [49]朱永强宋强刘文华李建国许树锴.用于不平衡负荷补偿的大容量DSTATCOM主电路选择[J].电力系统自动化,2005,29(7):58-64
    [50]Peng F Z, McKeever J W, Adams D J. Cascade Multilevel Inverters for Utility Applications[C]. IECON 97,1997,2,9-14:437-442
    [51]Li L, Czarkowski D, Liu Y, etal. Multilevel Selective Harmonic Elimination PWM Technique in Series-connected Voltage Inverters[C]. IEEE Trans. On Industry Application,2000,36(1):160-170
    [52]李旷,刘进军,魏标,等.静止无功发生器补偿电网电压不平衡的控制及其优化方法[J].中国电机工程学报,2006,26(3):58-63.
    [53]文蔚,韩祯祥.配电网无功补偿的动态优化算法[J].中国电机工程学报,2006,26(10):79-85.
    [54]江全元,邹振宇,吴昊,曹一家,王海风.基于相对增益矩阵原理的柔性交流输电系统控制器交互影响分析[J].中国电机工程学报,2005,25(11):23-28.
    [55]刘丽霞,顾强,张来,等.500kV变电站160Mvar调相机的无功电压及暂态稳定分析计算研究[J].华东电力,2007,35(11):97-101.
    [56]马建广,徐贤,万秋兰.无功补偿电容器分组方案的探讨[J].电力自动化设备,2004,24(6):91-92.
    [57]方春恩邹积岩丛吉远丁富华.基于DSP的无功补偿电容器组同步投切装置[J].高压电器,2003,39(6):21-23
    [58]L. Gyngyi, N. G. Hingorani, P. R. Naunery, et al. Advanced Static Var Compensator using gate turn-off thyristor for utility applications. Cigre Paper 23-203, Paris, Aug.1990.
    [59]丁仁杰,张曙光.基于瞬时无功功率理论和模糊控制的新型SVC控制算法[J].电力自动化设备,2008,28(11):26-29.
    [60]C. D. Schauder et al. Development of a±100Mvar Static Condenser for Voltage Control of Transmission System[J]. IEEE Transactions on Power Delivery,1995(6).
    [61]赵伟,罗安,唐杰,等.静止无功发生器与晶闸管投切电容器协同运行混合无功补偿系统[J].中国电机工程学,2009,29(19):92-98.
    [62]胡国文,於锋,王威STATCOM与固定电容组合的高压异步电动机动态无功补偿节能技术[J].电力自动化设备,2011,31(3):75-78.
    [63]Schauder. C, Gernhardt M, Stacey E, Lemak T, Gyugyi L, Cease T W, Edris A. Operation of±100 MVAR TVA STATCON, IEEE Transactions on Power Delivery, 1997,12(4):1805-1811
    [64]Zhuang Y, Menzies R W, Nayak O B, Turanli H M. Dynamic performance of a STATCON at an HVDC inverter feeding a very weak AC system[J]. IEEE Transactions on Power Delivery,1996,11(2):958-964
    [65]Hill J.E, Chileshe C.M, Boardman S.M, Westrick M.P. Experimental model of a harmonic neutralised statcon[C]. Proc 29 Univ Power Eng Conf,1994,1:338-341
    [66]Li Xiaolu, Duan Xianzhong, He Yangzan, Yin Xianggen, Zhou Hong, Li Jisheng, Wang Feng, Xu Ling. ASVG model for transient stability studies in unbalanced systems [J]. Proceedings of the International Conference on Energy Management and Power Delivery, EMPD,1998,1:189-193
    [67]Edwards C.W, Mattern K.E, Stacey E.J, Nannery P.R, Gubernick J. Advanced static VAR generator employing GTO thyristors [J]. IEEE Transactions on Power Delivery, 1988,3(4):1622-1627
    [68]Liang Xu, Liu Wen-hua, Jiang Qi-rong, Wang Zhong-hong, Li Xiang-rong, Liu Zun-yi, Li, Jian-shan. Development of a voltage source inverter based static var generator[C]. Proceedings of the Intersociety Energy Conversion Engineering Conference,1996,1:611-614
    [69]Peng Fang Zheng, Lai Jih-Sheng. Dynamic performance and control of a static var generator using cascade multilevel inverters [J]. IEEE Transactions on Industry Applications,1997,33(3):748-755
    [70]Taylor Jr E.R, Whyte I.A, Brennen M.B, Bonk J.J. Static Var Generator Application and Protection Considerations[C]. Minutes of the Meeting-Pennsylvania Electric Association, Engineering Section, Spring 1983
    [71]Mori Shoauke, Matsuno, Katsuhiko, Hasegawa Taizo, Ohnishi Shuichi, Takeda Masaloshi, Seto, Makoto, Murakami Shotaro, Ishiguro Fujio. Development of a large static var generator using self-commutated inverters for improving power system stability. Transactions on Power Systems,1993,8(1):371-377
    [72]刘文华,胡雨辰IGCT和IEGT—适用于STATCOM的新型大功率开关器件[J].电力系统自动化,2000,24(23):66-70
    [73]Backlund Bjorn, Luscher Matthias. Recent developments in IGCT gate units[C]. 2007 European Conference on Power Electronics and Applications, EPE,2007
    [74]Steimer Peter, Apeldoorn Oscar, Carrol Eric, Nagel Andreas. IGCT technology baseline and future opportunities[C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference,2011,2:1182-1187
    [75]兰志明,李崇坚,绳伟辉,王成胜,朱春毅.集成门极换向晶闸管开关特性[J].电工技术学报,2007,22(7):93-97
    [76]S. Jager and D. knuth, Unterdr u ckung der Netzr u ckwirkungen eines Lichtbogenofens durch eine Kompensationsanlage mit thyrisorgeschalteten Drosseln, Electrowarme Int.,1972.
    [77]L. Gyugyi and B. R. Pelly, Static Power Frequency changers. New York:Wiley, 1976.
    [78]Schauder C, Gernhardt M, Stacey E. Operation of±100Mvar TVA STATCON[J]. IEEE Trans on PWRD,1997,12(4):1805-1811
    [79]赵贺.电力电子学在电力系统中的应用——灵活交流输电系统[M].北京:中国电力出版社.2001
    [80]C. D. Schauder et al. Development of a±100Mvar Static Condenser for Voltage Control of Transmission System[J].IEEE Transactions on Power Delivery,1995, 1(6):134-138
    [81]李向荣,赵遵廉,杨永康.灵活交流输电系统——静止调相器在美国的工程应用 [J].华中电力,1998,1(3):64-69
    [82]Hanson D J, Woodhouse M L, Horwill C, et al. STATCOM:a New Era of Reactive Compensation[J]. Power Engineering Journal,2002,16(3):151-160
    [83]刘文华,姜齐荣,梁旭,等±20MvarSTATCOM的工业现场测试及试运行.电力系统自动化,2000,23:43-46
    [84]沈斐,刘文华,王仲鸿±20Mvar静止无功发生器(ASVG)的研制[J].国际电力,2000,1(2):31-35
    [85]刘文华,宋强,王志泳,等±20Mvar STATCOM装置的GTO关断吸收电路[J].清华大学学报,2000,1(7):12-15
    [86]陈贤明,许和平,王小红,等.±500kvar静止无功发生器的研制[J].电力系统自动化,2001,24:53-57.
    [87]王小红,陈贤明±500kvar GTO—SVG中GTO死区补偿的研究[J].电力系统自动化,2001,25(9):28-30,63
    [88]魏文辉,刘文华,滕乐天,等.±50Mvar链式STATCOM稳态特性研究[J].电力系统自动化,2004,28(3):28-31.
    [89]张洪涛,宋强,刘钟淇,等.±50Mvar链式STATCOM的实时数字仿真[J].电力系统自动化,2006,30(17):19-23.
    [90]刘文华,宋强,腾乐天,等.基于集成门极换向晶闸管与链式逆变器的±50Mvar静止同步补偿器[J].中国电机工程学报,2008,28(15):55-60.
    [91]何大愚.柔性交流输电技术和用户电力技术的新进展[J].电力系统自动化,1999,23(6):8-13
    [92]Nilsson Stig. Special application considerations for custom power systems[C]. IEEE Engineering Society, Winter Meeting,1999,2:1127-1130
    [93]Ahmed M.M.R, Putrus G.A. Investigation into custom power technology[C]. Proceedings of the Universities Power Engineering Conference,1999,2:509-512
    [94]S. Massoud Amin, Bruce F, Wollenberg, Towards Smart Grid [J]. IEEE Power & Energy Magnizine,3(5):34-41, September/October 2005.
    [95]Ayday Erman, Rajagopal Sridhar. Secure, intuitive and low-cost device authentication for Smart Grid networks[C].2011 IEEE Consumer Communications and Networking Conference, CCNC2011,2011:1161-1165
    [96]李兴源,魏巍,王渝红,穆子龙,顾威.坚强智能电网发展技术的研究.电力系统保护与控制,2009,17:1-7
    [97]鲁宗相,王彩霞,闵勇,等.微电网研究综述[J].电力系统自动化,2007,31(19):100-107.
    [98]苏玲,张建华,王利,苗唯时,吴子平.微电网相关问题及技术研究[J].电力系统保护与控制,2010,19:235-239
    [99]Basak Prasenjit, Saha A.K, Chowdhury S, Chowdhury S.P. Micro grid:Control techniques and modeling[C]. Proceedings of the Universities Power Engineering Conference,2009
    [100]Johan Driesen, Farid Katiraei, Design for Distributed Energy Resources [J]. IEEE Power & Energy Magnizine,6(3):30-39, May/June 2008.
    [101]Malmedal Keith, Kroposki Ben, Sen P.K. Distributed energy resources and renewable energy in distribution systems:Protection considerations and penetration levels[C]. Conference Record-IAS Annual Meeting (IEEE Industry Applications Society), 2008.
    [102]谢运祥,陈坤鹏,邓衍平.改进型谐波与基波有功和无功电流检测法[J].华南理工大学学报(自然科学版),20053,33(4):15-19
    [103]马大铭,朱东起,高景德.三相电压不对称时谐波和无功电流的准确测量[J].清华大学学报(自然科学版)
    [104]王群,姚为正,王兆安.高通和低通滤波器对谐波检测电流检测效果的影响研究[J].电工技术学报,1999,14(5):22-26
    [105]殷波,陈允平.abc坐标系下广义无功电流和功率的定义及补偿[J].电网技术,2003,27(7):43-51
    [106]Vasco Soares, Pedro Verdelho, Gil D Maques. An Instantaneous Active and Reactive Current Component Method for Active Filters[J]. IEEE Trans on Power Electronics, 2000,15(4):660-669
    [107]M Karimi Ghartemani, M R Iravani, F Katiraei. Extraction of Signals for Harmonics, Reactive current and Network-unbalance Compensation[J]. IEE proceedings-generation, Transmission and distribution.2005,152:137-143
    [108]薛蕙,杨仁刚.基于FFT的高精度谐波检测算法[J].中国电机工程学报,2002,22(12):106-110
    [109]张明君,弭洪涛,张秀菊.基于小波变换的谐波和无功电流检测方法研究[J].北华大学学报(自然科学版),2004,5(1):80-83
    [110]Dash P K, Panda S K, Mishra B, et al. Fast Estimation of Voltage And Current Phasor in Power Networks Using an Adaptive Neural Network [J]. IEEE Trans on Power System,1997,12(4):1494-1499
    [111]Woei-Luen Chen, Yuan Yih Hsu. Direct Output Voltage Control of a Static Synchronous Compensator Using Current Sensorless d-q Vector-based Power Balancing Scheme[J]. IEEE PES Transmission and distribution conference and exposition.2003,2:455-549
    [112]Zhang Yonggao, Liu Liming, Zhu Pengcheng, et al. Double Close Loop Control and Analysis for Shunt Inverter of UPFC[J]. Proceedings of ICEMS.2005,2:1118-1123
    [113]Pranesh Rao, M L Crow, Zhiping Yang. STATCOM Control for Power System Voltage Control Applications [J]. IEEE Trans on Power Delivery,2000,15(4): 1311-1317
    [114]Pablo Garcia Gonzalez, Aurelio Garcia Cerrada. Control system for a PWM-based STATCOM [J]. IEEE Trans on PD,2000,15(4):1252-1257
    [115]H F Wang, F Li. Multivariable Sampled Regulators For The Co-Ordinated Control of STATCOM AC And DC Voltage [J]. IEE Proceedings, generation, transmission and distribution.2000,147:93-98
    [116]Bhim Singh, Jitendra Solanki, Vishal Verma. Neural Network Based on Control of Reduced Rating DSTATCOM[C].IEEE Indicon Conference. Chennai,2005:516-520
    [117]Cavaliere C A C, Watanabe E H, Arede M. Multi-Pulse STATCOM Operation under Unbalanced Voltages[C].Proc. IEEE Power Engineering Society Winter Meeting. New York USA,2002,567-572
    [118]戴朝波,林海雪.电压源型逆变器三角载波电流控制新方法[J].电网技术,2000,24(6):1-8
    [119]曾江,焦连伟,倪以信,等.有源滤波器定频滞环电流控制新方法[J].电网技术,2000,24(6):1-8
    [120]Xu Dianguo, Gu Jianjun, Liu Hankui, et al. Improved Hysteresis Current Control For Active Power Filter[J]. IEEE ISIE.2003,2:836-840
    [121]卢志刚,李爽,韩彦玲等.配电网技术经济运行区域的研究及应用[J].高电压技术,2007,33(6):156-159.
    [122]Timothy CY Wang, Zhihong Ye, and Gautam Sinha. Output Filter Design For A Grid-Interconnected Three-Phase Inverter. Proc.2003 Power Electronics Specialist Conf.2003:779-784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700