用户名: 密码: 验证码:
房水流出阻力的动力学及相关形态学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     房水流出阻力动力学及相关形态学在猴眼慢性青光眼模型中的研究
     目的:通过研究房水流出阻力在猴眼慢性青光眼模型的Schlemm氏管(SC)内壁和邻管组织(JCT)的动力学和相关形态学改变,来理解房水流出阻力的产生机制。
     方法:三只雌性短尾猴,每只猴用氩激光光凝一眼的小梁部,另一眼作为对照,随访15.96-69.96月(平均44.32±27.10月)。将眼球取出,在24小时内灌注示踪剂后固定。分别用共焦显微镜、光镜、电镜检查,观察Schlemm管及小梁组织。
     结果:激光组的平均眼压是61.33±4.16mmHg(Mean±SD),显著高于对照组(22.67±4.04mmHg,P=0.0003),而房水流畅率(0.03±0.02μl/min/mmHg)显著低于对照组(0.39±0.17μl/min/mmHg,P<0.001)。共焦显微镜检查发现激光眼的小梁组织中示踪剂呈节段性分布,而在对照眼中分布较为均匀,测量有效滤过长度百分比,对照眼(47.47±10.79%)是激光眼(8.40±4.81%)的6倍(P=0.013)。光镜和电镜检查发现,激光眼的小梁组织中大量色素沉着,疤痕形成,SC管壁塌陷,激光组的SC管内外壁间距离(4.57±3.25μm)显著窄于对照组(19.14±5.75μm,P<0.0001),部分SC内壁及JCT组织突入集液管(CC)入口,发生率明显高于对照组。
     结论:激光破坏了小梁组织造成有效滤过面积减少可能是房水流出阻力增加的部分原因。
     第二部分
     猴眼中不同眼压下房水流出阻力的动力学和相关形态学的改变实验一实验造成急性高眼压眼和正常眼压眼中房水流出阻力的研究
     目的:通过研究在不同眼压下房水流出阻力的动力学和相关形态学改变,来探索房水流出阻力产生的机制。
     方法:6只离体猕猴眼分为两组,每组3只,分别在30mmHg和7mmHg下灌注,同时连续记录房水流畅率。在同样灌注压下灌注入示踪剂后固定眼球。在共焦显微镜下观察示踪剂的分布情况,测量示踪剂在SC内壁的分布长度及SC总长度,计算房水有效滤过长度百分比(PEFL),将两组进行比较。在光镜下观察两组SC内壁及JCT组织的形态学改变及CC入口处的情况。
     结果:灌注压在7mmHg时的房水流畅率(0.34±0.08μl/min/mmHg)是灌注压在30mmHg时(0.16±0.06μl/min/mmHg)的2.3倍(P=0.03),平均房水滤过长度百分比(56.02±6.04%)是灌注压在30mmHg时的1.6倍(36.08±0.38%,P=0.03)。在30mmHg灌注压时,示踪剂的分布呈节段性,更趋于集中分布于CC入口处附近,并发现有SC管塌陷的情况。部分SC内壁及JCT组织突入CC入口处的发生率为79.04±20.50%,是灌注压在7mmHg时(26.14±20.81%)的3倍,差别有显著性意义(P=0.03)。
     结论:急性眼压升高,房水流畅率下降伴房水有效滤过面积下降,房水流出受限,集中于CC入口处附近。房水流出的动力学改变受SC塌陷、部分SC内壁及JCT组织突入CC入口等形态学改变的影响。
     实验二
     实验造成急性高眼压后又降至正常眼中房水流出阻力的研究
     目的:研究眼压下降后房水流出阻力的改变情况,并通过其动力学和形态学的改变来探索其发生机制。
     方法:10只离体猕猴眼被分为三组,一组4只眼灌注压在30mmHg时灌入红色示踪剂,然后将灌注压下降到7mmHg后灌入等剂量的绿色示踪剂,同时记录房水流畅率。另两组每组3只猕猴眼,灌注压始终保持在30mmHg和7mmHg,同样灌入两种示踪剂。在共焦显微镜下观察两种示踪剂的分布情况并计算PEFL。在光镜下观察各组切片的组织形态学改变,部分SC内壁及JCT组织突入CC入口处的发生情况。另外2只离体人眼,用同样实验方法,一只灌注压从45mmHg下降至7mmHg,另一只对照眼灌注压始终保持在45mmHg。
     结果:灌注压从30mmHg下降至7mmHg后房水流畅率从0.37±0.10μl/min/mmHg升高至0.48±0.21μl/min/mmHg(P=0.6);灌注压从7mmHg至7mmHg后房水流畅率从0.38±0.22μl/min/mmHg变化至0.56±0.45μl/min/mmHg(P=0.6);灌注压从30mmHg至30mmHg后房水流畅率从0.19±0.06μl/min/mmHg变化至0.32±0.10μl/min/mmHg(P=0.1)。随灌注压下降,PEFL增大,灌注压在30mmHg时为27.60±6.43%,当下降至7mmHg时,PEFL为45.78±7.37%,是灌注压在30mmHg时的1.7倍,差别有统计学意义(P=0.01)。而灌注压从7mmHg至7mmHg时,PEFL从56.02±6.05%变化至62.96±12.76%(P=0.44),差别无统计学意义。灌注压从30mmHg至30mmHg时PEFL分别是36.08±0.38%和39.76±3.01%(P=0.17),差别亦无统计学意义。光镜检查发现,在灌注压从30mmHg降至7mmHg的眼中,发生部分SC内壁及JCT突入CC入口的发生率和突入程度介于灌注压在30mmHg和7mmHg之间。它们的发生率分别是33.06±2.66%,26.14±20.81%和79.04±20.50%(P>0.05)。在灌注压从45mmHg下降至7mmHg的人眼中也有同样发现。
     结论:部分SC内壁及JCT突入CC入口的发生情况在眼压升高时明显增多,但随眼压下降,发生了逆转,突入数和程度减少,同时伴有效滤过面积和房水流畅率增高。
     第三部分
     猴眼洗脱现象中房水流出阻力的动力学及相关形态学的研究
     目的:通过研究猴眼洗脱现象中房水流出阻力的动力学及相关形态学改变,来试图寻求促使人类青光眼眼压下降的方法。
     方法:8只恒河猴离体眼,在恒定压力15mmHg下灌注葡萄糖磷酸缓冲液,将眼球分为两组,每组4只眼球,一组为实验组,灌注180分钟,另一组为对照组,灌注30分钟,连续记录房水流畅率。在两组眼中灌入同等剂量的荧光微球以标记房水流出道模式,然后在同样灌注压下灌入锇酸固定液固定眼球。分别在共焦显微镜、光镜和电镜下观察。测量SC管长度(TL)和示踪剂沿SC内壁分布的长度(L)后计算平均有效滤过长度百分比(PEFL=L/TL)。沿SC内壁测量发生分离的JCT组织的长度(SL),并计算平均分离长度百分比(PLS=SL/TL)。
     结果:灌注180分钟后房水流畅率(1.46±0.70μl/min/mmHg)比基线(0.58±0.20μl/min/mmHg)增长了150%,统计有显著性意义(P<0.01),并产生了洗脱现象;而对照组灌注30分钟后房水流畅率(0.44±0.16μl/min/mmHg)无显著增加(0.62±0.21μl/min/mmHg,P=0.46);共焦显微镜检查发现示踪剂在实验眼的分布较对照组更加均匀,实验组的平均有效滤过长度百分比(83.37±4.13%)是对照组的3.4倍(24.19±8.42%,P<0.001)。光镜和电镜检查发现实验眼JCT组织的结构发生改变,组织扩张变得疏松。JCT细胞间以及JCT细胞和间质间的连接被打破,发生分离。实验组的平均分离百分比(77.4±3.2%)是对照眼的2.3倍(33.5±5.3%,P<0.001)。有效滤过长度百分比和分离长度百分比呈高度正相关(P=0.00002)。
     结论:洗脱现象中出现邻管组织结构改变,JCT细胞间、细胞与基质间发生分离可能是房水流出阻力降低的原因。
PartⅠ
     Hydrodynamic and Morphological Correlates in Monkey Eyeswith Laser Induced-Glaucoma
     Purpose:To investigate the relationship between decreased outflow facility and thechanges in hydrodynamic aqueous outflow pattern and morphology after chronicelevated intraocular pressure (IOP)in laser-induced glaucoma of cynomolgusmonkey eyes.
     Methods:Argon laser photocoagulation bums to the trabecular meshwork (TM)were made in one eye of each monkey (N=3),leaving the contralateral eye as anormotensive control.Between 16 and 70 months later (mean±STD=44.32±27.10),measurements were made of IOP by pneumatonometry and outflow facility byfluorophotometry.To label the hydrodymamic patterns of outflow,the eyes wereenucleated and perfused with fluorescent microspheres (0.5μm;0.002%)at the lastpressure measured before death minus 7mmHg.The eyes were perfusion-fixed withKarnovsky's fixative at the same pressure.Confocal images were taken along theinner wall (IW)of the Schlemm's canal (SC).The total length (TL)and the filtrationlength (FL)of the IW decorated by tracers were measured in frontal sections.Theaverage percent effective filtration length (PEFL=FL/TL)was calculated for eacheye.Sections exhibiting SC were then processed and examined under light andelectron microscopy.
     Results:The average IOP in laser-treated eyes was 61.33±4.16 mmHg,which wassignificantly higher than that of controls (22.67±4.04 mmHg,P=0.0003).Theaverage outflow facility (0.03±0.02μl/min/mmHg)was 13-fold lower inlaser-treated eyes than that of controls (0.39±0.17μl/min/mmHg,P=0.02).Byconfocal microscopy,in control eyes,SC was open and a segmental distribution ofmicrospheres was found with a greater concentration in the juxtacanalicularconnective tissue (JCT)region near the collector channel (CC)ostia.Much lesstracer labeling along SC in laser-treated eyes was seen than that in controls.Theaverage PEFL in controls (47.47±10.79%)was 6-fold larger than in laser-treatedeyes (8.40±4.81%,P=0.013).By light microscopy,there was extensivepigmentation throughout the TM,denser extracellular matrix in the JCT region,andmost of the SC collapsed with focal herniations of the IW and JCT protruding into the CC ostia in laser-treated eyes.The mean width of SC in control eyes(19.14±5.75μm)was 4-fold wider than in laser-treated eyes (4.57±3.25μm,p<0.0001).In the laser-treated eyes,16 CC ostia were examined,herniations werefound in 14 CC ostia (88%),while herniations were found in 4 CC ostia of 23 CCostia examined in control eyes (17%,p<0.0001).By electron microscopy,few or nomicrospheres were observed in laser-treated areas.However,in non-lasered areas,numerous microspheres were observed near the CC ostia area compared withcontrols.
     Conclusions:In laser-induced glaucoma model,laser damage results in areduction in the available area for outflow across the IW of SC which contributes tothe decrease in outflow facility and thus elevation of the IOP Collapse of SC,causedby chronic elevation of IOP,further decreases in the available area for outflow in avicious cycle.This study suggests that available area for aqueous outflow play animportant role in regulating outflow resistance.
     PartⅡ
     Morphological and Hydrodynamic Correlates for ChangingAqueous Humor Outflow Resistance with different IOP
     ExperimentⅠ
     Purpose:To understand how hydrodynamic and morphologic changes in theaqueous humor outflow pathway contribute to decreased aqueous humor outflowfacility following acute elevation of intraocular pressure (IOP)in monkey eyes.
     Methods:Enucleated monkey eyes were perfused at two different pressures30mmHg and 7 mmHg,while outflow facility was continuously recorded.Dulbecco's PBS + 5.5 mM glucose containing fluorescent microspheres (0.5μm,0.002% v/v)was perfused to outline aqueous outflow patterns followed byperfusion-flxation.Confocal images were taken along the inner wall (IW)of the SCin radial and frontal sections.Percent effective filtration length (PEFL=IW lengthexhibiting tracer labeling/total length of IW)was measured.Herniations of IW intocollector channel (CC)ostia were examined and graded for each eye by lightmicroscopy.
     Results:Increasing IOP from 7 to 30 mmHg coincided with a 2.3-fold decrease inoutflow facility,from 0.34±0.08μl/min/mmHg at 7 mmHg to0.16±0.06μl/min/mmHg at 30 mmHg (P=0.03),a 1.6-fold decrease in PEFL withtracer more confined to the vicinity of CC ostia,from 56.02±6.04% at 7 mmHg to36.08±0.38% at 30 mmHg (P=0.03).Progressive collapse of the SC and increasingpercentage of CC ostia exhibiting herniations at 30 mmHg under light microscopy.
     Conclusions:Decreasing outflow facility during acute IOP elevation coincides witha reduction in available area for aqueous humor outflow and confinement of outflowto the vicinity of CC ostia.These hydrodynamic changes are likely driven bymorphologic changes associated with SC collapse and herniation of IW of SC intoCC ostia.
     ExperimentⅡ
     Purpose:To determine whether the filtration area for aqueous outflow increaseswhen IOP is decreased from 30mmHg to 7mmHg or from 45mmHg to 7mmHgwithin the same eye.
     Methods:We used two tracers with different excitation and emission spectra inorder to label the outflow patterns before and after reducing the perfusion pressure.Ten freshly enucleated monkey eyes were perfused at 30 mmHg (n=4)with 0.3 mlof red fluorescent microspheres (0.5μm,0.002% v/v),followed by an anteriorchamber exchange to remove the red tracer.A perfusion was continued at 7 mmHgwith a green tracer (0.3ml),followed by a pefusion with Karnovsky's fixative(0.3ml).The control eyes were perfused with only red tracer (0.3ml)at either 30mmHg (n=3)or 7 mmHg (n=3).Sections were cut radially and tangentially to thelimbus in all four quadrants and counter-stained for laser confocal.The pattern offluorescent tracer distribution was visualized in the trabecular meshwork,SC andCC ostia.Outflow facility and effective filtration area were measured at 30mmHgand 7mmHg in separate eyes (control)as well as within the same eye in which thepressure was decreased (experimental).Sections displaying the SC and CC ostiawere then processed for light micrscopy to analyze and grade the numbers of CCostia obstructed by herniated IW and JCT.Two human eyes were perfused with twodifferent tracer in the same way,one was kept the IOP at 45mmHg as control,theother is from 45mmHg to 7mmHg,then observed under confocal and lightmicroscopy.
     Results:As the perfusion pressure decreased from high to normal within the sameeye the herniations were found to be either partially or completely reversible,andcorrelate with an increase in facility as well as an increase in the area available foroutflow either in monkey eyes or in human eyes.The average facility ofexperimental eyes perfused at 30mmHg was 0.37±0.10μl/min/mmHg which waslower than the average facility measured after the perfusion pressure was dropped to7 mmHg (0.48±0.21μl/min/mmHg,P=0.6).The percent of ostia obstructed byherniated tissue in eyes that had an acute IOP decrease (from 30 mmHg to 7 mmHg,33.06±2.66%)and was lower than eyes perfused at a constant 30 mrnHg(79.04±20.50%,P=0.06)but not as low as in eyes that were perfused at a constant 7mmHg (P=0.6).
     Conclusions:We found that the herniations occurring in eyes that underwent anacute IOP increase are partially reversible and correlate with an increase in effectivefiltration area in the outflow pathway,as well as outflow facility.These studies pointto the importance of effective filtration length and the presence or absence ofhemiations as important factors in outflow resistance.
     PartⅢ
     Hydrodynamic and Morphological Changes during Washout inMonkey Eyes
     Purpose:To better understand the physiology of the washout effect in monkey eyesin order to exploit it as a means of reducing IOP in human eyes with glaucoma.
     Methods:Eight enucleated monkey eyes were used in this study.Within 24 hourspostmortem,eyes were perfused with Dulbecco's PBS containing 5.5mM glucose at15mmHg for long-duration (180 minutes)or short-duration (30 minutes,n=4 foreach group).The eyes were perfused with red fluorescent microspheres (0.5μm;0.002% v/v)to trace the hydrodynamic patterns of outflow,and then wereperfusion-fixed with Karnovsky's fixative at the same pressure.Radial and frontalsections in all quadrants were prepared and confocal irnages were taken along theinner wall (IW)of the Schlemm's canal (SC).The total length (TL)and thetracer-decorated length (L)of IW were measured in>16 images/eye,and theaverage percent effective filtration length (PEFL=L/TL)was calculated for each eye.The sections with SC were processed and examined under light and electronmicroscopy.The TL of IW and the length exhibiting separation (SL)injuxtacanalicular connective tissue (JCT)were measured.The average percentseparation length (PLS=SL/TL)was calculated.
     Results:Outflow facility increased 150% [1.46±0.70μl/min/mmHg (mean±SE),p<0.01] from baseline facility (0.58±0.20μl/min/mmHg)after 180 minutesperfusion to induce washout.No significant increases were found in outflow facilityafter 30 minutes perfusion (0.44±0.16μl/min/mmHg)compared to baseline(0.62±0.21μl/min/mmHg,P=0.46).A more uniform tracer pattern was seen inlong-duration perfusion eyes than in short-duration perfusion eyes.The averagePEFL in long-duration eyes (83.37±4.13%)was 3.4-fold larger than inshort-duration eyes (24.19±8.42%,P<0.001).The JCT region appeared distended inlong-duration eyes compared with short-duration eyes.The connections betweenJCT cells and between JCT cell and matrix were lost in expansion regions.The PLSin JCT region was 2.3-fold larger in long-duration eyes (77.4±3.2%)than that inshort-duration eyes (33.5±5.3%,p<0.001).A significant positive correlation wasfound between PEFL and PSL (P=0.00002)suggesting that as connectivity betweenthe JCT and IW decreases the available area for aqueous humor drainage increasesalong the SC.
     Conclusions:Increasing outflow facility during washout coincides with an increasein available area for aqueous humor outflow.These hydrodynamic changes arelikely driven by morphologic changes associated with a decrease in cell-cell and cell-matrix connections in the JCT region.
引文
1.李美玉,主编.青光眼学.北京:人民卫生出版社,2004.
    2.Quigley H.A.Number of people with glaucoma worldwide.Br J Ophthalmol 1996;80(5):389-393
    3.林明楷,葛坚,陈慧怡,余克明.青光眼住院病人的构成及变化.中国实用眼科杂志2003;23(12):937-939
    4.Fautsch M.P.,Johnson D.H.,et al.Aqueous Humor Outflow:What Do We Know?Where Will It Lead Us? Invest.Ophthalmol.Vis.Sci 2006;47(10):4181-4187
    5.Maepea O and Bill A.Pressures in the juxtacanalicular tissue and Schlemm's canal in monkeys.Exp Eye Res 1992;54(6):879-883
    6.Johnson M.‘What controls aqueous humour outflow resistance?’.Exp Eye Res 2006;82(4):545-557
    7.Tamm ER,Fuchshofer R.What increases outflow resistance in primary open-angle glaucoma?Surv Ophthalmol.2007;52 Suppl 2:S101-104
    8.Ethier C.R.The inner wall of Schlemm's canal.Exp Eye Res 2002;74(2):161-172
    9.Ethier C.R.,Coloma F.M.,de Kater A.W,et al.Retroperfusion studies of the aqueous outflow system.Part 2:Studies in human eyes.Invest Ophthalmol Vis Sci 1995;36(12):2466-2475
    10.Allingham,R.R.,de Kater A.W.,Ethier,C.R.,et al.Schlemm's canal and primary open angle glaucoma:correlation between Schlemm's canal dimensions and outflow facility.Exp Eye Res 1996;62(1):101-109
    11.Johnson,M.C.and Kamm R.D.The role of Schlemm's canal in aqueous outflow from the human eye.Invest Ophthalmol Vis Sci 1983;24(3):320-325
    12.Gong H.,Tripathi R.C.,Tripathi B.J.,et al.Morphology of the aqueous outflow pathway.Microsc Res Tech 1996;33(4):336-367
    13.Hann CR,Bahler CK and Johnson DH.Cationic ferritin and segmental flow through the trabecular meshwork.Invest Ophthalmol Vis Sci 2005;46(1):1-7
    14.Ethier C.R.and Chan D.W.Cationic ferritin changes outflow facility in human eyes whereas anionic ferritin does not.Invest Ophthalmol Vis Sci 2001;42(8):1795-1802
    15.de Kater AW,Melamed S and Epstein DL.Patterns of aqueous humor outflow in glaucomatous and nonglaucomatous human eyes. A tracer study using cationized ferritin. Arch Ophthalmol 1989; 107(4):572-576
    16. Scott P, Overby D, Freddo TF, Gong H. Comparative studies between species that do and do not exhibit the washout effect. Exp Eye Res 2007; 84(3): 435-443
    17.Lu Z, Overby DR, Scott PA, Freddo TF, Gong H: The mechanism of increasing outflow facility by rho-kinase inhibition with Y-27632 in bovine eyes. Exp Eye Res 2008; 86: 271-281
    18.Overby D., Gong H., Qiu G, et al. The mechanism of increasing outflow facility during washout in the bovine eye. Invest Ophthalmol Vis Sci 2002; 43(11):3455-3464
    19.Toris C. B., Zhan G. L., et al. Aqueous humor dynamics in monkeys with laser-induced glaucoma. J Ocul Pharmacol Ther 2000; 16(1): 19-27
    20.Gaasterland D. and Kupfer C. Reports: Experimental Glaucoma in the Rhesus Monkey. Invest. Ophthalmol. Vis. Sci 1974; 13(6): 455-457
    21.Lee, P. Y., Podos S. M., Serle, J. B, et al. Intraocular pressure effects of multiple doses of drugs applied to glaucomatous monkey eyes. Arch Ophthalmol 1987;105(2): 249-252
    22.Hashimoto J. M. and Epstein D. L. Influence of intraocular pressure on aqueous outflow facility in enucleated eyes of different mammals. Invest Ophthalmol Vis Sci 1980; 19(12): 1483-1489
    23.Gaasterland, D.E., Kupfer C. Reports: Experimental glaucoma in the rhesus monkey. Invest. Ophthalmol. Vis. Sci 1974; 13:455-457
    24.Radius, R.L., Pederson, J.E. Laser induced primate glaucoma. II. Histopathology.Arch. Ophthalmol 1984; 102: 1693-1698
    25.Lee, P.Y., Podos, S.M., Howard-Williams, J.R., Severin, C.H., Rose, A.D.,Siegel, M.J. Pharmacological testing in the laser-induced monkey glaucoma model. Curr. Eye Res 1985; 4: 775-781
    26.Lee, P.Y., Podos, S.M., Serle, J.B., Camras, C.B., Severin, C.H. Intraocular pressure effects of multiple doses of drugs applied to glaucomatous monkey eyes. Arch. Ophthalmol 1987; 105: 249-252
    27.Toris, C.B., Zhan, G.L., Wang, Y.L., Zhao, J., McLaughlin, M.A., Camras, C.B.,Yablonski, M.E. Aqueous humor dynamics in monkeys with laser-induced glaucoma. J. Ocul. Pharmacol. Ther 2000; 16: 19-27
    28.Melamed, S., Epstein, D.L. Alterations of aqueous humour outflow following argon laser trabeculoplasty in monkeys. Br. J. Ophthalmol 1987; 71: 776-781
    29.Melamed, S., Freddo, T.F., Epstein, D.L. Use of cationized ferritin to trace aqueous humor outflow in the monkey eye. Exp. Eye Res. 1986; 43: 273-278
    30.Parc, C.E., Johnson, D.H., Brilakis, H.S. Giant vacuoles are found preferentially near collector channels. Invest. Ophthalmol. Vis. Sci. 2000; 41: 2984-2990
    31.Battista, S.A., Lu, Z., Hofmann S., Freddo, T.F. Overby, D., Gong, H. Acute IOP Elevation Reduces the Available Area for Aqueous Humor Outflow and Induces Meshwork Herniations into Collector Channels of Bovine Eyes. Invest.Ophthalmol. Vis. Sci. 2008: 08-1707
    32.Hann, C.R. and Fautsch M.P. Preferential fluid flow in the human trabecular meshwork near collector channels. Invest. Ophthalmol. Vis. Sci. 2008; First published on Dec 5,2008 as doi: doi:10.1167/iovs.08-2375
    33.Wise, J.B. Long-term control of adult open angle glaucoma by argon laser treatment. Ophthalmology 1981; 88: 197-202.
    34.Wise, J.B., Witter, S.L. Argon laser therapy for open-angle glaucoma. A pilot study. Arch. Ophthalmol. 1979; 97: 319-322
    35.Wilensky, J.T., Jampol, L.M. Laser therapy for open angle glaucoma.Ophthalmology 1981; 88: 203-212
    36.Thomas, J.V., Simmons, R.J., Belcher, C.D. Argon laser trabeculoplasty in the presurgical glaucoma patient. Ophthalmology 1982; 89:187-197
    37.Pederson, J.E., Gaasterland, D.E. Laser-induced primate glaucoma. I.Progression of cupping. Arch. Ophthalmol 1984; 102: 1689-1692
    38.Spumy, R.C., Leder, C.M. Jr. Krypton laser trabeculoplasty: A clinical report.Arch. Ophthalmol 1984; 102: 1626-1628
    39.Rodrigues, M.M., Spaeth, G.L., Donohoo, P. Electron microscopy of argon laser therapy in phakic open-angle glaucoma. Ophthalmology 1982; 89:198-210
    40.Sarita, R.J., Rodrigues, M.M., Fellman, R.L., Spaeth, GL. Histopathologic verification of position of laser bums in argon laser trabeculoplasty. Ophthalmol.Surg . 1984; 15: 854-858
    41.Van der Zypen, E., Fankhauser, F., England, C., Kwasniewska, S. Morphology of the trabecular meshwork within monkey (Macaca speciosa) eyes after irradiation with the free-running Nd:YAG laser. Ophthalmology 1987; 94:171-179
    42.McHugh, D., Marshall, J., Ffytche, T.J., Hamilton, P.A., Raven, A. Ultrastructural changes of human trabecular meshwork after photocoagulation with a diode laser. Invest. Ophthalmol. Vis. Sci. 1992; 33: 2664-2671
    43.Ara, G, Anderson, R.R., Mandel, K.G, Ottesen, M., Oseroff, A.R. Irradiation of pigmented melanoma cells with high intensity pulsed radiation generates acoustic waves and kills cells. Lasers Surg. Med. 1990; 10: 52-59
    44.Johnson,D. Histologic findings after argon laser trabeculoplasty in glaucomatous eyes. Exp. Eye Res. 2007; 85: 557 - 562
    45.AGIS. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol 2000; 130: 429-440
    46.Grant WM. Experimental aqueous perfusion in enucleated human eyes. Arch Ophthalmol 1963; 69: 783-801
    47.Rosenquist R, Epstein D, Melamed S, Johnson M, Grant WM. Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy. Curr Eye Res 1989; 8: 1233-1240
    48.Sabanay I, Gabelt BT, Tian B, Kaufman PL, Geiger B. H-7 effects on the structure and fluid conductance of monkey trabecular meshwork. Arch Ophthalmol 2000; 118:955-962.
    49.Barany EH. The Immediate Effect on Outflow Resistance of Intravenous Pilocarpine in the Vervet Monkey, Cercopithecus Ethiops. Invest Ophthalmol Vis Sci 1967;6:373-380
    50.Johnson M, Shapiro A, Ethier C.R., etal. Modulation of outflow resistance by the pores of the inner wall endothelium. Ivest Ophthalmol Vis Sci 1992; 33(5):1670-1675
    51.Erickson-Lamy K and Schroeder A. Absence of Time-Dependent Facility Increase. ("Washout") in the Perfused Enucleated Human Eye. Ivest Ophthalmol Vis Sci 1990; 31(11): 2384-2388
    1.Gelatt KN.Animal models for glaucoma.Invest Ophthalmol Vis Sci,1977;16:592
    2.河北医学院眼科考古组青光眼研究小组.急性高眼压对兔眼视网膜的组织结构和糖元分布的影响.中华眼科杂志,1996,13(2):164
    3.柴戬臣,袁桂琴,魏宝林等.急性高眼压对兔神经轴浆运输的影响—实验性青光眼.眼科研究,1984,2(4):202
    4.张凤珍,刘露霞,王林等.高眼压对兔神经逆行轴浆运输的影响—HRP实验研究.中华眼科杂志,1986,22(1):36
    5.刘哲峰,刘英奇,杨希芳等.实验性视网膜缺血的视网膜电图和视诱发电位变化的研究.眼科新进展,1990,10(3):3
    6.赵桂秋,孙为荣,杨湘娟等.急性高眼压状态视网膜自由基损伤的动物实验. 中华眼科杂志,1993,29(5):293
    7.孙为荣,赵桂秋,刘芳毅等.急性高眼压视网膜的自由基损伤及自由基清除剂的应用.中国实用眼科杂志,1995,13(5):293
    8.赵桂秋,孙为荣,王净华等.急性高眼压对视网膜LDH和SDH活性的影响.青岛医学院学报,1996,32(3):227
    9.昝玉玺,孔德兰,谷兆侠.急性高眼压状态兔眼房水中的心房利钠尿肽水平.临床眼科杂志,1997,5(4):220
    10.纪建中,孙为荣,程丹富等.急性高眼压状态视网膜的钙离子损伤及钙通道阻滞剂的疗效观察.中华眼科杂志,1996,32(5):373
    11.白禹诗,关家,皮静波等.外源性SOD对兔急性高眼压致视网膜损伤保护作用的研究.中华眼科杂志,1997,33(6):429
    12.王传富,潘晓晶,金梅玲等.脑神经生长素治疗兔急性高眼压视神经损伤.中华眼底病杂志,2000,16(2):88
    13.潘晓晶,王传富,孙为荣等.脑神经生长素对急性高眼压视网膜神经节细胞损伤的保护作用.中国实用眼科杂志2000,18(10):603
    14.潘晓晶,杨先,王传富等.急性高眼压兔眼视网膜神经节细胞凋亡的病因分析.山东医药,2000,40(14):7
    15.Svedbergh B.Effect of artificial intraocular pressure elevantion on thecorneal endothelium in vervet monkey.Acta Ophthalmol,1975,53:839
    16.周浩,周韵秋,高洪瑞等.视网膜缺血对兔视神经纤维损害的定量研究.第二军医大学学报,1998,19(3):271
    17.王平宝,黄佩刚,蒋幼芹等.兔急性高眼压模型视网膜N甲基D天门冬氨受体RImRNA的表达.中华眼底病杂志,2007,17(1):50
    18.贾莉君,蒋幼芹,吴振中等.急性高眼压致大鼠视网膜节细胞细胞色素氧化酶活性降低.眼科研究,1995,13(4):228
    19.贾莉君,刘忠浩,罗学港等.青光康注射液对急性实验性高眼压大鼠视网膜节细胞细胞代谢的作用.中华眼科杂志,1995,31(2):129
    20.刘海霞,杜蜀华.高眼压鼠视网膜胶质纤维酸性蛋糕免疫组织化学观察.眼科研究,1999,17(2):104
    21.刘忠浩,罗学港,刘求理等.大鼠视网膜缺血/再灌注损伤导致视网膜节细胞坏死的定量研究.湖南医科大学学报,1995,20(6):537
    22.罗学港,刘忠浩,史毓阶.生理盐水加压灌注眼前房引起大鼠急性高眼压.眼科研究,1987,5(4):222
    23.刘森,陈庆魁,王蔼青.高眼压状态对兔角膜内皮细胞形态及功能的影响. 中华眼科杂志,1989,25(2):104
    24.刘建宗,梁树今,王长龄等.急性高眼压下猫眼视网膜酶的活性改变.中华眼科杂志,1994,30(4):268
    25.许懿,刘岌玫,于成国等.人工高眼压家兔血液、虹膜及房水Camp及cGMP含量的关系.中华眼科杂志,1997,33(6):433
    26.Liu JHK,Bartels SP,Neufeld AH.Effective of L-and D-timolol on cyclic AMP synthesis and intraocular pressure in water-loaded,albino and pigmented rabbits.Invest Ophthalmol Vis Sci,1983,24:1276
    27.李耐三,郝小勇,陈依军.降眼压药消旋噻吗心安的药理研究.南京药学院学报,1984,15(2):40
    28.俞昌喜,黄自强,朱龙坤等.麝珠明目散滴眼剂滴眼降眼压作用实验研究.福建医学院学报,1994,28(2):131
    29.周文新,庄卫.电针趾间穴对家兔眼压的影响.中西医结合眼科杂志,1996,14(3):129
    30.Thorpe RM,Kolker AE.A tonographic study of water loading in rabbit.Arch Ophthalmol,1967,77:238
    31.Sugrue MF,Gautheron P,Schmitt C,et al.ON the pharmacology of L-645,151.A topically effective ocular hypotencive carboic anhydrase inhibitor.J Pharmacol Exp Ther,1985;232(2):534
    32.Chiou GCY,Zhou F,Shen ZF,et al.Effects of D-timolol and L-timolol on ocular blood flow and intraocular pressure.J Ocular Pharmacol,1990;6(1):23
    33.Morrison JC,Moore CG,Deppmeier LM,et al.A rat model of chronic pressure-induced optic nerve damage.Exp Eye Res,1997,64(1):85
    34.Bonomi L,Saettone MS,Bucci G,et al.Methods to produce ocular hyper-tension in animals.Ophthalmol Drug Deliver,1987,11;107
    35.医用药理学编写组.医用药理学.第二版.北京:人民卫生出版社,1982,166
    36.刘艳艳,周令娴.针刺对氯丙嗪实验性高眼压的影响.中国中医眼科杂志,1994;4(1):24
    37.王凤民,季杰,袁久民等.氯胺酮麻醉对眼压影响的实验观察.眼科研究,1986,4(1):14
    38.Krupin T et al.Exp Eye Res,1978,27:128
    39.李健民,杨新光.L-NAME在实验性高眼压视网膜缺血再灌注损伤中的保护作用.第四军医大学学报,2002,23(3):213
    40.张宗端,段俊国.优视胶囊对急性高眼压家兔眼压及神经节细胞的影响.眼 视光学杂志,2001,3(2):99
    41.Gaasterland D,Kupfer C.Experimental glaucoma in the rhesus monkey.Invest Ophthalmol,1974,13:455
    42.Toris CB,Zhan GL,Wang YL,et al.Aqueous humor dynamics in monkeys with laser-induced glaucoma.J Ocul Pharmacol Ther,2000,16:19
    43.戴毅,孙兴怀,郭文毅,杨幼明,余晓波,钱韶红,沈颖,金晓红.恒河猴慢性青光眼模型的建立及相关生物学特性.中国实验动物学报,2005;13(2):95
    44.WoldeMussie E,Ruiz G,Wijono M,et al.Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension.Invest Ophthalmol Vis Sci,2001,42:2849
    45.崔馨,贺翔鸽,许建涛,王韶亮,葛成国,喻红.532-二极管激光光凝法诱导大鼠青光眼慢性高眼压模型的研究.激光杂志,2006;27(3):79
    46.鲍捷,刘东敬,陈晓明.经角膜缘激光光凝小梁网建立慢性青光眼模型.眼科研究,2007;25(2):102
    47.Ueda J,Sawaguchi S,Hanyu T,et al.Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink.Jpn J Ophthalmol,1998,42:337
    48.杨滨滨,原慧萍,宋武莲,肖铮,史丽萍.两种方法建立大鼠慢性青光眼模型的对比研究.眼科新进展,2007;27(7):481
    49.Levkovitch-Verbin H,Quigley HA,Martin KR,et al.Translim ballaser photocoagulation to the trabecular meshwork as a model of glaucoma in rats.Invest Ophthalmol Vis Sci,2002,43:402
    50.Gross RL,Ji J,Chang P,et al.A mouse model of elevated intra-ocular pressure:retina and optic nerve findings.Trans Am Ophthalmol Soc,2003,101:163
    51.Shareef SR,Garcia-Valenzuela E,Saliemo A,et al.Chronic ocular hypertension following episcleral venous occlusion in rats.Exp Eye Res,1995,61:379
    52.Morrison JC,Johnson EC,Cepurna W,et al.Understanding mechanisms of pressure-induced optic nerve damage.Prog Retin Eye Res,2005,24:217
    53.McKinnon SJ,Pease ME,WoldeMussie E,et al.Comparison of three models of rat glaucoma caused by chronic intraocular pressure elevation.Invest Ophthalmol Vis Sci,1999,40(4):S787
    54.Morrison JC,Moore CG,Deppmeier LM,et al.A rat model of chronic pressure-induced optic nerve damage.Exp Eye Res,1997,64:852
    55.Jia L,Cepurna WO,Johnson EC,et al.Effect of general anesthetics on IOP in rats with experimental aqueous outflow obstruction.Invest Ophthalmol Vis Sci,2000;41:3415
    56.Mermoud A,Baerveldt G,Mickler DS,et al.Animal model for uveitic glaucoma.Graefes Arch Clin Exp Ophthalmol,1994,232:553
    57.Weber AJ,Zelenak D.Experimental glaucoma in the primate induced by latex microspheres.J Neurosci Methods,2001,111:39
    58.Moreno MC,Marcos HJ,Oscar Croxatto J,et al.A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid.Exp Eye Res,2005,81:71
    59.徐岩,陈祖基,宋洁贞.复方卡波姆诱发的兔高眼压模型与其它兔高眼压模型的比较研究.中华眼科杂志,2002,38:172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700