用户名: 密码: 验证码:
1.雪旺细胞移植改善急性心肌梗死后神经重构的研究 2.年龄对心脏瓣膜种子细胞体外培养增殖的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     雪旺细胞移植改善急性心肌梗死后神经重构的研究
     背景:所谓神经重构指的是心肌梗死边缘区交感神经的过度增殖和交感神经纤维的不均衡分布。既往研究表明,神经重构是造成急性心肌梗死后心律失常的重要原因,而后者则是造成急性心肌梗死后死亡的重要原因。但是目前控制急性心肌梗死后心脏神经重构的手段仍十分有限。雪旺细胞具备强大的神经再生功能,多数研究表明,雪旺细胞可以通过旁分泌和细胞接触机制诱导神经轴突再生,并参与神经鞘基质蛋白的合成,对新生神经轴突给与必要的支撑。因此,本研究拟探讨雪旺细胞在促进心脏神经再生和改善心脏神经重构方面的作用。
     方法:在lewis大鼠上成功建立急性心肌梗死模型后,将心肌梗死鼠随机分为细胞移植组(n=80)和对照组(n=72)。雪旺细胞取自lewis大鼠坐骨神经,经体外培养后,经爬片S100染色鉴定雪旺细胞表面标记物,经ELISA方法鉴定雪旺细胞在离体环境下释放神经生长因子和血管内皮生长因子的能力。取2代雪旺细胞5×10~6,注射到心肌梗死周边区。在注入雪旺细胞24小时、1周和2周时间点分别取材,进行组织标本的免疫组化、免疫荧光以及蛋白印记试验。其中,免疫组化指标选择S100、BrdU和CD68,免疫荧光的指标选择酪胺酸羟化酶、乙酰胆碱酯酶和生长相关蛋白43;蛋白印记实验指标选择神经生长因子,血管内皮生长因子,生长相关蛋白43,连接蛋白43和层粘连蛋白。
     结果:在不同时间点,比较雪旺细胞移植组和对照组S100染色阳性细胞数。在对照组,急性心肌梗死二十四小时后,S100染色阳性细胞急剧减少;在雪旺细胞移植组,急性心肌梗死二十四小时后,可见多量S100和BrdU同时染色阳性的细胞。随着时间推移,两组S100染色阳性的细胞均增多,但雪旺细胞移植组S100染色阳性细胞显著多于对照组(p<0.05),但是BrdU染色阳性细胞随着时间的推移急剧减少。这提示,急性心肌梗死后,随着时间的推移,心肌内自身雪旺细胞不断再生,而移植的雪旺细胞不断死亡。在心肌梗死后24小时,与对照组相比,在雪旺细胞移植组,神经生长因子、血管内皮生长因子、生长相关蛋白43、连接蛋白43以及层粘连蛋白在心肌内表达无显著差异,而在心肌梗死后一周和两周时,雪旺细胞移植组上述蛋白表达均明显增高。在24小时,植入心肌梗死周边区的雪旺细胞对巨噬细胞起到了明显的趋化作用。但心肌梗死后一周和两周时,两组雪旺细胞计数无差别。在心肌梗死后24小时、一周和两周时,两组心肌梗死周边区交感神经、副交感神经和新生神经纤维密度均有所增高,但在雪旺细胞移植组,心肌梗死后两周时副交感密度与交感密度比值显著高于对照组。但雪旺细胞移植未能改善心功能。
     结论:在急性心肌梗死后,心肌梗死周边区植入的雪旺细胞可以释放NGF,吸引巨噬细胞,刺激层粘连蛋白表达,从而提高副交感密度与交感密度比值,进而改善急性心肌梗死后神经重构的发生。雪旺细胞移植有望提供一种全新的细胞治疗手段,具备良好的临床应用前景。
     第二部分
     年龄对心脏瓣膜种子细胞体外培养增殖的影响
     背景当前心脏瓣膜病的治疗主要是通过外科手段完成,但目前所采用的机械瓣和人造瓣膜均存在各自的局限性。有鉴于此,通过生物工程构建自体心脏瓣膜显现出了其自身优势。既往文献表明,间充质干细胞是一种可用于生物组织工程学的良好种子细胞。但是在心脏瓣膜构建中,年龄对作为种子细胞的人类间充质干细胞体外生物学特性的影响尚不明了。本研究目的在于比较不同年龄组人类间充质干细胞体外生物学特性,从而为构建自体心脏瓣膜中种子细胞的选择提供依据。
     方法人类间充质干细胞采自不同青少年、中年、老年供体。其中青年组供体为简单先心病患者,年龄在18岁以下;中年组供体为瓣膜病患者,年龄在18到40岁之间;老年组供体为瓣膜病患者,年龄在40岁以上。对三种不同来源干细胞体外增殖能力进行组间比较,BrdU法绘制生长曲线、细胞形成集落个数计数和细胞生长形态及数量表述。通过流式细胞对各组细胞表面标记物进行检测和鉴别。在三组间进行细胞分化(内皮分化,脂肪分化,成骨细胞分化)、体外释放VEGF能力和细胞迁移能力的比较。
     结果与青少年组和中年组比较,老年组分离骨髓可以成功提取出间充质干细胞,荧光显微镜下观察其生长、形态等方面与另外两组无显著差别,且流式细胞学检查表明,老年组细胞细胞表面标记物与另两组表达无显著统计学差异。在青少年组(32±3),细胞克隆数量显著高于中年组(26±5,p<0.05)和老年组(19±5,p<0.05);增殖曲线表明,青少年组和中年组细胞增殖能力显著高于老年组(p<0.05)。在干细胞定向分化能力、血管内皮生长因子释放和细胞迁移,青少年组和中年组显著高于老年组(p<0.05)。
     结论应用老年供体来源间充质干细胞进行自体组织瓣膜工程构建应采取审慎态度。
Background:Neural remodeling refers to hyperinnervation and uneven distribution of sympathetic nerve fibers around the border of infarcted myocardium.Unbalanced neural remodeling could cause fatal ventricular arrhythmia(VA) and increase mortalities but few strategies are available to suppress the sympathetic remodeling after acute myocardial infarction (MI).Schwann cells have the potential to stimulate nerve regeneration. Numerous reports demonstrated that Schwann cells exert their function through paracrine and cell contact.Moreover,Schwann cells help protein expression which is essential for basal lamina formation.Therefore,this study aims at evaluate the Schwann cells' neurogenesis abilities and explore Schwann cells' potential to balance nerve remodeling.
     Methods:Immediately after creation of MI,the rats were randomized into cell transplantation(n=80) and control groups(n=72).Schwann Cells(SCs) were obtained from sciatic nerves.The cells was cultured on tiny glass sheet and stained with SIO0 which is a surface marker of $chwann cells.Release of nerve growth factors(NGF) and vascular endothelial growth factor(VEGF) fromSchwann cells was detected by using ELISA.5×10~6 cells of second passage were intramyocardially injected into the infarcted region.Series histological and immunohistochemical studies were performed at 24 hours, 1 and 2 weeks after cell transplantation.In immunohistochemical studies, SIOO,BrdU,and CD68 staining were performed.As for immunofluorescence study,tyrosine hydroxylase(TH),acetycholinesterase enzyme(AChE),and growth associated protein 43(GAP43) staining were performed.NGF,VEGF, GAP 43,connexin 43,and laminin expression were detected by using western blot.
     Results:Comparison of S100 positive cells between control and cell transplantation group.Few cells were stained with S100 24 hours after myocardial infarction in control group,and more cells expressed both S100 and BrdU were detected in cell transplantation group.Growing number of S100 positive cells was observed in both groups with significantly more S100 positive cells in cell transplantation group.The number of transplanted BrdU positive SCs dropped sharply with elapse of time.The expressions of NGF,VEGF,GAP 43,connexin 43,laminin in myocardium were of no significant difference 24 hours after cell transplantation.But the above protein expressions in one week and two weeks were significantly higher in Schwann cell group than in control group.At 24 hours,transplanted SCs significantly attracted macrophage.But no differences of macrophage counting were noted between two groups.At 24 hours,one week,and two weeks,density of sympathetic nerves,parasympathetic nerves,and new-born nerve fibers increased in both groups,but SCs transplantation contributed to the increment of parasympathetic/sympathetic ratio at two weeks after MI.But SCs transplantation didn' t restore the damaged heart function.
     Conclusions:Transplanted SCs secreted nerve growth factor,attract macrophage,stimulate expression of laminin and connexin 43,and enhance the ratio of parasympathetic/sympathetic.SCs transplantation might be a promising cell-based antiarrhythmic therapy to balance sympathetic nerve sprouting MI.
     Background:Currently,surgical intervention is still the most important option for the treatment of heart valvular diseases.However,although frequently adopted,mechanical valves and bioprosthetic valves have their shortcomings.As a result,autologous heart valve construction catches researchers' eyeballs.Previous studies demonstrated that mesenchymal stem cells are ideal candidates to be seeded on scaffold for valve construction.But the aging effects on the in vitro biological properties of bone marrow-derived mesenchymal stem cells(BMSCs) for construction of tissue engineered heart valves are unclear yet.The aim of this study was to compare in vitro biological properties of BMSCs so as to provide theoretical basis for seed cell selection for autologous heart valve construction.
     Methods:BMSCs were taken from teenagers(younger than 18 years) with congenital heart diseases,middle(18-40 years) and elderly patients(over 40 years) with valvular diseases.Proliferative abilities were compared among the three groups by using colony-forming unit counting and growth curves(5-bromo-2'-deoxyuridine assay).The BMSCs morphology among three groups was compared as well.FACS flow cytometry was employed for phenotype analysis of BMSCs from three groups.Cell differentiation (differentiation into endothelial cells,adipose cells,and osteoblasts),in vitro release of vascular endothelial growth factor(VEGF) and migratory abilities were compared as well.
     Results:Compared with teenager group and middle age group,BMSCs can be separated successfully from bone marrow of aged group.The morphological comparison revealed no significant differences.No significant differences in terms of cell surface marker were
     Results:Compared with teenger group and middle age group,BMSCs can be separated successfully from bone marrow of aged group.The morphological comparison revealed no significant differences.No significant differences in terms of cell surface marker were noted between aged and non-aged groups by using FACS flow cytometry. Colony-forming unit counting in teenage group(32±3) was significantly greater than that in middle age group(26±5,p<0.05) and aged group(19±5,p<0.05) and significantly higher counting was observed in middle age group than in aged group (p<0.05).Growth curves presented similar trends in which cells' proliferative abilities in aged group decreased significantly(P<0.05) while no differences were noted between the two non-aged groups.The differentiation potential to endothelial cells,osteoblasts and adipocytes,VEGF release abilities and migratory abilities differed significantly between aged group and non-aged groups(p<0.05).But no differences were noted between the two non-aged groups.
     Conclusion:BMSCs from old patients with heart valve diseases could be harvested and expanded successfully.However,the proliferative and differentiation properties of aged cells,as well as migratory abilities,are significantly impaired.Therefore,construction of autologous tissue engineered valves for the old patients should be performed with cautions.
引文
1.Huikuri H,Castellanos A,Myerburg RJ.Sudden death due to cardiac arrhythmias.N Engl J Med 2001;345:1473-1482.
    2.Myerburg R,Kessler KM,Castellanos A.Sudden cardiac death:structure,function,and time-dependence of risk.Circulation.1992;85:Ⅰ-2-10.
    3.Myerburg R,Interian A Jr.,Mitrani RM,Kessler KM,Castellanos A.Frequency of sudden cardiac death and profiles of risk.Am.J Cardiol.1997;80:10-19F.
    4.Can J,Fishbein MC,Han JB,Lai WW,Lai AC,Wu TJ,Czer L,Wolf PL,Denton TA,Shintaku IP,Chen PS,Chen LS.Relationship between regional cardiac hyperinnervation and ventricular arrhythmia.Circulation.2000;101:1960-1969.
    5.David S,Aguayo AJ.Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats.Science.1981;214:931-933.
    6.Takami T,Oudega M,Bates ME,Wood PM,Kleitman N,Bunge MB.Schwann cell but not olfactory ensheathing glia transplants improve hind limb locomotor performance in the moderately contused adult rat thoracic spinal cord.J Neurosci.2002;22:6670-6681.
    7.Xu X,Guenard V,Kleitman N,Bunge MB.Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord.J Comp Neurol.1995;351:145-160.
    8.Rengo G,Lymperopoulos A,Zincarelli C,et al.Myocardial adeno-associated virus serotype 6-betaARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure.Circulation.2009;119:89-98.
    9.Zhang H,Zhu S-J,Wang W,Wei Y-J,Hu S-S.Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function.Gene Therapy.2008;15:40-48.
    10.Wan H,Zhang SD,Li JH.Action of Schwann cells implanted in cerebral hemorrhage lesion.Biomed Fnviron Sci.2007;20:47-51.
    11.Zhang H FS,Tian H,et al.Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy.Am J Physiol Heart Circ Physiol.2005;289:2089-2096.
    12.Beeres S,Zeppenfeld K,Bax JJ,et al.Electrophysiological and arrhythmogenic effects of intramyocardial bone marrow cell injection in patients with chronic ischemic heart disease.Heart Rhythm.2007;4(257-65).
    13.Myerburg R,Kessler KM,Castellanos A.Sudden cardiac death:epidemiology,transient risk,and intervention assessment.Ann Intern Med.1993;119:1187-1197.
    14.Michaels A,Goldschlager N.Risk stratification after acute myocardial infarction in the reperfusion era.Prog Cardiovasc Dis 2000;42:273-309.
    15.Zipes D,Wellens HJJ.Sudden cardiac death.Circulation.1998;98:2334-2351.
    16.Vracko R,Thorning D,Frederickson RG.Fate of nerve fibers in necrotic,healing,and healed rat myocardium.Lab Invest.1990;63:490-501.
    17.Zhou S,Chen LS,Miyauchi Y,Miyauchi M,Kar S,Kangavari S,Fishbein MC,Sharifi B,Chen PS.Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs.Circ Res.2004;95:76-83.
    18.Wang G,Hirai K,Shimada H,Taji S,Zhong SZ.Behavior of axons,Schwann cells and perineurial cells in nerve regeneration within transplanted nerve grafts:effects of anti-laminin and anti-fibronectin antisera.Brain Res.1992;583:216-226.
    19.Beuche W,Friede RL.The role of non-resident cells in Wallerian degeneration.J Neurocytol.1984:13:767-796.
    20.Jessen K,Mirsky R.Why do Schwann cells curvive in the absence of axons? Ann NY Acad Sci.1999;883:109-115.
    21.Jain S,Schuessler RB,Saffitz JE.Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning Circ Res.2003;92:1138-1144.
    22.Zhang Y KY,Ando M,Katare RG,Yamasaki F,Sugiura T,Sato T.Acetylcholine inhibits the hypoxia-induced reduction of connexin43protein in rat cardiomyocytes.J Pharmaol Sci.2006;101:214-222.
    23.Ando M,Katare RG,Kakinuma Y,Zhang D,Yamasaki F,Muramoto K,Sato T.Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein.Circulation.2005;112:164-170.
    24.Rossi J,Santam(?)ki P,Airaksinen MS,Herzig KH.Parasympathetic innervation and function of endocrine pancreas requires the glial cell line-derived factor family receptor alpha2(GFRa1pha2).Diabetes.2005;54:1324-1330.
    25.Mabe A,Hoover DB.Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice.Cardiovasc Res.2009;82:93-99.
    26.Menasche P.Skeletal muscle satellite cell transplantation.Cardiovasc Res.2003;58:351-357.
    27.Bahr M,Hopkins JM,Bunge RP.In vitro myelination of regenerating adult rat retinal ganglion cell axons by Schwann cells.Glia.1991;4:529-533.
    28.Bunge M,Pearse DD.Transplantation strategies to promote repair of the injured spinal cord.J Rehabil Res Dev.2003;40:55-62.
    1.Prockop D.Marrow stromal cells as stem cells for nonhematopoietic tissues.Science.1997;276:71-4.
    2.Vincentelli A WF,Juthier F,Fouquet O,Corseaux D,et al.In vivo autologous recellularization of a tissue-engineered heart valve:are bone marrow mesenchymal stem cells the best candidates?J Thorac Cardiovasc Surg.2007;134:424-32.
    3.Heeschen C LR,Honold J,Assmus B,Aicher A,Walter DH,et al.Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease.Circulation.2004;109:1615-22.
    4.Hou M YK,Zhang H,Zhu WQ,Duan FJ,Wang H,et al.Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats.Int J Cardiol.2007;115:220-8.
    5.Zhang H FS,Tian H,Mickle DAG,Weisel RD,Fujii T,et al.Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy.AJP-Heart.2005;289:2089-96.
    6.Hou JF ZH,Yuan Xin,Li J,Wei YJ,Hu SS.In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells:Proliferation,growth factors secretion and myogenic differentiation.Laser Surg Med.2008;40:726-33.
    7.Zhang G ZJ,Fan Q,Zheng Z,Zhang F,Liu X,et al.Arterial-venous endothelial cell fate is related to vascular endothelial growth factor and Notch status during human bone mesenchymal stem cell differentiation.FEBS lett.2008;582:2957-64.
    8.Zhang SJ ZH,Hou M,Zheng Z,Zhou J,Su W,et al.Is it possible to obtain“true endothelial progenitor cells”by in vitro culture of bone marrow mononuclear cells?Stem Cells Dev.2007;16:683-90.
    9.Pittenger MF MA,Beck SC,Jaiswal RK,Douglas R,et al.Multilineage potential of adult human mesenchymal stem cells.Science.1999;284:143-7.
    10.He G ZH,Wei H,Wang Y,Zhang X,Tang Y,et al.In vivo imaging of bone marrow mesenchymal stem cells transplanted into myocardium using magnetic resonance imaging:a novel method to trace the transplanted cells.Int J Cardiol.2007;114:4-10.
    11.Cohn L,Narayanasamy N.Aortic valve replacement in elderly patients:what are the limits?Curr Opin Cardiol.2007;22:92-5.
    12.Yeghiazaryan K BG,Schild HH,Golubnitschaja O.Prediction of degeneration of native and bioprosthetic aortic valves:issue-related particularities of diabetes mellitus.Infect Disord Drug Targets.2008;8:88-99.
    13.Gerber H,Malik AK,Solar GP,Sherman D,Liang XH,Meng G,et al.VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism.Nature.2002;417:954-8.
    14.Sutherland F,Perry TE,Yu Y,Sherwood MC,Rabkin E,Masuda Y,et al.From stem cells to viable autologous semilunar heart valve.Circulation.2005;111:2783-91.
    15.Chamberlain G,Fox J,Ashton B,Middleton J.Concise review:mesenchymal stem cells:their phenotype,differentiation capacity,immunological features,and potential for homing.Stem cells.2007;25:2739-49.
    1.Jessen KR,M irsky R.Embryonic Schwann cells development:the biology of Schwann cells precursors and early Schwann cells.J Anat,1997,191(4):501
    2.Alfred Berger,Franz Lassner:peripheral nerve allografts:survey of present state in an experimental model of the rat Microsurgery 199415:773-777
    3.甘恩德,范明.神经退变和再生的构筑变化.中国应用生理学杂志,1993,9(4):322
    4.Kunjoe T,Hirohito,FT,Akira T,et al.Basic behavior of migritory Schwann cells in peripheral nerve regeneration.Exp Neuro,1996,137:301
    5.Murray MR.et al.Characteristics of human Schwann Cells in Vitro Anat.Rec,1942,84:275
    6.Porter S,Glaser C,Bunge RP.Release of autodocrine growth factor by primary and immortalized Schwann cells.Proc Nat1 Acad Sci USA,1987,84:7768-7772
    7.杨柳,邓传宗,顾晓松等.雪旺氏细胞体外培养方法研究.交通医学,2000,14(1):46-47
    8.朱家铠主编.周围神经外科进展.广东高等教育出版社,1991:258-270
    9.王玉江.雪旺氏细胞与神经再生的研究进展.神经解剖学杂志,1992,8(2):163-169
    10.Baron-Van Eercoonren A,Gansmuller A,Clerin E,et al.Hoechest33342 a suitable fluorescent maker for Schwann cells after transplantation in the mouse spinal cord.Neurosci Lett,1991,131:241-244
    11.严恒林,沈馨亚.雪旺氏细胞与中枢神经再生.细胞生物学杂志,1995,17(2):49-53
    12.Scarpini E.Establishment of Schwanncells culture from adult rat peripheral neres Exp.neurol,1988,102:167
    13.Flelds KL.Et al.Schwann cells cultured from adult rats contain a cytoskeletal protein related to astrocyte filaments.Dev.Brain,Res,1985:120:259
    14.Krecder BQ.Stimulation of cultured rat Schwann cell isolated by differential adhension.Brain Res,1982:237-238
    15.Oda Y.et al.A simple method for the Schwann cell preparation from newborn rat sciatic nerves.J.Neurosci.Methods,1989,28:163
    16.张自杰,朱家铠.雪旺氏细胞的分离培养鉴定和种植.中华显微外科杂志,1990,13(1):47
    17.Lim R.et al.Purification of rat Schwann cells from cultures of peripheral nerves:an immunoselective method using surface coated with antiimmunoglobin antibodies.Brain.Res,1983,277:389
    18.Wrathall JR.et al.Nonneuronal cell cultures from dorsal root ganglia of the adult cat:Production of Schwann-like cell lines.Brain Res.1981,299:163
    19.张自杰,朱家铠.雪旺氏细胞的分离培养鉴定和种植.中华显微外科杂志,1990,13(1):47
    20.Baron-Van EA:Fibronectin promotes rat Schwann cell growth and motility.J.Cell.Biol,1982,93:211-216
    21.McGarvey ML,et al.Synthesis and effects of basement membrane components in cultured rat Schwann cells.Devl.Biol,1984,105:18-28
    22.Sobue.G,et al.Schwann cell galactocerebroside induced by derivatives of adenosine 3',5' -monophophate.Science,1984,234:72
    23.Sobue G.et al.Axolemma is a mitogen for human Schwann cell.Ann,Neurol,1984,15:449
    24.Sobue G.et al.Specific and potent mitogenic efect of axolemmal fraction on Schwann cells from rat Sciatic nerves in Serum-containiny and defined media.Brain Res,1983,280:263
    25.Mason.Pw.et al.Cerebellar granule cells contain a membrane mitogen for cultured Schwann cells.J.Cell.Biol,1989,108:607
    26.Krecder BQ.Stimulation of cultured rat Schwann cell isolated by differential adhension.Brain.Res,1981,207:433
    27.Brockes JD.et al.Studies on cultured rat Scjhwann cells I:Estabolishment of purified populations from cultures of peripheral nerves.Brain.Res,1979,160:105
    28.Wrathall JR.et al.Nonneuronal cell cultues from dorsal root ganglia of the adult cat:Production of Schwann-like cell lines.Brain.Res,1981,299:163
    29.Armatic PJ.A new medium for in vitro perpheral nervous tissue mylination without the use of antimitotics.J.Neurosci.Methods,1989,28:1263
    30.Dereuck J,Decoo D,Vanderdoncke P,et al.A double-blind study of neurotropin in patients with acute ischemic stroke.Acta Neurol Scand,1994,89:329-334
    31.程飚,陈峥嵘,汪洋等.神经妥乐平促进雪旺细胞体外增殖作用的研究.中华手外科杂志,2002,18(1):49-51
    32.宋涛,佟晓杰.雪旺细胞与周围神经再生.解剖科学进展,2000,6(1):27-30
    33.Saika T,Senba E,Noguchi I,et al.Effects of nerve crush and transection on mRNA levels for nerve growth factor in the facial motoneurons.Molec Brain Res,1991,9:157
    34.Gavazzi I,Cowen T.Can the neurotrophic hypothesis explain degeneration and loss of plasticity in the mature and aging autonomic nerves.J Auto Nerv Syst,1996,58(1-2):1
    35.Schicho R,Skofitsh G,Donnerer J.Regeneration effect of human reconbinant NGF on capsaicin lesioned sensory neurons in the adult rat.Brain Res,1999,815(1):60
    36.Brawn S,Criozat B,Lagrange MC,et al.Neurotrophins increase motoneuron' s ability to innerate skeletal muscle fibers in rat spinal cord human muscle co-culture.J neurobiol Sci,1996,136:17
    37.Meyer M,Matsuoka I,Wetmore C,et al.Enhanced synthesis of brain neurotrophic factor in lesioned peripheral nerve:different mechanism are responsible for the regulation of BDNF and NGFmRNA.J Cell Biol,1992,119:45
    38.Utley DS,Lwein SL,Cheng ET,et al.Brain derived neurotrophic factor and collegen tubulization enhance punction recovery after peripheral nerve transection and repair.Arch Otolaryngol Head Neck Surg,1996,122:407
    39.Novikov L,Novikova L,Keverth J.Brain derived neurotrophic factor promote axonal regeneration long term survival of adult rat spinal nononeurons in vivo.Neurosci,1999,79(3):765
    40.Patrick C,Gary RL,Martink,et al.A role for brain derived heurotrophic factor in mechano sensation.Nature Neurosci,1998,1(1):42
    41.Hiroshi F,Friqen J.Differential expression of mRNA for neurotrophins and their receptors after axotomy of the sciatic nerve.J Cell Biol,1993,123:455
    42.Kuffler DP.Promoting and directiong axon autogrowth.Mol Neurobiol,1994,9:233
    43.Lwein GR,Barde YA.Physiology of the neurotrophin.Ann Rev Neurosci,1996,19:289
    44.Sterne GD,Lowlton GR,Brown RA,et al.NT-3 enhance nerve regeneration selectively improve recovery of muscle fiber expressing myosin heavy chain.J Cell Biol,1997,169:709
    45.Rudoff G,Reinhard K,Christoph W,et al.Neurotriphin-6 is a new member of NGF family.Nature,1994,372:266
    46.Magal E,Burnham P,Varson S.Effect of ciliary neurotrophic factor on rat spinal cord neurons in vivo:survival and expressing of choline acetyltransferase and low affinity NGF.Devlop Brain Res,1991,63:141
    47.Ronald WO,David P,Yin Qin-wei et al.Control of embryonic motoneuron survival in vivo by ciliary neurotrophic factor.Science,1991,251:1616
    48.Newman Jp,Verity AN,Hawatesh S,et al.Ciliary neurotrophic factor enhance peripheral nerve regeneration.Arch Otolaryngol head Neck Surg,1996,122:399
    49.Richard DP,Jefrey S,Michelle MY,et al.Intarthecal ciliary neurotrophic factor delivery for treatment of amyotrophic lateral sclerosis.Neurosurg,1997,40:94
    50.Hammcerberg H,Piehl F,Cullheim S,et al.GDNF mRNA in Schwann cells and DRG satellite cell after chronic sciatic nerve injury.Neuroreport,1996,22:857
    51.Ronald WO,Lucien J,James E,et al.Developing motor neurons rescued from progremmed and axotomy-induce cell death by glial cell line-derived neurotrophic factor.Nature,1995,373:344
    52.Groth C,Meisinger C,Hertenstein A,et al.Expression of FGF-2 and FGFR-1mRNA in Spinal ganglial and sciatic nerve regeneration after peripheral lesion.Neurosci,1996,76:123
    53.王非,翁龙江,李主一.碱性成纤维细胞生长因子促进神经再生的研究进展.中华显微外科,1999,22(1):76
    54.Kuffler DP.Promoting and directing axon autogrowth.Mol Neurobiol,1994,9:233
    55.王国英,平井圭一,钟世镇,等.雪旺细胞基底膜成分—LN在神经再生的作用探讨.中国临床解剖学杂志,1992,10:200-207
    56.Bruce LP,Jeffrey H,Miner,AY.Distribution and function of LN the neuromusclar system of developing adult and mutant mice,J Cell Biol,1997,139:1507
    57.Tonge DA,Golding,JP,Edbladh M,et al.Effect of excellular matrix on axonal autogrowth from peripheral nerve of adult animal in vitro.Exp Neuro,1997,146:81
    58.QiZhi Gong,Michael T.Expression of excellular matrix and cell surface molecules in the olfactory nerve pathway during early development.J Comp Neuro,1996,366:1
    59.Martin R.Formation and main tenance of myelin sheath in the peripheral nerve:the roles cell adhsion molecules and gap junction connexin 32.Microsci Res Tech,1998,4(15):403
    60.Mari D,Toshio N.Immunohistochemical location of cell adhesion molecules and cell-cell contact protein during regeneration of the rat optic nerve induced by sciatic nerve autotranplation.Anat Rec,1996,246:114
    61.Chandross KJ,John A,Kesseler RJ,et al.Altered connexin expressin after peripheral nerve injure.Molec Cell Neurosci,1996,7(6):501
    62.Chandross KJ.Nerve injure and inflammatory cytokines modulate gap in the peripheral nerve system.Glia,1998,24(1):21
    63.Bergoffen J,Scherer SS.Connexin mutation in x-Charcot marine Tooth disease.Science,1993,262(24):2039
    64.Dezama m,Mutou T,Dezawa A,et al.Putative gap junctional communication bewteen axon and regenerationg Schwann cell during mammalian peipheral nerve regeneration.Neurosci,1998,85(3):663
    65.Dezama M,Tohru M,Akira D,et al.Tight junction between the axon and Schwann cell during peripheral nerve system regeneration.Neuroreport,1996,7(11):1829
    66.Bryan DJ,Wang KK,Chakalis-Haley DP.Effect of Schwann cells in the enhancement of peripheral-nerve regeneration.J Reconstr Microsurg,1996,12(7):439
    67.Gulati AK.Immunological fate of Schwann cell-populated acelluar basal lamina nerve allografts.Transplantation,1995;59(11):1168
    68.吴德升,赵定麟,何北平,等.修复神经缺损的组织工程研究.生物医学工程杂志,1997:14(2):108
    69.Brown RE,Erdmann D,Lyons SF,et al.The use of cultured Schwann cells in nverve repair in a rabbit hind-limb model.J Reconstr Microsurg,1996;12(3):149
    70.Levi AD,Guenard V,Aebischer P,et al.The functional characteristics of Schwann cells cultured from human peripheal nerve after transplantation into a gap within the rat sciatic nerve.J Neurosci,1994;14(3-1):1309
    71.黎志明,朱家恺,程钢,等.模拟微重力对 Sc 细胞三维培养影响的初步探讨.现代临床医学生物工程杂志,2000:6(4):255-258
    72.Aebischer P.Guenard V,Winn S,et al.Blind-ended semipermeable guidance channels support peripheral nerve regeneration in the absence of a distal nerve stump.Brain Res,1988;454:179-187
    1.Randall WC,Ardell JL:Selective parasympathectomy of automatic and conductile tissues of the canine heart.Am J Physiol 1985;248(Heart Circ Physiol 17):H61-H68.
    2.Randall WC,Armour JA,Geist WP,Lippincott DB:Regional cardiac distribution of the sympathetic nerves.Fed Proc 1972;31:1199-1208.
    3.Randall WC,Armour JA:Regional vagosympathetic control of the heart.Am J Physiol 1974;227:444-452
    4.Yanowitz F,Preston JB,Abildskov JA:Functional distribution of right and left stellate innervation of the ventricles.Circ Res 1966;18:416-428
    5.Kralios FA,Martin L,Burgess MJ,Millar K:Local ventricular repolarization changes due to sympathetic nerve branch stimulation.Am Physiol 1975;28:1621-1626
    6.Dahlstrom A,Fuxe F,Mya-Tu M,Zetterstrom BEM:Observations on adrenergic innervation of the dog heart.Am J Physiol 1965;209:689-692
    7.Martins JB,Zipes DP:Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle.Circ Res 1980;46:100-110
    8.Ferdinandy,P.,Csont,T.,Csonka,C,Torok,M.,Dux,M.,Nemeth,J.,Horvath,L.I.,Dux,L.,Szilvassy,Z.,and Jancso,G.Capsaicin-sensitive local sensory innervation is involved in pacing-induced preconditioning in rat hearts:role of nitric oxide and CGRP?Naunyn Schmiedebergs Arch.Pharmacol.1997;356,356-363
    9.Csont,T.,Csonka,C,Kovacs,P.,Jancso,G,and Ferdinandy,P.Capsaicin-sensitive sensory neurons regulate myocardial nitric oxide and cGMP signaling.Eur.J. Pharmacol.2003;476,107-113
    10.Smith FM.Extrinsic inputs to intrinsic neurons in the porcine heart in vitro.Am J Physiol Regulatory Integrative Comp Physiol 1999;276;455-467.
    11.Smith FM et al.Chronic decentralization of the heart differentially remodels canine intrinsic cardiac neuron muscarinic receptors.Am J Physiol Regulatory Integrative Comp Physiol 2001;281;1919-1930.
    12.Arora RC et al.Function of human intrinsic cardiac neurons in situ.Am J Physiol Regulatroy Integrative comp Physiol 2001;280;1736-1740.
    13.Sleight P:A cardiovascular depressor reflex from the epicardium of the left ventricle in the dog.J Physiol(Lond) 1964;173:321-343
    14.Malliani A,Schwartz PJ,Zanchetti A:Sympathetic reflex elicited by experimental coronary occlusion.Am J Physiol 1969;217:703-709
    15.Webb SW,Adgey AAJ,Pantridge JF:Autonomic disturbance at onset of acute myocardial ischemia.Br Med J 1972;3:89-92
    16.Inoue H,Zipes DP:Increased afferent vagal responses produced by epicardial application of nicotine on the canine posterior left ventricle.Am Heart J 1987;114:757-764
    17.Thames MD,Minisi AJ:Reflex responses to myocardial ischemia and reperfusion:Role of prostaglandins.Circulation 1989;80:1878-1885
    18.Inoue H,Skale BT,Zipes DP:Effects of myocardial ischemia and infarction on cardiac afferent sympathetic and vagal reflexes in the dog.Am J Physiol 1988;255(Heart Circ Physiol 24):H26-H35
    19.Hingtgen L,Horn M,Martins JB:Transient depression of refractory period responses to sympathetic nerve stimulation in the epicardial rim overlying subendocardial infarction(abstract).PACE 1989;12:639
    20.Inoue H,Zipes DP:Time course of denervation of efferent sympathetic and vagal nerves after occlusion of the coronary artery in the canine heart.Circ Res 1988;62:1111-1120
    21.Stanton MS,Tuli MM,Radtke NL,Heger JL,Miles WM,Mock BH,Burt RW,Wellman HN,Zipes DP.Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine.J Am Coll Cardiol.1989;14:1519-1526.
    22.Barber MJ,Mueller TM,Henry DP,Felten SY,Zipes DP.Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted.myocardium.Circulation.1983;67:787-796.
    23.Elvan A,Zipes DP.Right ventricular infarction causes heterogeneous autonomic denervation of the viable peri-infarct area.Circulation 1998;97;484-492.
    24.Schmid PG,Greif BJ,Lund DD,Roskoski R Jr:Tyrosine hydroxylase and choline acetyltransferase activities in ischemic canine heart.Am J Physiol 1982;243:H788-H795
    25.Cannon WB:A law of denervation.Am J Med 1939;198:737-750
    26.Vatner DE,Lavallee M,Amano J:Mechanisms of supersensitivity to sympathomimetic amines in the chronically denervated heart of the conscious dog.Circ Res 1985;57:55-64
    27.Kammerling JJ,Green FJ,Watanabe AM,Inoue H,Barber MJ,Henry DP,Zipes DP: Denervation supersensitivity of refractoriness in noninfarcted areas apical to transmural myocardial infarction.Circulation 1987;76:383-393
    28.Nabil EG,Campbell S,Barry J,Rocco MB,Selwyn AP:Asymptomatic ischemia in patients with coronary artery disease.JAMA 1987;257:1923-1928
    29.Ambepityia G,Kopelman PG,Ingram D,Swah M,Mills PG,Timmis AD:Exertional myocardial ischemia in diabetes:A quantitative analysis of anginal perceptual threshold and the influence of autonomic function.J Am Coll Cardiol 1990;15:72-77
    30.Arora RC,Ardell JL,and Armour JA.Cardiac denervation and cardiac function.Curr Sci 2:188-195,2000.
    31.Mukouyama YS,Shin D,Britsch S et al.Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin.Cell 2002;109;693-705.
    32.Sondell M et al.Vascular endothelial growth factor stimulates Schwann cell invasion and neovascularization of acellular nerve grafts.Brain Research 1999;846;219-228.
    33.胡军等。体外诱导猕猴骨髓基质干细胞向雪旺细胞分化。中华创伤骨科杂志2004;6(5);538-541
    34.Stramba-Badiale M,Lazzarotti M,Schwartz PJ.Postnatal development of cardiac innervation and susceptibility to malignant arrhythmias in the dog.J Auton Nerv Syst.1990;30(suppl 1):S153-S154.
    35.Gill J,Hunter G,Gane J,Ward D,Camm A.Asymmetry of cardiac 123I meta-iodobenzylguanidine scans in patients with ventricular tachycardia and a 'clinically normal' heart.Br Heart J.1993;69:6-13.
    1.Muller J,Ludmer PL,Willich SN,Tofler GH,Aylmer G,Klangos I,Stone PH.Circadian variation in the frequency of sudden cardiac death.Circulation.1987;75:131-138.
    2.The Norwegian Multicenter Study Group:Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction.N Engl J Med.1981;304:801-807.
    3.Guth L.Regeneration n the mammalian peripheral nervous system.Physiol Rev.1956;36:441-478.
    4.Vracko R,Thorning D,Frederickson RG.Fate of nerve fibers in necrotic,healing,and healed rat myocardium.Lab Invest.1990;63:490-501.
    5.Vracko R,Thorning D,Frederickson RG.Nerve fibers in human myocardial scars.Hum Pathol.1991;22:138-146.
    6.Cao J-M,Fishbein MC,Han JB,Lai WW,Lai AC,Wu T-J,Czer L,Wolf PL,Denton TA,Shintaku IP,Chen P-S,Chen LS.Relationship between regional cardiac hyperinnervation and ventricular arrhythmia.Circulation.2000;101:1960-1969.
    7.Cao J-M,Chen LS,Kenknight BH,Ohara T,Lee M-H,Tsai J,Lai WW,Karagueuzian HS,Wolf PL,Fishbein MC,Chen P-S.Nerve sprouting and sudden cardiac death.Circ Res.2000;86:816-821.
    8.Swissa M,Zhou S,Gonzalez-Gomez I,Chang C-M,Lai AC,Cates A,Fishbein MC,Karaguerzian HS,Chen P-S,Chen LS.Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death.J Am Coll Cardiol.2004;43:858-864.
    9.Swissa M,Zhou S,Paz O,Fishbein MC,Chen LS,Chen P-S.A canine model of paroxymal atrial fibrillation and paroxysmal atrial tachycardia.Am J Physiol Heart Circ Physiol.2005;289:H1851-H1857.
    10.Hamabe A,Chang C-M,Zhou S,Miyauchi Yokuyama Y,Fishbein MC,Karagueuzian HS,Chen LS,Chen P-S.Induction of atrial fibrillation and nerve sprouting by prolonged left atrial pacing in dogs.Pacing Clin electrophysiol.2003;26:2247-2252.
    11.Chang C-M,Wu T-J,Zhou S-M,Doshi RN,Lee M-H,Ohara T,Fishbein MC,Karagueuzian HS,Chen P-S,Chen LS.Nerve sprouting and sympathetic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing.Circulation.2001;103:22-25.
    12.Cha Y,Redfield MM,Shah S,Shen WK,Fishbein MC,Chen PS.Effects of omapatrilat on cardiac nerve sproutin and structural remodeling in experimental congestive heart failure.Heart Rhythm.2005;2:984-990.
    13.Issa Z,Rosenberger J,Groh WJ,Miller JM,Zipes DP.Ischemic ventricular arrhythmias during heart failure:a canine model to replicate clinical events.Heart Rhythm.2005;2:979-983.
    14.killingsworth C,Walcott GP,gamblin TL,Girouard SD,Smith WM,Ideker RE.Chronic myocardial infarction is a substrate for bradycardia-induced spontaneous tachyarrhythmias and sudden death in conscious animal.J Cardiovasc Electrophysiol.2006;17:189-197.
    15.Zhou S,Chen LS,Miyauchi Y,MiYauchi M,Kar S,Kangavari S,Fishbein MC,Sharifi B,Chen PS.Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs.Circ Res.2004;95:76-83.
    16.meiri KF PK,Willard MB.Growth-associated protein,GAP-43,a polypeptide that is induced when neurons extend axons,is a component of growth cones and corresponds to pp46,a major polypeptide of a subcellular fraction enriched in growth cones.Proc Natl Acad Sci USA.1986;83:3537-3541.
    17.Oh Y-S,Jong AY,Kim DT,Li H,Wang C,Zemljic-Harpf A,Ross RS,Fishbein MC,Chen PS,Chen LS.Spatial distribution of nerve sprouting after myocardial infarction in mice.Heart Rhythm.2006;3:728-736.
    18.Ginty D,Segal RA.Retrograde neurotrophin signaling.Curr Opin neurobiol.2002;12:268-274.
    19.kirn DT;D,Lai AC,Suh G,Czer L,Chen LS,Chen PS,Fishbein MC.Sympathetic nerve sprouting after orthotopic heart trasnplantation.J Heart Lung Transplant.2004;23:1349-1358.
    20.Anversa P,Leri A,Kajstura J.Cardiac regeneration.J Am Coll Cardiol.2006;47:1769-1776.
    21.Forrester J,Price MJ,Makkar RR.Stem cell repair of infarcted myocardium:an overview for clinicians.Circulation.2003;108:1139-1145.
    22.Menasche P HA,Vilquin JT,Desnos M,Abergel E,Pouzet B.Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction.J Am Coll Cardiol.2003;41:1078-1083.
    23.Smits PC vGR,Poldermans D,Bountioukos M,Onderwater EE,Lee CH.2003.
    24.Pagani FD DH,Zawadzka A,Wetzel K,edge AS,Jacoby DB.Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans.Histological analysis of cell survival and differentiation.J Am Coll Cardiol.2003;41:879-888.
    25.Siminiak T FD,Jerzykowska O,Grygielska B,Rozwadowska N,Kalmucki P.Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment:the POZNAN trial.Eur Heart J.2005;26:1188-1195.
    26.Dib N MR,Pagani FD,Wrigt S,Kereiakes DJ,Lengerich R.Safety and feasibility of autologous myoblast transplantation n patients with ischemic cardiomyopathy:four-year follow-up.Circulation.2005;112:1748-1755.
    27.Toma C PM,Cahill KS,Byrne BJ,Kessler PD.Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart.Circulation.2002;105:93-98.
    28.Toma C,Pittenger MF,Cahill KS,Byrne BJ,Kessler PD.Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart.Circulation.2002;105(1):93-98.
    29.Chen SL,Fang WW,Ye F,Liu YH,Qian J,Shan SJ,Zhang JJ,Chunhua RZ,Liao LM,Lin S,Sun JP.Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction.Am J Cardiol.2004;94(1):92-95.
    30.Katritsis DG,Sotiropoulou PA,Karvouni E,Karabinos I,Korovesis S,Perez SA,Voridis EM,Papamichail M.Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium.Catheter Cardiovasc Interv.2005;65(3):321-329.
    31.Price MJ,Chou CC,Frantzen M,Miyamoto T,Kar S,Lee S,Shah PK,Martin BJ,Lill M,Forrester JS,Chen PS,Makkar RR.Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties.Int J Cardiol.2006;111(2):231-239.
    32.Zhang YM,Hartzell C,Narlow M,Dudley SC,Jr.Stem cell-derived cardiomyocytes demonstrate arrhythmic potential.Circulation.2002;106(10):1294-1299.
    33.Pak HN QM,Kim DT,Hamabe A,Miyauchi Y,Lill MC.Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a swine model of myocardial infarction.J Cardiovasc Electrophysiol.2003;14:841-848.
    34.Valiunas V,Doronin S,Valiuniene L,Potapova I,Zuckerman J,Walcott B,Robinson RB,Rosen MR,Brink PR,Cohen IS.Human mesenchymal stem cells make cardiac connexins and form functional gap junctions.J Physiol.2004;555(Pt 3):617-626.
    35.Beeres SL,Atsma DE,van der Laarse A,Pijnappels DA,van Tuyn J,Fibbe WE,de Vries AA,Ypey DL,van der Wall EE,Schalij MJ.Human adult bone marrow mesenchymal stem cells repair experimental conduction block in rat cardiomyocyte cultures.J Am Coll Cardiol.2005;46(10):1943-1952.
    36.Dolnikov K,Shilkrut M,Zeevi-Levin N,Danon A,Gerecht-Nir S,Itskovitz-Eldor J,Binah O.Functional properties of human embryonic stem cell-derived cardiomyocytes.Ann N Y Acad Sci.2005;1047:66-75.
    37.Dolnikov K,Shilkrut M,Zeevi-Levin N,Gerecht-Nir S,Amit M,Danon A,Itskovitz-Eldor J,Binah O.Functional properties of human embryonic stem cell-derived cardiomyocytes:intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction.Stem Cells.2006;24(2):236-245.
    38.Liu YP,Dovzhenko OV,Garthwaite MA,Dambaeva SV,Durning M,Pollastrini LM,Golos TG.Maintenance of pluripotency in human embryonic stem cells stably over-expressing enhanced green fluorescent protein.Stem Cells Dev.2004;13(6):636-645.
    39.Hodgson DM,Behfar A,Zingman LV,Kane GC,Perez-Terzic C,Alekseev AE,Puceat M,Terzic A.Stable benefit of embryonic stem cell therapy in myocardial infarction.Am J Physiol Heart Circ Physiol.2004;287(2):H471-479.
    40.Kofidis T,de Bruin JL,Yamane T,Tanaka M,Lebl DR,Swijnenburg RJ,Weissman IL,Robbins RC.Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury.Circulation.2005;111(19):2486-2493.
    41.Xue T,Cho HC,Akar FG,Tsang SY,Jones SP,Marban E,Tomaselli GF,Li RA.Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes:insights into the development of cell-based pacemakers.Circulation.2005;111(1):11-20.
    42.Behfar A,Perez-Terzic C,Faustino RS,Arrell DK,Hodgson DM,Yamada S,Puceat M,Niederlander N,Alekseev AE,Zingman LV,Terzic A.Cardiopoietic programming of embryonic stem cells for tumor-free heart repair.J Exp Med.2007;204(2):405-420.
    43.Kehat I,Khimovich L,Caspi O,Gepstein A,Shofti R,Arbel G,Huber I,Satin J,Itskovitz-Eldor J,Gepstein L.Electromechanical integration of cardiomyocytes derived from human embryonic stem cells.Nat Biotechnol.2004;22(10):1282-1289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700