用户名: 密码: 验证码:
新型复合氧化物纳米结构的制备及其在可见光催化和吸附中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,环境污染日趋严重,已成为一个直接威胁人类生存,亟需解决的焦点问题。其中,有机染料因其结构复杂、毒性大、对环境污染重及难降解等特性,已成为环境治理中的一个难点。传统的吸附技术和近年来发展的光催化技术都是目前处理有机染料污染问题的重要手段,已成为环境保护、化学合成和新材料等领域的研究热点。本论文利用和发展了液相化学合成的方法,得到了新型复合氧化物纳米结构的吸附剂(ZnV_2O_4)和可见光催化剂(CHBiO_3, Bi_2WO_6, PtCl4/Bi_2WO_6, Bi_(3.64)Mo_(0.36)O_(6.55), C/Bi_(3.64)Mo_(0.36)O_(6.55)),并系统的研究了它们在有机染料处理方面的应用。本论文的主要内容归纳如下:
     1.作者利用一种简单有效的溶剂热法一步合成了高产量的ZnV_2O_4空心球。该合成方法简单易操作、可重复,避免了传统模板法的繁琐合成过程。并对空心球的生成机理进行了研究,提出了自生成的花状中间产物支撑下还原-溶解-聚集的生成过程。通过氮气吸附-脱附测试分析空心球结构ZnV_2O_4的比表面积为105.1 m~2/g,总的孔体积为0.1563 cm~3/g。利用空心球结构ZnV_2O_4较大的比表面积和多孔特性,将所得ZnV_2O_4空球对有机染料亚甲基蓝(MB)进行吸附,结果发现ZnV_2O_4对MB具有很好的吸附效果,能在40min内基本都达到吸附平衡,说明该吸附剂具有很高的吸附速率。并且发现ZnV_2O_4吸附剂对低浓度的MB溶液吸附达到平衡的时间要比对高浓度的MB溶液吸附达到平衡的时间短。在吸附剂浓度一定时,染料的去除效率是随着染料初始浓度的下降而增加的。此外,研究了ZnV_2O_4对有机染料MB的吸附动力学和吸附等温线,结果表明,ZnV_2O_4对MB的吸附都符合准二级动力学方程。吸附等温线用Langmuir和Freundlich等温方程对其实验数值进行拟和,结果发现Freundlich方程的拟和结果更接近实验数值。
     2.基于对甲酸氧铋晶体结构的分析,首先预测了甲酸氧铋应该具有光催化性质的可能。于是通过简单经济的液相化学合成方法,在没有添加任何的表面活性剂和模板的条件下成功合成了三维花状结构的甲酸氧铋,并对其反应过程和生长机理进行了分析。认为这种花状结构的形成与甲酸氧铋自身的层状结构有关,层与层之间的相互作用相对比较微弱,而在(001)面内原子间的相互作用比较强,导致甲酸氧铋容易长成二维片状结构,在降低系统表面能的驱动下,这些片状结构自组装成最终的花状甲酸氧铋。通过对罗丹明B(RhB)溶液的降解作用,评价了制备的三维花状结构甲酸氧铋的光催化性质,发现合成的三维花状结构甲酸氧铋对RhB溶液具有显著的降解效果,能在60分钟内完全降解RhB溶液。因此这种花状结构的甲酸氧铋具有优越的光催化性能,有望在环境污染治理中得到应用,同时也验证了之前的预测。
     3.采用水热法一步得到花状等级制结构Bi_2WO_6材料,通过考察反应时间、醋酸的加入量、硝酸的加入等对反应的影响,提出了花状等级制结构Bi_2WO_6的形成机理。认为这种花状等级制结构的形成经过了非晶颗粒聚集成微米球,由于Bi_2WO_6自身层状结构特点导致组成微米球的非晶颗粒溶解重结晶形成片状结构Bi_2WO_6,同时这些纳米片在醋酸羧基的作用下以及羧基之间形成的氢键作用下紧密排列形成花状等级制结构。由于花状等级制结构Bi_2WO_6特殊的形貌和层状结构,在光催化领域具有潜在的应用价值。因此对得到的花状等级制结构Bi_2WO_6光催化降解RhB进行了研究,结果表明这种花状等级制结构的Bi_2WO_6对RhB具有显著的降解效果,能在60分钟内完全降解RhB,比商业TiO_2(P25)和Bi_2WO_6块材降解RhB性质优越。并对降解RhB的过程进行了分析,认为Bi_2WO_6光降解RhB的过程分为两个过程:催化降解过程和RhB的敏化降解过程,这两个过程同时进行,但主要以Bi_2WO_6光催化降解RhB过程为主。
     4.通过对铋基光催化剂表面的修饰作用,进一步提高了铋基光催化剂的可见光催化性质。其中以PtCl4修饰对Bi_2WO_6光催化剂以及碳修饰对Bi_(3.64)Mo_(0.36)O_(6.55)颗粒光催化性质的影响为研究对象,分析了这两种修饰对光催化剂性能提高的原因和机理。(1)通过将氯铂酸溶液与花状等级制结构Bi_2WO_6充分接触,煅烧得到PtCl4/Bi_2WO_6复合光催化剂。并且该处理过程对Bi_2WO_6的形貌和晶体结构都没有产生明显的影响,PtCl4的修饰能显著提高Bi_2WO_6在可见光区的光吸收性能,并且使Bi_2WO_6的光学吸收边发生了红移。对掺杂不同PtCl4量的Bi_2WO_6样品光催化性质进行了系统的研究,发现PtCl4的修饰显著提高了Bi_2WO_6样品的光催化性能,并且PtCl4存在最佳修饰量。PtCl4/Bi_2WO_6样品光催化性质的提高可以归纳为两个方面的原因:一方面是PtCl4的修饰增强了Bi_2WO_6样品对可见光的吸收性能;另一方面是PtCl4的修饰在Bi_2WO_6样品表面提高了电荷的转移效率和抑制了电子-空穴的再结合。(2)利用微波辐射法合成了Bi_(3.64)Mo_(0.36)O_(6.55) (BMO)八面体颗粒,通过葡萄糖水热碳化修饰在BMO表面,再于280°C高温下煅烧使残余的有机物进一步碳化,从而得到了碳修饰的BMO样品。对修饰前后BMO样品的形貌、晶体结构以及光学性质进行了测试,得出碳的修饰对BMO样品的形貌和晶体结构没有发生明显的影响,但显著提高了BMO样品在可见光区的光吸收性质。通过对不同碳修饰量的BMO样品进行光催化性能测试发现碳的修饰也存在一个最佳值。并分析了碳修饰的BMO样品光催化性质提高的原因是碳在染料的吸附作用方面、碳在载流子的迁移速率影响方面以及碳在光催化剂对可见光的吸收这三方面协同作用的结果。
Nowadays, environmental problems have become a global concern because of their impact on public health. Among them, organic dyes removal has recently attracted considerable attention because of their complex structure, poor biodegradability, and long-term environmental toxicity. Various methods have been developed to remove organic dyes from aqueous environment, while the adsorption technique and photocatalytic degradation of organic dyes have been extensively considered as effective methods. Furthermore, the preparing methods and property investigations for the adsorbents and photocatalysts are of much significance in the chemical synthesis, new materials and environmental protection areas. In this dissertation, a series of new bismuth based photocatalysts (CHBiO_3, Bi_2WO_6, PtCl4/Bi_2WO_6, Bi_(3.64)Mo_(0.36)O_(6.55), C/Bi_(3.64)Mo_(0.36)O_(6.55)) and adsorbent (ZnV_2O_4) were obtained through the developed solution-based chemical synthesized methods. Besides, their applications in organic dye removal were also systematically studied. The details are summarized briefly as follows:
     1. Hollow ZnV_2O_4 spheres aggregated by small nanoparticles were successfully synthesized through a facile one-pot template-free solvothermal method. The formation of ZnV_2O_4 hollow spheres was based on a flowerlike intermediate product supported reduction-dissolution-aggregation process at the expense of consumption of all the flowerlike intermediate products. The obtained ZnV_2O_4 hollow spheres exhibited Brunauer-Emmett-Teller (BET) specific surface areas of 105.1 m~2/g and total pore volume of 0.1563 cm~3/g. Their novel structures resulted in a high surface to bulk ratio and a large surface area, contributing to high adsorption capacities and faster adsorption rates. In fact, they showed a good adsorption capacity of MB organic dye, and a faste adsorption rate within 40 min, which might be attributed to their special structural feature with large surface area. The adsorption kinetics and isotherm of MB on ZnV_2O_4 hollow spheres were also studied.
     2. By virtue of structural understanding, bismuth oxide formate (CHBiO_3) was first put forward to be a novel photocatalyst candidate. 3D flowerlike architectures have been successfully synthesized through a facile and economical route, which was free from any surfactant and template. Besides, the formation mechanism of the CHBiO_3 flowerlike architectures was also discussed. It was believed that the formation of the flowerlike CHBiO_3 was related to its crystal structure. There was a weak nonbonding interlayer vander Waals interaction along the c axis and strong intralayer bonding in the (001) plane. Therefore, it tended to form layered structures, e.g. flakes or platelets with a high aspect ratio. Then, the flowelike CHBiO_3 was formed by self-assembly of the nanoplate in order to decrease the surface energy. From the results of photocatalytic tests, the synthesized CHBiO_3 architectures exhibited excellent photocatalytic activity for rhodamine-B (RhB) degradation under the simulated solar light irradiation. Therefore, this novel 3D flowerlike CHBiO_3 architectures show significance of potential application in environment protection problems.
     3. The flowerlike hierarchical Bi_2WO_6 was successfully synthesized through a facile template-free hydrothermal method. The reaction time, the amount of HAc, and the addition of HNO_3 were systematically refined, and the formation mechanism of the flowerlike hierarchical Bi_2WO_6 was also discussed. Based on the morphology evolution as a function of hydrothermal time, the formation mechanism was proposed to be as follows: First, the aggregation of the noncrystal nanoparticles; Then, the formation of crystalline nanoplates by dissolution of the noncrystal nanoparticles; Finally, organization of the formed nanoplates into flowerlike hierarchical structure in the assistant of HAc adsorption on the surface of nanoplates and the hydrogen bonds formed between carboxyls. For its special flowerlike hierarchical structure, Bi_2WO_6 can be used as photocatalyst for potential application in environment protection problems. In this work, the obtained flowerlike hierarchical Bi_2WO_6 exhibited excellent visible-light-driven photocatalytic efficiencies for the degradation of RhB within 60 minutes, which were much higher than those of TiO_2 (P25) and Bi_2WO_6 sample prepared by solid-state reaction (SSR- Bi_2WO_6). Besides, we concluded the photodegradation of RhB with two competitive processes: a photocatalytic process and a photosensitized process. Both the photocatalytic process and the photosensitized process would work concurrently under visible light irradiation, but the former was the predominant process.
     4. In order to further improve the photocatalytic activity of bismuth based photocatalysts, several materials were introduced to modify the surface of the photocatalysts. We modified Bi_2WO_6 with PtCl4 and Bi_(3.64)Mo_(0.36)O_(6.55) with carbon, and systematically studied their influences on photocatalytic activity of bismuth based photocatalysts. (1) Flowerlike PtCl4/Bi_2WO_6 composite photocatalyst was successfully synthesized through a simple two-step method involving a template-free hydrothermal process and the following impregnation treatment. The results indicated that the introducing of PtCl4 did not affect the crystal structure and the morphology of Bi_2WO_6 photocatalyst, but it had great influences on the photocatalytic activity of Bi_2WO_6 towards RhB degradation, and also an optimal Pt species content on the surface of Bi_2WO_6 photocatalyst was discovered with the highest photocatalytic ability. The improved photocatalytic performance could be ascribed to the increased photoabsorption ability, the enhanced interfacial charge transfer and the inhibited recombination of electron-hole pairs by modified with PtCl_4. Meanwhile, a possible mechanism for RhB photocatalytic degradation over PtCl4/Bi_2WO_6 catalyst was also proposed. (2) The bismuth molybdate Bi_(3.64)Mo_(0.36)O_(6.55) (BMO) was successfully synthesized by a rapid and convenient microwave-assisted method. Carbon was introduced to hybridize with BMO material through the simple combination of hydrothermal process in the presence of glucose and subsequent calcination treatment in N_2 gas at 280°C. The results indicated that carbon did not affect the final crystalline structure and morphology of BMO, but it had great influences on the photocatalytic activity of BMO towards RhB degradation. The improved photocatalytic performance could be ascribed to the synergetic effects of increased photoabsorption ability, enhanced photogenerated electron-hole separation and more RhB adsorption associated with carbon.
引文
1.万波.我国环境污染现状与潜伏污染探讨[J].广东化工,2006,33(3),49–51
    2. Bauer R.Applicability of solar irradiation for photochemical waste-water treatment[J]. Chemosphere,1994,29:1225–1233
    3. Mantzavinos D,Hellenbrand L,Livingston,et a1.Reaction mechanisms and kinetics of chemical pretreatment of biorcsistant organic molecules by wet air oxidation[J].Water Sci Technol,1997,35:119–127
    4. Otal E,Mantzavinos D,Delgado M V,et a1.Integrated wet air oxidation and biological treatment of polyethylene glycol-containing wastewaters[J].J Chem Technol Biot,1997,70(2):147–156
    5. Feigelson L,Muszkat L,Bir L,et al.Dye Photo-enhancement of TiO_2-photocatalyzed degradation of organic pollutants: the organobromine herbicide bromacil[J].Water Sci Technol,2000,42(1-2):275–279
    6. Carey J H,Lawrence J,Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J].B Environ Contam Tox,1976,16(6):697–701
    7.程云,周启星,马奇英,等.染料废水处理技术的研究与进展[J].环境污染治理技术与设备,2003,4(6):56–59
    8.罗洁,陈建山,周钢,等.TO_2光催化降解印染废水的工艺条件优化[J].化学与生物工程,2005,(6):46–48
    9.张金利,郭翠梨,陆红,等.活性碳吸附处理甲基紫废水过程研究(Ⅰ)-实验研究[J].天津大学学报,2001,34(4):481–484
    10.宋吉勇.活性碳对单体染料脱色效果的研究[J].现代制造与装备,2006,4:33–35
    11.冯长根,李鑫,曾庆轩.强碱阴离子交换纤维对活性染料的吸附性能研究[J].功能材料,2005,36(10):1568–1571
    12.刘伟,夏明芳,李爱民.不同胺基修饰的大孔树脂吸附性能研究[C].中国化学会第13届反应性高分子学术研讨会,南宁,2006
    13.任广军,翟玉春,宋恩军.Fe-Al柱撑膨润土吸附染料酸性大红的性能[J].染料与染色,2007,44(4):54–55
    14. El-Nashar A M.The desalting and recycling of waste water from textile dyeing operations using reverse osmosis[J].1977,20(1-3):267–277
    15. Porer J J,Brandon C.Zero discharge as exemplified by textil dyeing and finishing[J].Chem tech,1976,(6):402–407
    16. Tinghui Liu,Ntitsuura T,Sourirajon S.Effect of membrane materials and average pore sizes on reverse osmosis separation of dyes[J].Ind Eng Chem Prod Ros Dev,1983,22(1):77–85
    17. Wenzel H,Knudsen H H,Kristensen G H,et al.Reclamation and reuse of process water from reactive dyeing of cotton[J].Desalination,1996,106(1-3):195–203
    18.赵宜江,嵇鸣,张艳,等.氢氧化镁沉淀-陶瓷膜微滤对印染废水脱色的研究[J].膜科学与技术,2000,20(1):41–45
    19.张振成,夏振荣,王庆元,等.PW膜技术在印染废水处理中的应用[J].水处理技术,2000,26(3):172–174
    20.李洋洋,赵玉华,杨健,等.沸石对MBR膜过滤阻力的影响及其脱色效果研究[J].中国给水排水,2008,24(7):49–51
    21.刘东方,丁耘,李江华.混凝剂处理染料及中间体废水应用[J].城市环境与城市生态,1997,10(2):11–14
    22.沈俊菊,庄源益.有机絮凝剂P(AM-DMC)的脱色性能[J].南开大学学报(自然科学版),2006,39(1):24–28
    23. Fang R,Cheng X S,Xu X R.Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater[J].Bioresource Technol,2010,101(19):7323–7329
    24.庄源益,戴树桂,李丹,等.生物絮凝剂对水中染料絮凝效果探讨[J].水处理技术,1997,23(6):349–352
    25. Nakagawa Y,Hori H,Yamamoto I,et al. Characteristic bleaching profiles of cyanine dyes depending on active oxygen species in the controlled fenton reaction[J].Biol Pharm Bull,1993,16(11):1061–1064
    26. Meric S,Kaptan D,Olmez T.Color and COD removal from wastewater containing Reactive Black 5 using Fenton's oxidation process[J].Chemosphere,2004,54(3):435–441
    27.王滨松,黄君礼,张杰.Fenton试剂氧化活性染料废水的研究[J].哈尔滨工业大学学报,2005,37(9):1280–1282
    28. Saatci Y.Decolorization and Mineralization of remazol red F3B by fenton and photo-fenton processes[J].J Environ Eng-ASCE,2010,136(9):1000–1005
    29.罗汉金,刘佳乐,韦朝海,等.染料溶液的臭氧脱色效率和残留物的分析研究[J].环境化学,2006,25(5):602–606
    30. He Z Q, Song S, Xia M, et al.Mineralization of CI Reactive Yellow 84 in aqueous solution by sonolytic ozonation[J].Chemosphere,2007,69(2):191–199
    31.邓丽,黄君礼,赵振业.二氧化氯对有机染料脱色效果的研究[J].化工标准·计量·质量,2001,(9):3l–36
    32.赵国方.废水高温深度氧化处理技术[J].现代化工,2001,21(1):47–51
    33. Zimmerman J.New waste disposal process[J].Chem Eng,1958,65(8):23–27
    34.李雪.湿式氧化处理难降解有机废水的研究[D]:[硕士学位论文].辽宁:大连工业大学环境工程,2008
    35.颜婉茹,牛古丹,张艳.含染料废水的超临界水氧化工艺及动力学分析[J].哈尔滨理工大学学报,2007,12(4):123–126
    36. Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37–38
    37. So C M,Cheng M Y,Yu J C, et al.Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation[J].Chemosphere,2002,46(6):905–912
    38. Chen X M,Chen G H,Yue P L.Anodic oxidation of dyes at novel Ti/B-diamond electrodes[J].Chem Eng Sci,2003,58(3-6):995–1001
    39. Song S,Fan J Q,He Z Q,et al.Electrochemical degradation of azo dye CI Reactive Red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes[J].Electrochim Acta,2010,55(11):3606–3613
    40. Shah V,Garg N,Madamwar D.An integrated process of textile dye removal and hydrogen evolutionusing cyanobacterium, Phormidium valderianum[J].World J Microb Biot,2001,17(5):499–504
    41. Shaw C B,Carliell C M,Wheatley A D.Anaerobic/aerobic treatment of coloured textile effluents using sequencing batch reactors[J].Water Res,2002,36(8):1993–2001
    42. Chiron N,Guilet R,Deydier E.Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models[J].Water Res,2003,37(13):3079–3086
    43. Faraji M,Yamini Y,Tahmasebi E,et al.Cetyltrimethylammonium bromide-coated magnetite nanoparticles as highly efficient adsorbent for rapid removal of reactive[J].J Iran Chem Soc,2010, 7:S130–S144
    44. Vimonses V,Jin B, Chow C W K.Insight into removal kinetic and mechanisms of anionic dye by calcined clay materials and lime[J].J Hazard Mater,2010,177(1-3):420–427
    45. Ozmen E Y,Sezgin M,Yilmaz A,et al.Synthesis of beta-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions[J].Bioresource Technol,2008, 99(3):526–531
    46. Landmesser H,Kosslick H,Storek W,et al.Interior surface hydroxyl groups in ordered mesoporous silicates[J].Solid State Ionics,1997,(101-103):271–277
    47. Wu Z,Ahn I S,Lee C H,et al.Enhancing the organic dye adsorption on porous xerogels[J].Colloids Surf A,2004,240(1-3):157–164
    48.游来江.孔杂化凝胶吸附有机染料的动力学、热力学及机理[D]:[硕士学位论文].福建:华侨大学无机化学,2006
    49. McKay G,Ho Y S.The sorption of lead(II) on peat[J].Water Res,1999,33(2):578–584
    50. Ho Y S,McKay G.Pseudo-second order model for sorption processes[J].Process Biochem,1999,34(5):451–465
    51. Ho Y S,Ng J C Y,McKay G.Removal of lead(II) from effluents by sorption on peat using second-order kinetics[J].Separ Sci Technol,2001,36(2):241–261
    52. Weber W J,Morris J C,Proceeding of international conference on water pollution symposium[M].Oxford:Pergamon Press,1962.231
    53. Nosaka Y, Fox M A.Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width[J].J Phys Chem,1988,92(7):1893–1897
    54. Tanaka K,Capule M E V,Hisanaga T.Effect of crystallinity of TiO_2 on its photocatalytic acition[J].Chem Phys Lett,1991,187(12):73–76
    55. Tokunaga S,Kato H,Kudo A.Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic[J].Chem Mater,2001,13(12):4624–4628
    56. Ge L,Zhang X H.Synthesis of novel visible light driven BiVO4 photocatalysts via microemulsion process and its photocatalytic performance[J].J Inorg Mater,2009,24(3):453–456
    57.王英连.溶胶凝胶纳米氧化锌薄膜的制备、改性及光催化性能研究[D]:[硕士学位论文].广东:暨南大学物理系,2005
    58. Almquist C B,Biswas, P.Role of synthesis method and particle size of nanostructured TiO_2 on its photoactivity[J].J Catal,2002,212(2):145–156
    59. Liu L,Liu H J,Zhao Y P,et al.Directed synthesis of hierarchical nanostructured TiO_2 catalysts and their morphology-dependent photocatalysis for phenol degradation[J].Environ SciTechnol,2008,42(7):2342–2348
    60. Zhang L W,Xu T G,Zhao X,et al.Controllable synthesis of Bi_2MoO_6 and effect of morphology and variation in local structure on photocatalytic activities[J].Appl Catal B:Environ,2010,98(3-4):138–146
    61. Baiju K V,Shukla S,Biju S,et al.Morphology-dependent dye-removal mechanism as observed for anatase-titania photocatalyst[J].Catal Lett,2009,131(3-4):663–671
    62.程刚,周孝德,李艳,等.La_2O_3-ZnO-TiO_2光催化降解活性艳红及其动力学研究[J].水处理技术,2008,34(12):32–35
    63. Dhanalakshmi K B,Latha S,Anandan S,et al.Dye sensitized hydrogen evolution from water[J].Int J Hydrogen Energ,2001,26(7):669–674
    64. Lathasree S,Nageswara Rao A,SivaSankar B,et a1.Heterogeneous photocatalytic mineralization of phenols in aqueous solutions[J].J Mol Catal A:Chem,2004,223(1-2):101–105
    65. Zielinska B,Grzechulska J,Kalenczuk R J,et al.The pH influence on photocatalytic decomposition of organic dyes over A11 and P25 titanium dioxide[J].Appl Catal B:Environ,2003,45(4):293–300
    66. Poulios I,Kositzi M,Koursa A.Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions[J].J Photochem Photobio A:Chem,1998,115(2):175–183
    67. Xu W Z,Raftery D,Francisco J S.Effect of irradiation sources and oxygen concentration on the photocatalytic oxidation of 2-propanol and acetone studied by in situ FTIR[J].J Phys Chem B,2003,107(19):4537–4544
    68. Andronic L,Manolache S,Duta, A.Photocatalytic degradation of methyl orange: Influence of H2O2 in the TiO_2-based system[J].J Nanosci Nanotechno,2008,8(2):728–732
    69.沈迅伟,张静,袁春伟.二氧化钛悬浆体系中过硫酸盐对苯酚光催化降解的影响[J].环境科学学报,2005,25(5):631–636
    70.钱春香,赵联芳,付大放.温湿度和光强对水泥基材料负载纳米TiO_2光催化氧化氮氧化物的影响[J].环境科学学报,2005,25(5):623–630
    71. Choi W,Termin A,Hoffmann M R.The Role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics[J].J Phys Chem B,1994,98(51):13669–13679
    72. Xu C,Cao L X,Su G,et al.Preparation, characterization and photocatalytic activity of Co-doped ZnO powders[J].J Alloy Compd,2010,497(1-2):373–376
    73. Arai N,Saito N,Nishiyama H,et al.Effects of divalent metal ion (Mg~(2+), Zn~(2+) and Be~(2+)) doping on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting[J]Catal Today,2007,129(3-4):407–413
    74. Liu G G,Zhang X Z,Xu Y J,et al.The preparation of Zn~(2+)-doped TiO_2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities[J]. Chemosphere,2005,59(9):1367–1371
    75. Wu X H,Qin W,Li L,et al.Photocatalytic property of nanostructured Fe3+-doped Bi2O3 films[J].Catal Commun,2009,10(5):600–604
    76. Tong T Z,Zhang J L,Tian B Z,et al.Preparation of Fe~(3+)-doped TiO_2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation[J].JHazard Mater,2008,155(3):572–579
    77. Mu Y,Yu H Q,Zheng J C,et al.TiO_2-mediated photocatalytic degradation of Orange II with the presence of Mn~(2+) in solution[J].J Photochem Photobio A,2004,163(3):311–316
    78. Vinu R,Madras G.Photocatalytic activity of Ag-substituted and impregnated nano-TiO_2[J].Appl Catal A:Gen,2009,366(1):130–140
    79. Fan X X,Chen X Y,Zhu S P,et al.The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO_2[J].J Mol Catal A:Chem,2008,284(1-2):155–160
    80. Jing D W,Zhang Y J,Guo L J.Study on the synthesis of Ni doped mesoporous TiO_2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution[J].Chem Phys Lett,2005,415(1-3):74–78
    81. Peng T Y,Dai K,Yi H B,et al.Photosensitization of different ruthenium(II) complex dyes on TiO_2 for photocatalytic H2 evolution under visible-light[J].Chem Phys Lett,2008, 460(1-3):216–219
    82. Jia T K,Wang W M,Long F,et al.Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires[J].J Alloy Compd,2009,484(1-2):410–415
    83. Xiao Q,Si Z C,Zhang J,et al.Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO_2 nanocrystalline[J].J Hazard Mater,2008,150(1):62–67
    84. Li F B,Li X Z,Hou M F,et al.Enhanced photocatalytic activity of Ce3+-TiO_2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control[J].Appl Catal A:Gen,2005,285(1-2):181–189
    85. Wang J,Li J,Xie Y P,et al.Preparation of Er3+:YAlO3/ZnO coating compound by sol-gel method and photocatalytic degradation of organic dyes under sun light irradiation[J]. Inorg Mater,2010,46(4):399–404
    86. Xu A W,Gao Y,Liu, H Q.The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO_2 nanoparticles[J].J Catal,2002,207(2):151–157
    87. Sato S.Photocatalytic activity of NOx-doped TiO_2 in the visible light region[J].Chem Phys Lett,1986,123(1-2):126–128
    88. Asahi R,Morikawa T,Ohwaki T,et al.Visible-fight photocatalysis in nitrogen-doped titanium oxides[J].Science,2001,293(5528):269–271
    89. Dong F,Wang H Q,Wu Z B.One-step "green" synthetic approach for mesoporous c-doped titanium dioxide with efficient visible light photocatalytic activity[J].J Phys Chem C, 2009,113(38):16717–16723
    90. Zheng R Y,Lin L,Xie J L,et al.State of doped phosphorus and its influence on the physicochemical and photocatalytic properties of P-doped titania[J].J Phys Chem C,2008,112(39):15502–15509
    91. Patil Ashokrao B,Patil Kashinath R,Pardeshi Satish K.Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO[J].J Hazard Mater,2010,183(1-3):315–323
    92. Zhou J K,Lv L,Yu J Q,et al.Synthesis of self-organized polycrystalline F-doped TiO_2 hollow microspheres and their photocatalytic activity under visible light[J].J Phys Chem C,2008,112(14):5316–5321
    93. Ho W,Yu J C,Lee S.Synthesis of hierarchical nanoporous F-doped TiO_2 spheres with visible light photocatalytic activity[J].Chem Commun,2006,10:1115–1117
    94. Luo H M,Takata T,Lee Y G,et al.Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine[J].Chem Mater,2004,16(5):846–849
    95. He J F,Liu Q H,Sun Z H,et al.High photocatalytic activity of rutile TiO_2 induced by iodine doping[J].J Phys Chem C,2010,114(13):6035–6038
    96. Subagio D P,Srinivasan M,Lim M,et al.Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO_2 hollow sphere in a vis-LED photoreactor[J].Appl Catal B-Environ,2010,95(3-4):414–422
    97. Muruganandham M,Kusumoto Y.Synthesis of N, C codoped hierarchical porous microsphere ZnS as a visible light-responsive photocatalyst[J].J Phys Chem C,2009,113(36):16144–16150
    98. Pelaez M,de la Cruz A A,Stathatos E,et al.Visible light-activated N-F-codoped TiO_2 nanoparticles for the photocatalytic degradation of microcystin-LR in water[J].Catal Today,2009,144(1-2):19–25
    99. Wu Z B,Dong F,Zhao W R,et al.Visible light induced electron transfer process over nitrogen doped TiO_2 nanocrystals prepared by oxidation of titanium nitride[J].J Hazard Mater,2008,157(1):57–63
    100. Xing M Y,Wu Y M,Zhang J L,et al.Effect of synergy on the visible light activity of B, N and Fe co-doped TiO_2 for the degradation of MO[J].Nanoscale,2010,2(7):1233–1239
    101. Linsebigler A L,Lu G Q,Yates J T.Photocatalysis on TiO_2 Surfaces: Principles, Mechanisms, and Selected Results[J].Chem Rev,1995,95(3):735–758
    102. Chiarello G L,Aguirre M H,Selli E.Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO_2[J].J Catal,2010,273(2):182–190
    103. Fu P F,Zhang P Y.Uniform dispersion of Au nanoparticles on TiO_2 film via electrostatic self-assembly for photocatalytic degradation of bisphenol A[J].Appl Catal B:Environ,2010,96(1-2):176–184
    104. Rosseler O,Shankar M V,Du M K L,et al.Solar light photocatalytic hydrogen production from water over Pt and Au/TiO_2(anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion[J].J Catal,2010,269(1):179–190
    105. Kumar P S S,Manivel A,Anandan S.Synthesis of Ag-ZnO nanoparticles for enhanced photocatalytic degradation of acid red 88 in aqueous environment[J].Water Sci Technol,2009,59(7):1423–1430
    106. Wang Y M,Du G J,Liu H,et al.A photocatalytic reduction method for the preparation of TiO_2 nanobelt supported noble metals (Ag, Au)[J].J Nanosci Nanotechno,2009,9(3):2119–2123
    107. Chang Y G,Xu J,Zhang Y Y,et al.Optical Properties and. Photocatalytic Performances of Pd Modified ZnO Samples[J].J Phys Chem C,2009,113(43):18761–18767
    108. Sasirekha N,Basha S J S,Shanthi K.Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide[J].Appl Catal B:Environ,2006,62(1-2):169–180
    109. Zhao W,Chen C C, Li X Z.Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: Influence of platinum as a functional co-catalyst[J].J Phys Chem B,2002,106(19):5022–5028
    110.田小可.新型纳米钨酸铋制备及可见光催化降解水中有机污染物的研究[D]:[硕士学位论文].河南:河南师范大学环境科学,2009
    111. Li D,Dong W J,Sun S M,et al.Photocatalytic degradation of acid chrome blue K with porphyrin-sensitized TiO_2 under visible light[J].J Phys Chem C,2008,112(38):14878–14882
    112. Yao K S,Wang D Y,Chang C Y,et al.Characteristics and photocatalytic activity of TiO_2 thin film sensitized with a porphyrin dye[J].J Nanosci Nanotechno,2008,8(5):2699–2702
    113. Li Y X,Xie C F,Peng S Q,et al.Eosin Y-sensitized nitrogen-doped TiO_2 for efficient visible light photocatalytic hydrogen evolution[J].J Mol Catal A:Chem,2008,282(1-2):117–123
    114. Salinas-Guzman R R,Guzman-Mar J L,Hinojosa-Reyes L,et al.Enhancement of cyanide photocatalytic degradation using sol-gel ZnO sensitized with cobalt phthalocyanine[J].J Sol-Gel Sci Techn,2010,54(1):1–7
    115. Chang X F,Yu G,Huang J,et al.Enhancement of photocatalytic activity over NaBiO_3/BiOCl composite prepared by an in situ formation strategy[J].Catal Today,2010,153(3-4):193–199
    116. Long M,Cai W M,Cai J,et al.Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation[J].J Phys Chem B,2006,110(41):20211–20216
    117. Wang W D,Serp P,Kalck P,et al.Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method[J].Appl Catal B:Environ,2005,56(4):305–312
    118. Shang J,Yao W Q,Zhu Y F,et al.Structure and photocatalytic performances of glass/SnO2/TiO_2 interface composite film[J].Appl Catal A:Gen,2004,257(1):25–32
    119. El-Maghraby E M,Nakamura Y,Rengakuji S.Composite TiO_2-SnO2 nanostructured films prepared by spin-coating with high photocatalytic performance[J].Catal Commun, 2008,9(14):2357–2360
    120. Han C H,Li Z Y,Shen J Y.Photocatalytic degradation of dodecyl-benzenesulfonate over TiO_2-Cu2O under visible irradiation[J].J Hazard Mater,2009,168(1):215–219
    121. Lin X P,Xing J C,Wang W D,et al.Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts[J].J Phys Chem C,2007,111(49):18288–18293
    122. Akurati K K,Vital A,Dellemann J P,et al.Flame-made WO3/TiO_2 nanoparticles: relation between surface acidity, structure and photocatalytic activity[J].Appl Catal B:Environ,2008,79(1-2):53–62
    123. Zhang H T,Wu X B,Wang Y M,et al.Preparation of Fe2O3/SrTiO3 composite powders and their photocatalytic properties[J].J Phys Chem Solids,2007,68(2):280–283
    124. Xiao M W,Wang L S,Wu Y D,et al.Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties[J].Nanotechnology,2008,19(1):No.015706
    125. Bessekhouad Y,Robert D,Weber J.Bi2S3/TiO_2 and CdS/TiO_2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J].J Photochem Photobio A:Chem,2004,163(3):569–580
    126. Ratanatawanate C,Tao Y,Balkus K J.Photocatalytic activity of PbS quantum dot/TiO_2 nanotube composites[J].J Phys Chem C,2009,113(24):10755–10760
    127. Zong X,Yan H J,Wu G P,et al.Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation[J].J Am Chem Soc,2008,130(23):7176–7177
    128. Lo S C,Lin C F,Wu C H,et al.Capability of coupled CdSe/TiO_2 for photocatalytic degradation of 4-chlorophenol[J].J Hazard Mater,2004,114(1-3):183–190
    129.丁建军.可见光响应型光催化剂的制备、结构和性能研究[D]:[博士学位论文].安徽:中国科学技术大学同步辐射及应用,2009
    130. Kato H,Kudo A.Visible-light-response and photocatalytic activities of TiO_2 and SrTiO3 photocatalysts codoped with antimony and chromium[J].J Phys Chem B,2002,106(19):5029–5034
    131. Kato H, Kudo A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na,and K)[J].J Phys Chem B,2001,105(19):4285–4292
    132. Yamakata A,Ishibashi T,Kato H,et al.Photodynamics of NaTaO3 catalysts for efficient water splitting[J].J Phys Chem B,2001,107(51):14383–14387
    133. Madhu G M,Raj M A,Pai K,et al.Photodegradation of methylene blue dye using UV/BaTiO3, UV/H2O2 and UV/H2O2/BaTiO3 oxidation processes[J].Indian J Chem Techn,2007,14(2):139–144
    134. Kim H G,Becker O S,Jang J S,et al.A generic method of visible light sensitization for perovskite-related layered oxides: Substitution effect of lead[J].J Solid State Chem,2006, 179(4):1214–1218
    135. Konta R,Ishii T,Kato H,et al.Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation[J].J Phys Chem B,2004,108(26):8992–8995
    136.傅希贤,单志兴,肖坤林.掺杂对PbTiO3光催化活性的影响[J].应用化学,1996,13(6):58–60
    137.蒋正静,戴洁,张志兰等.锌、镉掺杂纳米级钛酸铅的制各及对活性翠兰的光催化降[J].应用化学,2001,18(7):552–555
    138.杨秋华,傅希贤,王俊珍等.钙钛矿型复合氧化物LaFeO3和LaCoO3的光催化活性[J].催化学报,1999,20(5):52l–524
    139. Yao W F, Wang H, Xu X H, et al. Photocatalytic property of bismuth titanate Bi2Ti2O7[J].Appl Catal A-gen,2004,259(1):29–33
    140. Uno M,Kosuga A,Okui M,et al.Photoelectrochemical study of lanthanide titanium oxides, Ln2Ti2O7 (Ln = La, Sm, and Gd)[J].J Alloy Compd,2005,400(1-2):270–275
    141. Uno M,Kosuga A,Okui M,et al.Photoelectrochemical study of lanthanide zirconium oxides, Ln2Zr2O7 (Ln = La, Ce, Nd and Sm) [J].J Alloy Compd,2006,420(1-2):291–2797
    142.赵智,叶红齐,唐新德.可见光响应催化剂Nd2lnNbO7的制备、表征及光催化性能研究[J].应用化工,2009,38(11):1613–1616
    143.杨海华.尖晶石型CuM2O4(M = Fe, Co, Cr)的制备及光催化产氢活性的研究[D]:[硕士学位论文].湖南:中南大学应用化学,2009
    144. Tang J W,Zou Z G,Katagiri M,et al.Photocatalytic degradation of MB on MIn2O4 (M= alkali earth metal) under visible light: effects of crystal and electronic structure on the photocatalytic activity[J].Catal Today,2004,93(5):885–889
    145. Ai Z H,Lee S C,Huang Y,et al.Photocatalytic removal of NO and HCHO over nanocrystalline Zn2SnO4 microcubes for indoor air purification[J].J Hazard Mater,2010,179(1-3):141–150
    146. Saadi S,Bouguelia A,Trail M.Photoassisted hydrogen evolution over spinel CuM2O4(M = Al, Cr, Mn, Fe, and Co)[J].Renew Energ,2006,31(14):2245–2256
    147. Lei Z B,You W S,Liu M Y,et al.Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method[J].Chem Commun,2003,17:2142–2143
    148. Chen Z X,Li D Z,Zhang W J,et al.Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation[J].J Phys Chem C,2009,113(11):4433–4440
    149. Kale B B,Baeg J O,Lee S M,et al.CdIn2S4 nanotubes and "marigold" nanostructures: A visible-like photocatalyst[J].Adv Funct Mater,2006,16(10):1349–1354
    150. Ye J H,Zou Z G,Oshikiri M,et al.A novel hydrogen-evolving photocatalyst InVO4 active under visiblelight irradiation[J].Chem Phys Lett,2002,356(3-4):221–226
    151. Zhang L Z,Djerdj I,Cao M H,et al.Nonaqueous sol-gel synthesis of a nanocrystalline InNbO4 visible-light photocatalyst[J].Adv Mater,2007,19(16):2083–2086
    152. Ye J,Zou Z,Arakawa H,et al.Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M = V5+, Nb5+, Ta5+)[J].J Photochem Photobio A:Chem,2002,148(1-3):79–83
    153. Zhang Z J,Wang W Z,Shang M,et al.Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst[J].Catal Commun,2010,11(11):982–986
    154. Muktha B,Darriet J,Madras G,et al.Crystal structures and photocatalysis of the triclinic polymorphs of BiNbO4 and BiTaO4[J].J Solid State Chem,2006,179(12):3919–3925
    155. Shi R,Lin J,Wang Y J,et al.Visible-light photocatalytic degradation of BiTaO4 photocatalyst and mechanism of photocorrosion suppression[J].J Phys Chem C,2010,114(14):6472–6477
    156. Zou Z G,Ye J H,Sayama K,et al.Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J].Nature,2001,414(6864):625–627
    157. Zou Z G,Ye J H,Arakawa H.Photocatalytic behavior of a new series of In0.8M0.2TaO4 (M = Ni, Cu, Fe) photocatalysts in aqueous solutions[J].Catal Lett,2001,75(3-4):209–213
    158. Hara M,Takata T,Kondo J N,et al.Photocatalytic reduction of water by TaON under visible light irradiation[J].Catal Today,2004,90(3-4):313–317
    159. Kasahara A,Nukumizu K,Hitoki G,et al.Photoreactions on LaTiO_2N under visible light irradiation[J].J Phys Chem A,2002,106(29):6750–6753
    160. Higashi M,Abe R,Takata T,et al.Photocatalytic overall water splitting under visible light using ATaO2N (A = Ca, Sr, Ba) and WO3 in a IO3-/I- shuttle redox mediated system[J].Chem Mater,2009,21(8):1543–1549
    161. Hisatomi T,Otani M,Nakajim K,et al.Preparation of crystallized mesoporous Ta3N5 assisted by chemical vapor deposition of tetramethyl orthosilicate[J].Chem Mater,2010,22(13):3854–3861
    162. Kou J H,Li Z S,Yuan Y P,et al.Visible-light-induced photocatalytic oxidation of polycyclic aromatic hydrocarbons over tantalum oxynitride photocatalysts[J].Environ Sci Technol,2009,43(8):2919–2924
    163. Aguiar R,Kalytta A,Reller A,et al.Photocatalytic decomposition of acetone using LaTi(O,N)3 nanoparticles under visible light irradiation[J].J Mater Chem,2008,18(36):4260–4265
    164. Zhang L S,Wang W Z,Yang J O,et al.Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst[J].Appl Catal A:Gen,2006,308:105–110
    165. Zhou L,Wang W Z,Xu H L,et al.Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis[J].Chem-Eur J,2009,15(7):1776–1782
    166. Gurunathan K.Photocatalytic hydrogen production using transition metal ions-doped gamma-Bi2O3 semiconductor particles[J].Int J Hydrogen Energ,2004,29(9):933–940
    167. Xie J M,Lu X M,Chen M,et al.The synthesis, characterization and photocatalytic activity of V(V), Pb(II), Ag(I) and Co(II)-doped Bi2O3[J].Dyes Pigments,2008,77(1):43–47
    168. Wu X H,Qin W,Li L,et al.Photocatalytic property of nanostructured Fe3+-doped Bi2O3 films[J].Catal Commun,2009,10(5):600–604
    169. Hameed A,Montini T,Gombac V,et al.Surface phases and photocatalytic activity correlation ofBi2O3/Bi2O4-x [J].J Am Chem Soc,2008,130(30):9658–9659
    170. Chai S Y,Kim Y J,Jung M H,et al.Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst[J].J Catal,2009,262(1):144–149
    171. Hameed A,Gombac V,Montini T,et al.Synthesis, characterization and photocatalytic activity of NiO-Bi2O3 nanocomposites[J].Chem Phys Lett,2009,472(4-6):212–216
    172. Li L Z,Yan B.CeO2-Bi2O3 nanocomposite: Two step synthesis, microstructure and photocatalytic activity[J].J Non-cryst Solids,2009,355(13):776–779
    173. Zhang K L,Liu C M,Huang F Q,et al.Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst[J].Appl Catal B:Envrion,2006,68(3-4):125–129
    174. Zhang J,Shi F J,Lin J,et al.Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst[J].Chem Mater,2008,20(9):2937–2941
    175. Xiao X,Zhang W D.Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity[J].J Mater Chem,2010,20(28):5866–5870
    176. Zhang X,Ai Z H,Jia F L,et al.Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres[J].J Phys Chem C,2008,112(3):747–753
    177. Wang W D,Huang F Q,Lin X P,et al.Visible-fight-responsive photocatalysts xBiOBr-(1-x)BiOI[J].Catal Commun,2008,9(1):8–12
    178. Wei W,Dai Y,Huang B B.First-principles characterization of Bi-based photocatalysts: Bi12TiO_(20), Bi2Ti2O7, and Bi4Ti3O12[J].J Phys Chem C,2009,113(14):5658–5663
    179. Zhang H P,Lu M K,Liu S W,et al.Preparation and photocatalytic properties of sillenite Bi12TiO_(20) films[J].Surf Coat Tech,2008,202(20):4930–4934
    180. Zhou H J,Park T J,Wong S S.Synthesis, characterization, and photocatalytic properties of pyrochlore Bi2Ti2O7 nanotubes[J].J Mater Res,2006,21(11):2941–2947
    181. Hou J G,Qu Y F,Krsmanovic D,et al.Hierarchical assemblies of bismuth titanate complex architectures and their visible-light photocatalytic activities[J].J Mater Chem,2010,20(12):2418–2423
    182. Tokunaga S,Kato H,Kudo A.Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J].Chem Mater,2001,13(12):4624–4628
    183. Yu J Q,Kudo A.Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4[J].Adv Funct Mater,2006,16(16):2163–2169
    184. Sayama K,Nomur A,Arai T,et al.Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment[J].J Phys Chem B,2006,110(23):11352–11360
    185. Alfaro S O,Martinez-de la Cruz A.Synthesis, characterization and visible-light photocatalytic properties of Bi_2WO_6 and Bi2W2O9 obtained by co-precipitation method[J].Appl Catal A:Gen,2010,383(1-2):128–133
    186. Chen Z,Qian L W,Zhu J,et al.Controlled synthesis of hierarchical Bi_2WO_6 microspheres with improved visible-light-driven photocatalytic activity[J].Crystengcomm,2010,12(7):2100–2106
    187. Colon G,Lopez S M,Hidalgo M C,et al.Sunlight highly photoactive Bi_2WO_6-TiO_2 heterostructures for rhodamine B degradation[J].Chem Commun,2010,46(26):4809–4811
    188. Martinez-de La Cruz A,Alfaro S O.Synthesis and characterization of gamma-Bi2MoO6 prepared by co-precipitation: Photoassisted degradation of organic dyes under vis-irradiation[J].J Mol Catal A:Chem,2010,320(1-2):85–91
    189. Zhang L W,Xu T G,Zhao X,et al.Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities[J].Appl Catal B:Environ,2010,98(3-4):138–146
    190. Yao W F,Wang H,Xu X H,et al.Photocatalytic property of bismuth titanate Bi12TiO_20 crystals[J].Appl Catal A:Gen,2003,243(1):185–190
    191. Zhang X F,Zhang Y B,Quan X,et al.Preparation of Ag doped BiVO4 film and its enhanced photoelectrocatalytic (PEC) ability of phenol degradation under visible light[J].J Hazard Mater,2009,167(1-3):911–914
    192. Cui Z K,Zeng D W,Tang T T,et al.Enhanced visible light photocatalytic activity of QDS modified Bi_2WO_6 nanostructures[J].Catal Commun,2010,11(13):1054–1057
    193. Zou Z G,Ye J H,Arakawa H.Preparation, structural and optical properties of a new class of compounds, Bi2MNbO7 (M=Al, Ga, In)[J].Mater Sci Eng B,2001,79(1):83–85
    194. Zou Z G,Ye J H,Arakawa H.Optical and structural properties of the BiTa1-xNbxO4 (0 <= x <= 1) compounds[J].Solid State Commun,2001,119(7):471–475
    195. Tang J W,Zou Z G,Ye J H.Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation[J].Angew Chem Int Edit,2004,43(34):4463–4466
    196. Hu X X,Hu C,Qu J H.Photocatalytic decomposition of acetaldehyde and Escherichia coli using NiO/SrBi2O4 under visible light irradiation[J].Appl Catal B:Environ,2006,69(1-2):17–23
    197. Shan Z C,Xia Y J,Yang Y X,et al.Preparation and photocatalytic activity of novel efficient photocatalyst Sr2Bi2O5[J].Mater Lett,2009,63(1):75–77
    198. Yang Y Q,Zhang G K,Yu S J,et al.Efficient removal of organic contaminants by a visible light driven photocatalyst Sr6Bi2O9[J].Chem Eng J,2010,162(1):171–177
    199. Matto M,Husain Q.Peroxide and redox mediators decolorization of direct dyes by salt fractionated turnip proteins enhanced in the presence of hydrogen[J].Chemosphere,2007,69(2):338–345
    200. Qu S,Huang F,Yu S N,et al.Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles[J].J Hazard Mater,2008,160(2-3):643–647
    201. Fei J B,Cui Y,Yan X H,et al.Controlled Preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment[J].Adv Mater,2008,20(3),452–456
    202. Zainal Z,Hui L K,Hussein M Z,et al.Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps[J].J Hazard Mater,2005,125(1-3):113-120
    203. Shi B Y,Li G H,Wang D S,et al. Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species[J].J Hazard Mater,2007,143(1-2):567–574
    204. Lee J W,Choi S P,Thiruvenkatachari R,et al.Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes[J].Water Res,2006,40(3):435–444
    205. Chen H M,He J H.Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment[J].J Phys Chem C,2008,112(45):17540–17545
    206. Yan Z,Li G T,Mu L,et al.Pyridine-functionalized mesoporous silica as an efficient adsorbent for theremoval of acid dyestuffs[J].J Mater Chem,2006,16(18):1717–1725
    207. Chang S H,Wang K S,Li H C,et al.Enhancement of Rhodamine B removal by low-cost fly ash sorption with Fenton pre-oxidation[J].J Hazard Mater,2009,172(2-3):1131–1136
    208. Raghuvanshi S P,Singh R,Kaushik C P.Adsorption of congo red dye from aqueous solutions using neem leaves as adsorbent[J].Asian J Chem,2008,20(7):4994–5000
    209. Kusuktham B.Preparation of interpenetrating polymer network gel beads for dye absorption[J].J Appl Polym Sci,2006,102(2):1585–1591
    210. Lee K,Kim D,Roy P,et al.Anodic formation of thick anatase TiO_2 mesosponge layers for high-efficiency photocatalysis[J].J Am Chem Soc,2010,132(5):1478–1479
    211. Zhao W,Chen C C,Li X Z,et al.Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: influence of platinum as a functional co-catalyst[J].J Phys Chem B,2002,106(19):5022–5028
    212. Vautier M,Guillard C,Herrmann J M.Photocatalytic degradation of dyes in water: case study of indigo and of indigo carmine[J].J Catal,2001,201(1):46–59
    213. Stylidi M,Kondarides D I,Verykios X E.Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO_2 suspensions[J].Appl Catal B:Environ,2004,47(3):189–201
    214. Karkmaz M,Puzenat E,Guillard C,et al.Photocatalytic degradation of the alimentary azo dye amaranth mineralization of the azo group to nitrogen[J].Appl Catal B:Environ,2004,51(3):183–194
    215. Wong Y C,Szeto Y S,Cheung W H,et al.Equilibrium studies for acid dye adsorption onto chitosan[J].Langmuir,2003,19(19):7888–7894
    216. Zhou L,Gao C,Xu W J.Magnetic dendritic materials for highly efficient adsorption of dyes and drugs[J].ACS Appl Mater Inter,2010,2(5):1483-1491
    217. Wang S,Li H T.Structure directed reversible adsorption of organic dye on mesoporous silica in aqueous solution[J].Micropor Mesopor Mater,2006,97(1-3):21–26
    218. Cao J,Zhu Y C,Bao K Y,et al.Microscale Mn2O3 hollow structures: sphere, cube, ellipsoid, dumbbell, and their phenol adsorption properties[J].J Phys Chem C,2009,113(41):17755–17760
    219. Liu J,Hartono S B,Jin Y G.A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres[J].J Mater Chem,2010,20(22):4595–4601
    220. Chen D,Ye J H.Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties[J].Adv Funct Mater,2008,18(13):1922–1928
    221. Jiang H Q,Wang H H,Werth S,et al.Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor[J]. Angew Chem Int Ed,2008,47(48):9341–9344
    222. Zhang M L,Chang J.Surfactant-assisted sonochemical synthesis of hollow calcium silicate hydrate (CSH) microspheres for drug delivery[J].Ultrason Sonochem,2010,17(5):789–792
    223. Hong Y L,Chen X S,Jing X B.Fabrication and drug delivery of ultrathin mesoporous bioactive glass hollow fibers[J].Adv Funct Mater,2010,20(9):1501–1510
    224. Yin X M,Li C C,Zhang M,et al.SnO2 monolayer porous hollow spheres as a gas sensor[J]. Nanotechnology,2009,20:455503–455509
    225. Liu J Y,Luo T,Mouli T S,et al.A novel coral-like porous SnO2 hollow architecture: biomimeticswallowing growth mechanism and enhanced photovoltaic property for dye-sensitized solar cell application[J].Chem Commun,2010,46(3):472–474
    226. Zhao W R,Lang M D,Li Y S,et al.Fabrication of uniform hollow mesoporous silica spheres and ellipsoids of tunable size through a facile hard-templating route[J].J Mater Chem,2009,19(18): 2778–2783
    227. Wu C Z,Zhang X D,Ning B,et al.Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy[J].Inorg Chem,2009,48(13):6044–6054
    228. Wang X,Wu X L,Guo Y G,et al.Synthesis and Lithium storage properties of Co_3O_4 nanosheet-assembled multishelled hollow spheres[J].Adv Funct Mater,2010,10(10):1680–1686
    229. Jiang Z Y,Xie Z X,Zhang X H,et al.Synthesis of single-crystalline ZnO polyhedral submicrometer-sized hollow beads using laser-assisted growth with ethanol droplets as soft templates[J].Adv Mater,2004,16(11):904–907
    230. Wu Z C,Zhang M,Yu K,et al.Self-assembled double-shelled ferrihydrite hollow spheres with a tunable aperture[J].Chem Eur J,2008,14(17):5346–5352
    231. Cao C Y,Cui Z M,Chen C Q,et al.Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis[J].J Phys Chem C,2010,114(21):9865–9870
    232. Yu X X,Yu J G,Cheng B,et al.One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties[J].Chem Eur J,2009,15(27):6731–6739
    233. Lou X W,Wang Y,Yuan C L,et al.Template-free synthesis of SnO_2 hollow nanostructures with high lithium storage capacity[J].Adv Mater,2006,18(17):2325–2329
    234. Reehuis M,Krimmel A,Buttgen N.et al.Crystallographic and magnetic structure of ZnV_2O_4 - structural phase transition due to spin-driven Jahn-Teller distortions[J].Eur Phys J B,2003,35(3):311–316
    235. Ebbinghaus S G,Hanss J,Klemm M,et al.Crystal structure and magnetic properties of ZnV_2O_4[J].J Alloy Compd,2004,370(1–2):75–79
    236. Vasiliev A N,Markina M M,Isobe M,et al.Specific heat and magnetic susceptibility of spinel compounds CdV_2O_4, ZnV_2O_4 and MgTi2O4[J].J Magn Magn Mater,2006,300(1):375–377
    237. Xiao L F,Zhao Y Q,Yin J,et al.Clewlike ZnV_2O_4 hollow spheres: nonaqueous sol-gel synthesis,formation mechanism,and Lithium storage properties[J].Chem Eur J,2009,15(37):9442–9450
    238. Mao L J, Liu C Y, Li J.Template-free synthesis of VOx hierarchical hollow spheres[J].J Mater Chem,2008,18(14):1640–1643
    239. Li H X, Bian Z F, Zhu J,et al.Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity[J].J Am Chem Soc,2007,129(27):8406–8407
    240. Wasay S A,Haron M J,Uchiumi A,et al.Removal of arsenite and arsenate ions from aqueous solution by basic yttrium carbonate[J].Water Res,1996,30(5):1143–1148
    241. Lagergren S.About the theory of so-called adsorption of soluble substances[J].Kungliga SvenskaVetenskapsakademiens Handlingar,1898,24(4):1–39
    242. Hu Q H,Qiao S Z Haghseresht F, et al.Adsorption Study for Removal of Basic Red Dye Using Bentonite[J].Ind Eng Chem Res,2006,45(2):733–738
    243. Kudo A,Omori K,Kato H.A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J].J Am Chem Soc,1999,121(49):11459–11467
    244. Zhang L S,Wang W Z,Zhou L,et al.Bi_2WO_6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities[J].Small,2007,3(9):1618–1625
    245. Cabot A,Marsal A,Arbiol J,et al.Bi2O3 as a selective sensing material for NO detection[J].Sens Actuator B-Chem,2004,99(1):74–89
    246. Boivin J C,Mairesse G.Recent material developments in fast oxide ion conductors[J].Chem Mater,1998,10(10):2870–2888
    247. Bliesner R,Uma S,Yokochi A,et al.Structure of NaBi_3V_2O_(10) and implications for ionic conductivity[J].Chem Mater,2001,13(11):3825–3826
    248. Zhang L W,Wang Y J,Cheng H Y,et al.Synthesis of porous Bi_2WO_6 thin films as efficient visible-light-active photocatalysts[J].Adv Mater,2009,21(12):1286–1287
    249. Aurivillius B.X-ray studies of bismuth oxide acetate, CH3COO·OBi and related compounds[J].Acta Chem Scand,1955,9:1213–1218
    250. An H Z,Du Y,Wang T M,et al.Photocatalytic properties of BiOX (X = Cl, Br, and I) [J].Rare Metals,2008,27(3):243–250
    251. Devillers M,De Smet F,Titions O.Bismuth and mixed bismuth-lanthanide carboxylates as precursors for pure and Ln-promoted bismuth molybdate catalysts[J].Thermochimica acta,1995,260:165–185
    252. Park S,Lim J H,Chung S W,et al.Self-assembly of mesoscopic metal-polymer amphiphiles[J].Science,2004,303(5656):348–351
    253. Sun Y,Xia Y N.Shape-controlled synthesis of gold and silver nanoparticles[J]. Science,2002,298(5601):2176–2179
    254. Wang X,Zhuang J,Peng Q,et al.A general strategy for nanocrystal synthesis[J].Nature,2005,437(7055):121–124
    255. Hu L H,Peng Q,Li Y D.Selective Synthesis of Co_3O_4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion[J].J Am Chem Soc,2008,130(48):16136–16137
    256. Subhramannia M,Pillai V K.Shape-dependent electrocatalytic activity of platinum nanostructures[J].J Mater Chem,2008,18(48):5858–5870
    257. Deng H,Yang S H,Xiao S,et al.Controlled synthesis and upconverted avalanche luminescence of cerium(III) and neodymium(III) orthovanadate nanocrystals with high uniformity of size and shape[J].J Am Chem Soc,2008,130(6):2032–2040
    258. Zhong L S,Hu J S,Cao A M,et al.3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J].Chem Mater,2007,19(7):1648–1655
    259. Xiao F S,Wang L F,Yin C Y,et al.Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J].Angew Chem Int Ed,2006,45(19):3090–3093
    260. Ye L N,Wu C Z,Guo W,et al.MoS_2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties[J].Chem Commun,2006,45:4738–4740
    261. Yu M H,Wang H N,Zhou X F,et al.One template synthesis of raspberry-like hierarchical siliceous hollow spheres[J].J Am Chem Soc,2007,129(47):14576–14577
    262. Yuan R S,Fu X Z,Wang X C,et al.Template synthesis of hollow metal oxide fibers with hierarchical architecture[J].Chem Mater,2006,18(19):4700–4705
    263. Zhang H F,Hardy G C,Rosseinsky M J,et al.Uniform emulsion-templated silica beads with high pore volume and hierarchical porosity[J].Adv Mater,2003,15(1):78–81
    264. Shi H T,Qi L M,Ma J M,et al.Synthesis of hierarchical superstructures consisting of BaCrO_4 nanobelts in catanionic reverse micelles[J].Adv Mater,2003,15(19):1647–1651
    265. Zheng Y H,Cheng Y,Wang Y S,et al.Metastable gamma-MnS hierarchical architectures: Synthesis, characterization, and growth mechanism[J].J Phys Chem B,2006,110(16):8284–8288
    266. Ni X M,Zhao Q B,Zhang D G,et al.Novel hierarchical nanostructures of nickel: self-assembly of hexagonal nanoplatelets[J].J Phys Chem C,2007,111(2):601–605
    267. Ma D K,Huang S M,Chen W X,et al.Self-Assembled Three-dimensional hierarchical umbilicate Bi_2WO_6 microspheres from nanoplates: controlled Synthesis, photocatalytic activities, and wettability[J].J Phys Chem C,2009,113(11):4369–4374
    268. Yu J G,Su Y R,Cheng B.Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania[J].Adv Funct Mater,2007,17(12):1984–1990
    269. Kim F,Kwan S,Akana J,et al.Langmuir-Blodgett nanorod assembly[J].J Am Chem Soc,2001,123(18):4360–4361
    270. Zhou L,Wang W Z,Liu S W,et al.A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst[J].J Mol Catal A:Chem,2006,252(1-2):120–124
    271. Fu H B,Pan C S,Yao W Q,et al.Visible-light-induced degradation of rhodamine B by nanosized Bi_2WO_6[J].J Phys Chem B,2005,109(47):22432–22439
    272. He W D,Qin W,Wu X H,et al.The photocatalytic properties of bismuth oxide films prepared through the sol-gel method[J].Thin Solid Films,2007,515(13):5362–5365
    273. Zhao Y,Xie Y,Zhu X,et al.Surfactaut-free synthesis of hyperbranched monoclinic bismuth vanadate and its applications in photocatalysis, gas sensing, and lithium-ion batteries[J].Chem Eur J,2008,14(5):1601–1606
    274. Sun S M,Wang W Z,Zhang L,et al.Visible light-induced photocatalytic oxidation of phenol and aqueous ammonia in flowerlike Bi2Fe4O9 suspensions[J].J Phys Chem C,2009,113(29):12826–12831
    275. Hou J G,Qu Y F,Krsmanovic D,et al.Solution-phase synthesis of single-crystalline Bi12TiO_20 nanowires with photocatalytic properties[J].Chem Commun,2009,26:3937–3939
    276. Wu J,Duan F,Zheng Y,et al.Synthesis of Bi_2WO_6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity[J].J Phys Chem C,2007,111(34):12866–12871
    277. Zhang C,Zhu Y F.Synthesis of square Bi_2WO_6 nanoplates as high-activity visible-light-driven photocatalysts[J].Chem Mater,2005,17(13):3537–3545
    278. Fujihira M,Satoh Y,Osa T.Heterogeneous photocatalytic oxidation of aromatic compounds onTiO_2[J].Nature,1981,293:206–208
    279. ?ícha J,Musil J,Meissner M,et al.Nanostructure of photocatalytic TiO_2 films sputtered at temperatures below 200°C[J].Appl Surf Sci,2008,254(13):3793–3800
    280. Sunada K,Kikuchi Y,Hashimoto K,et al.Bactericidal and detoxification effects of TiO_2 thin film photocatalysts[J].Envrion Sci Technol,1998,32(5):726–728
    281. Konstantinou I K,Albanis T A.TiO_2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review[J].Appl Catal B: Environ,2004,49(1):1–14
    282. Frank S N,Bard A J.Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J].J Phys Chem,1977,81(15):1484-1488
    283. Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science,2001,293(5528):269–271
    284. Wang Y P,Li J,Peng P Y,et al.Preparation of S-TiO_2 photocatalyst and photodegradation of L-acid under visible light[J].Appl Surf Sci,2008,254(16):5276–5280
    285. Wu Y M,Zhang J L,Xiao L,et al.Properties of carbon and iron modified TiO_2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light[J].Appl Surf Sci,2010,256(13):4260–4268
    286. Li F B,Li X Z.The enhancement of photodegradation efficiency using Pt-TiO_2 catalyst[J].Chemosphere,2002,48(10):1103–1111
    287. Wu L,Yu J C,Fu X Z.Characterization and photocatalytic mechanism of nanosized CdS coupled TiO_2 nanocrystals under visible light irradiation[J].J Mol Catal A:Chem,2006,244(1-2):25–32
    288. Dvoranova D,Brezova V,Mazur M,et al.Investigations of metal-doped titanium dioxide photocatalysts[J].Appl Catal B: Environ,2002,37(2):91–105
    289. Subramanian V,Wolf E E,Kamat P V.Influence of metal/metal ion concentration on the photocatalytic activity of TiO_2-Au composite nanoparticles[J].Langmuir,2003,19(2):460–474
    290. Zhu J F,Deng Z G,Chen F,et al.Hydrothermal doping method for preparation of Cr~(3+)-TiO_2 photocatalysts with concentration gradient distribution of Cr3+[J].Appl Catal B: Environ,2006,62(3-4):329–335
    291. Di Paola A,Garcia-Lopez E,Ikeda S,et al.Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO_2[J].Catal Today,2002,75(1-4):87–93
    292. Tayade R J,Kulkarni R G,Jasra R V.Transition metal ion impregnated mesoporous TiO_2 for photocatalytic degradation of organic contaminants in water[J].Ind Eng Chem Res,2006,45(15):5231–5238
    293. Brezesinski K,Ostermann R,Hartmann P,et al.Exceptional photocatalytic activity of ordered mesoporous beta-Bi2O3 thin films and electrospun nanofiber mats[J].Chem Mater,2010,22(10):3079–3085
    294. Wang C H,Shao C L,Wang L J,et al.Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers[J].J Colloid Interf Sci,2009,333(1):242–248
    295. Zhang L,Chen D R,Jiao X L.Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties[J].J Phys Chem B,2006,110(6):2668–2673
    296. Sun Y F,Wu C Z,Long R,et al.Synthetic loosely packed monoclinic BiVO4 nanoellipsoids with novel multiresponses to visible light, trace gas and temperature[J].Chem Commun,2009,30:4542–4544
    297. Fu H B,Zhang L W,Yao W Q, et al.Photocatalytic properties of nanosized Bi_2WO_6 catalysts synthesized via a hydrothermal process[J].Appl Catal B: Environ,2006,66(1-2):100–110
    298. Ren J,Wang W Z,Zhang L,et al.Photocatalytic inactivation of bacteria by photocatalyst Bi_2WO_6 under visible light[J].Catal Commun,2009,10(14):1940–1943
    299. Shimodaira Y,Kato H,Kobayashi H,et al.Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation[J].J Phys Chem B,2006,110(36):17790–17797
    300. Zhang S C,Zhang C A,Man Y.Visible-light-driven photocatalyst of Bi_2WO_6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties[J].J Solid State Chem,2006,179(1):62–69
    301. Zheng Y,Duan F,Wan J,et al.Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed {010} surface under visible light irradiation[J].J Mol Catal A: Chem,2009,303(1-2):9–14
    302. Kudo A, Hijii S.H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions[J].Chem Lett,1999,10:1103–1104
    303. Tang J W,Zou Z G,Ye J H.Photocatalytic decomposition of organic contaminants by Bi_2WO_6 under visible light irradiation[J].Catal Lett,2004,92(1-2):53–56
    304. Yu J G,Xiong J F,Cheng B.Hydrothermal preparation and visible-light photocatalytic activity of Bi_2WO_6 powders[J].J Solid State Chem,2005,178(6):1968–1972
    305. Zhang S C,Zhang C A,Man Y,et al.Visible-light-driven photocatalyst of Bi_2WO_6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties[J].J Solid State Chem,2006,179(1):62–69
    306. Yu S H,Liu B,Mo M S,et al.General synthesis of single-crystal tungstate nanorods/nanowires: A facile, low-temperature solution approach[J].Adv Funct Mater,2003,13(8):639–647
    307. Zhang L S,Wang W Z,Chen Z G,et al.Fabrication of flower-like Bi_2WO_6 superstructures as high performance visible-light driven photocatalysts[J].J Mater Chem,2007,17(24):2526–2532
    308. Li Y Y,Liu J P,Huang X T,et al.Hydrothermal synthesis of Bi_2WO_6 uniform hierarchical microspheres[J].Cryst Growth Des,2007,7(7):1350–1355
    309. Amano F,Nogami K,Abe R,et al.Facile hydrothermal preparation and photocatalytic activity of bismuth tungstate polycrystalline flake-ball particles[J].Chem Lett,2007,36:1314–1315
    310. Xiao Q,Zhang J,Xiao C,et al.Photocatalytic degradation of methylene blue over Co3O4/Bi_2WO_6 composite under visible light irradiation[J].Catal Commun,2008,9(6):1247–1253
    311. Wu L,Bi J H,Li Z H,et al.Rapid preparation of Bi_2WO_6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis[J].Catal Today,2008,131(1-4):15–20
    312. Xu H L,Wang W Z,Zhu W,et al.Synthesis of octahedral CuS nanocages via a solid-liquid reaction[J].Nanotechnology,2006,17(15):3649–3654
    313. Xi G C,Xiong K,Zhao Q B,et al.Nucleation-dissolution-recrystallization: a new growth mechanism for t-selenium nanotubes[J].Cryst Growth Des,2006,6(2):577–582
    314. Kudo A,Tsuji I,Kato H.AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation[J].Chem Commun,2002,17:1958–1959
    315. Amano F,Nogami K,Abe R,et al.Preparation and characterization of bismuth tungstate polycrystalline flake-ball particles for photocatalytic reactions[J].J Phys Chem C,2008,112(25):9320–9326
    316. Voronkova V I,Kharitonova E P,Rudnitskaya O G.Refinement of Bi_2WO_6 and Bi2MoO6 polymorphism[J].J Alloy compd,2009,487(1-2):274–279
    317. Chen C C,Li X Z,Ma W H,et al.Effect of transition metal ions on the TiO_2-assisted photodegradation of dyes under visible irradiation: A probe for the interfacial electron transfer process and reaction mechanism[J].J Phys Chem B,2002,106(2): 318–324
    318. Chen C,Zhao W,Li J,et al.Formation and identification of intermediates in the visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous TiO_2 dispersion[J].Environ Sci Technol,2002,36(16):3604–3611
    319. Huang Y,Li J,Ma W,et al.Efficient H2O2 Oxidation of Organic Pollutants Catalyzed by Supported Iron Sulfophenylporphyrin under Visible Light Irradiation[J].J Phys Chem B,2004,108(22):7263–7270
    320. Chakrabarti S,Dutta B K.Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst[J].J Hazard Mater,2004,112(3):269–278
    321. Hu J S,Ren L L,Guo Y G,et al.Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles[J].Angew Chem Int Ed,2005,44(8):1269–1273
    322. Bao N Z,Shen L M,Takata T,et al.Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible[J].Chem Mater,2008,20(1):110–117
    323. Lei Y Q,Wang G H,Song S Y,et al.Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties[J].Crystengcomm,2009,11(9):1857–1862
    324. Shang M,Wang W Z,Zhang L.Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template[J].J Hazard Mater,2009,167(1-3):803–809
    325. Lei Y Q,Wang G H,Song S Y,et al.Room temperature, template-free synthesis of BiOI hierarchical structures: Visible-light photocatalytic and electrochemical hydrogen storage properties[J].Dalt Trans,2010,39(13):3273–3278
    326. Zhang C,Zhu Y F.Synthesis of square Bi_2WO_6 nanoplates as high-activity visible-light-driven photocatalysts[J].Chem Mater,2005,17(13):3537-3545
    327. Zhao X,Xu T G,Yao W Q,et al.Photoelectrocatalytic degradation of 4-chlorophenol at Bi_2WO_6 nanoflake film electrode under visible light irradiation[J].Appl Catal B-Environ,2007,72(1-2):92–97
    328. He Z, Sun C, Yang SG, et al. Photocatalytic degradation of rhodamine B by Bi_2WO_6 with electron accepting agent under microwave irradiation: Mechanism and pathway[J].J Hazard Mater, 2009,162(2-3):1477–1486
    329. Wang C Y,Zhang H,Li F,et al.Degradation and mineralization of bisphenol A by mesoporous Bi_2WO_6 under simulated solar light irradiation[J].Environ Sci Technol,2010,44(17):6843–6848
    330. Bi J H,Wu L,Li H,et al.Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies[J].Acta Mater,2007,55(14):4699–4705
    331. Zhao X,Qu J H,Liu H J,et al.Photoelectrocatalytic degradation of triazine-containing azo dyes at gamma-Bi2MoO6 film electrode under visible light irradiation (lamda > 420 nm)[J].Environ Sci Technol,2007,41(19):6802–6807
    332. Martinez-de la Cruz A,Alfaro S O,Cuellar E L,et al.Photocatalytic properties of Bi2MoO6nanoparticles prepared by an amorphous complex precursor[J].Catal Today,2007,129(1-2):194–199
    333. Yin W Z,Wang W Z,Sun S M.Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation[J].Catal Commun,2010,11(7):647–650
    334. Zhang L,Chen D R,Jiao X L.Monoclinic structured BiVO4 nanosheets: Hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties[J].J Phys Chem B,2006,110(6):2668–2673
    335. Zhou L,Wang W Z,Zhang L,et al.Single-crystalline BiVO4 microtubes with square cross-sections: Microstructure, growth mechanism, and photocatalytic property[J].J Phys Chem C,2007,111(37):13659–13664
    336. Li G S,Zhang D Q,Yu J C.Ordered mesoporous BiVO_4 through nanocasting: A superior visible light-driven photocatalyst[J].Chem Mater,2008,20(12):3983–3992
    337. Ke D N,Peng T Y,Ma L,et al.Photocatalytic water splitting for O2 production under visible-light irradiation on BiVO4 nanoparticles in different sacrificial reagent solutions[J]. Appl Catal A:Gen,2008,350(1):111–117
    338. Liu Y Y,Huang B B,Dai Y,et al.Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst[J].Catal Commun,2009,11(3):210–213
    339. Iwase A,Kudo A.Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution[J].J Mater Chem,2010,20(35):7536–7542
    340. Shan Z C,Wang W D,Lin X P,et al.Photocatalytic degradation of organic dyes on visible-light responsive photocatalyst PbBiO2Br[J].J Solid Stare Chem,2008,181(6):1361–1366
    341. Kim H G,Borse P H,Jang J S,et al.Enhanced photochemical properties of electron rich W-doped PbBi2Nb2O9 layered perovskite material under visible-light irradiation[J].Mater Lett,2008,62(8-9):1427–1430
    342. Zhu S B,Xu T G,Fu H B,et al.Synergetic effect of Bi_2WO_6 photocatalyst with C-60 and enhanced photoactivity under visible irradiation[J].Environ Sci Technol,2007,41(17):6234–6239
    343. Ren J,Wang W Z,Sun S M,et al.Enhanced photocatalytic activity of Bi_2WO_6 loaded with Ag nanoparticles under visible light irradiation[J].Appl Catal B: Environ,2009,92(1-2):50–55
    344. Xu H,Li H M,Wu C D,et al.Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4[J].J Hazard Mater,2008,153(1-2):877–884
    345. Lee D K,Cho I S,Lee S,et al.Effects of carbon content on the photocatalytic activity of C/BiVO4 composites under visible light irradiation[J].Mater Chem Phys,2010,119(1-2):106–111
    346. Ge L.Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange[J].J Mol Catal A:Chem,2008,282(1-2):62–66
    347. Huidobro A,Sepúlveda-Escribano A,Rodríguez-Reinoso F.Vapor-phase hydrogenation of crotonaldehyde on titania-supported Pt and PtSnSMSI catalysts[J].J Catal,2002,212(1):94–103
    348. Drelinkiewicz A,Sobczak J W,Sobczak E,et al.Physicochemical and catalytic properties of Pt-poly(4-vinylpyridine) composites[J].Mater Chem Phys,2009,114(2-3):763–773
    349. Fu H B,Pan C S,Yao W Q,et al.Visible-light-induced degradation of rhodamine B by nanosized Bi_2WO_6[J].J Phys Chem B,2005,109(47):22432–22439
    350. Woo S I,Kim J S,Jun H K.Characterization of Ca?Bi?Mo oxide catalyst for selective propaneammoxidation, using XRD, XPS, TPRX/TPRO, and IR/Raman[J].J Phys Chem B,2004,108(26):8941–8946
    351.李本侠.金属氧化物和硒化物的三维多级微纳结构的化学合成与组装[D]:[博士学位论文].安徽:中国科学技术大学无机化学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700