用户名: 密码: 验证码:
栽培大豆和滩涂野大豆杂交后代JB185的耐盐生理与分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以栽培大豆Jackson品种(耐盐性较弱)和滩涂野生大豆BB52种群(耐盐性较强)及其经逐代耐盐性筛选的杂交后代JB185(F_5)幼苗为材料,用0、50、100、150 mmol·L~(-1)NaCl溶液处理6d,从含水量、根冠比、叶绿素及其荧光参数、盐离子吸收及其毒害等生理方面和通过EST(表达序列标签)方法从分子水平对其耐盐能力或特性进行了比较研究。主要结果如下:
     胁迫6d后,供试3材料的相对生长速率、植株含水量、干物质积累量均随着NaCl浓度的增加而下降,根冠比、丙二醛含量、相对电解质渗漏率随着NaCl浓度的增加而上升,其中JB185各项生理指标的变化介于两亲本之间。
     在50、100 mmol·L~(-1)NaCl处理6d时,Jackson和JB185幼苗叶片的Chl和Car含量与对照相比上升,在150 mmol·L~(-1)NaCl处理下与对照相比显著下降,而在各NaCl浓度处理下BB52叶片Chl和Car含量与对照相比都表现明显升高趋势。随着NaCl浓度增加,BB52和JB185幼苗叶片Fv/Fm值与对照相比无明显变化,Jackson在50、100 mmol·L~(-1)NaCl处理下Fv/Fm值与对照相比上升,在150mmol·L~(-1)NaCl胁迫下显著下降。
     胁迫6d后,除在50 mmol·L~(-1)NaCl胁迫下BB52幼苗根部K~+吸收增强外,3材料无论是不同器官还是植株整体水平上K~+含量随着NaCl浓度的增加均呈下降趋势,BB52体内K~+含量的降幅较Jackson小。Na~+含量随着NaCl浓度的增加均呈上升趋势,在根、茎及植株整体水平上BB52较Jackson Na~+含量均少,但在叶中相反;Na~+/K~+值与Na~+的变化趋势一致。JB185幼苗体内Na~+、K~+含量及Na~+/K~+值均介于两亲本之间。
     根据EST数据库拼接并从大豆cDNA中获得了1条大豆Cl~-通道基因的EST序列,通过Southern blot、半定量Northern blot、RT-PCR和分光光度法等检测结果表明,该EST所在Cl~-通道基因在供试3材料中的拷贝数无差异,但在盐胁迫下,栽培大豆Jackson幼苗根和叶中该基因的转录水平表现减弱趋势,而野生大豆BB52和杂交后代JB185表现增强趋势或相对较高水平,在JB185中更为明显。盐胁迫下Jackson幼苗体内积累的Cl~-相对较多,且向叶片运输比例较大,而BB52和JB185体内积累的Cl~-相对较少,且主要积累在根部,向叶片运输比例较小。
     上述研究结果表明:相对于其母本栽培大豆Jackson品种而言,通过与滩涂野大豆BB52种群的杂交和逐代耐盐性筛选,其后代JB185(F_5)的耐盐性得以提高,并且可能与Cl-通道基因的转录增强有关。
The Glycine max Jackson cultivar(the salt sensitive),the salt-born Glycine soja BB52 population(the salt tolerant),and their hybrid JB185(F_5) selected for salt tolerance generation by generation were used as the experimental materials.The above seedlings were stressed for 6 d with 50,100,150 mmol·L~(-1) NaCl solution,respectively. The physiological changes in water content,value of R/T,cholophyll and its fluorescence parameter,salt ion absorption and its toxicity,and molecular mechanism mainly through by EST(expressed sequence tags) were investigated.The result are as follows:
     After stressed for 6 d,the plant relative growth rate,water content,and dry weight of the 3 experimental materials were declined with the increase of NaC1 concentration. The value of R/T,MDA content,and relative electrolytic leakage were increased with the increase of NaCI concentration.The changes in above physiological indexes of JB185 were among its parents.
     The chlorophyll and carotenoid contents in leaves of Jackson and JB185 were increased under 50,100 mmol·L~(-1) NaCl stress,but they were decreased under 150 mmol·L~(-1) NaCl stress when compared to the control.Chlorophyll and carotenoid contents in leaves of BB52 were all increased under these NaC1 stresses.The Fv/Fm values in leaves of BB52 and JB185 were not obviously changed with the increase of NaCl concentration when compared to the control,and those in Jackson were increased under 50,100 mmol·L~(-1) NaCl stresses,but it was obviously decreased under 150 mmol·L~(-1) NaCl stress.
     The K~+ contents in different organs or whole seedlings of 3 experimental materials were decreased with the increase of NaCl concentration,except for the enhanced K~+ absorption in roots of BB52 seedlings under 50 mmol·L~(-1)NaCl stress,but the decrease of K~+ content in BB52 was smaller than those in Jackson.The Na~+ contents in the 3 experimental materials at different organs or whole plants were increased with the increase of NaCI concentration.The Na~+ contents in root,stem,and whole seedling of BB52 were all fewer than Jackson,but it showed the reverse in leaf. The change in value of Na~+/K~+ was consistent with the change in Na~+.The Na~+ and K+ contents,and value of Na~+/K~+ in JB 185 seedlings were between its parents.
     One EST(expressed sequence tag) of chloride channel genes(CLCs) in soybean was assembled according to the EST database,and was confirmed in soybean cDNA by RT-PCR technique.No difference in gene copy number of the EST among the Glycine max(Jackson),Glycine soja(BB52) and their hybrid(JB185) was showed by Southern blot, its weakening transcriptional level by semi-quantitative Northern blot and RT-PCR exhibited in roots and leaves of Jackson seedlings under salt stress,while an enhanced or relatively higher trend was found in salt-stressed BB52 and JB185 seedlings,especially in JB185.Measured by photometric method,the higher CI content in plants and its larger proportion in leaves of Jackson seedlings,and lower Cl~content in plants and its larger proportion in roots in BB52 and JB185 seedlings were observed.
     The results of this research indicate that,the relative improved salt tolerance of the hybrid JB185 compared to its female parent Jackson can be achieved by hybridization with the salt-born BB52 population and selection for salt tolerance generation by generation,and this improved salt tolerance may be resulted from the enhanced transcriptional level of CLCs.
引文
白爽,宋其平,刘桂丰,等.转betA基因的小黑杨花粉植株耐盐性分析[J].分子植物育种,2006,4(1):41-44
    曹福亮,赵永艳,张往祥,等.盐胁迫对南方7个造林树种生理特性的影响[J].山东林业科技,1997,97(6):1-8
    陈宣钦,刘怀攀,罗庆云,等.耐盐性不同的野大豆种子和幼苗对等渗水分和NaCl胁迫的响应[J].南京农业大学学报,2006,29(4):28-32
    陈宣钦,於丙军,刘友良.栽培和野生大豆及其杂交后代幼苗的耐氯性与多胺积累的关系[J].植物生理与分子生物学学报,2007,33(1):46-52
    戴伟民,蔡润,潘俊松,等.盐胁迫对番茄幼苗生长发育的影响[J].上海农业学报.2002,18(1):58-62
    刁丰秋,章文华,刘友良.盐胁迫对大麦叶片类囊体膜组成和功能的影响[J].植物生理学报,1997,23(2):105-110
    董晓霞,郭洪海,孔令安.杂交酸模耐盐性鉴定的生理指标筛选[J].山东农业科学,1999(6):22-24
    董晓霞,赵树慧,孔令安,等.苇状羊茅盐胁迫下生理效应的研究[J].草业科学,1998,15(5):10-13
    冯文新,张宝红.钙处理对盐胁迫下大豆种子萌发及其生理生化指标的影响[J].大豆科学,1997,16(1):48-53
    高芸,程智慧,孟焕文.NaCl处理对番茄幼苗光合作用和叶绿素荧光的影响[J].干旱地区农业研究,2008,26(1):195-199
    高永生,王锁民,张承烈.植物盐适应性调节机制的研究进展[J].草业学报,2003,12(2):1-6
    高志民,彭镇华.甜菜碱合成调控基因共表达载体的构建与抗盐初步研究[J].林业科学研究,2005,18(3):231-235
    郭洪海,董晓霞,孔令安,等.盐胁迫下饲料酸模植株生长及其与Na~+、K~+、Cl~-的关系[J].山东农业科学,1998,6:26-29
    郇树乾,刘国道,张绪元,等.NaCl胁迫对刚果臂形草种子萌发及幼苗生理效应的研究[J].中国草地,2004,26(6):45-49
    黄骥,张红生,曹雅君,等.水稻功能基因的电子克隆策略[J].中国水稻科学,2002,16(4):295-298
    黄培堂,等译,[美]J.萨姆布鲁克,D.W.拉塞尔著.《分子克隆实验指南》[M],北京:科学出版社,第3版,2002:516-596
    黄有军,等.盐胁迫下罗汉松生长和生理变化的研究[J].中南林业科技大学学报.2007,27(5):58-61
    惠红霞,许兴,李前荣.外源甜菜碱对盐胁迫下枸杞光合功能的改善[J].西北植物学报,2003,23(12):2137-2422
    江行玉,窦君霞,王正秋.NaCl对玉米和棉花光合作用与渗透调节能力影响的比较[J].植物生理学通讯,2001,37(4):303-305
    孔东,等.水盐胁迫对向日葵幼苗生长发育的影响[J].灌溉排水学报.2004,23(5):32-35
    孔东,史海滨,等.干旱区不同水盐处理对向日葵生理性状的影响研究[J].灌溉排水学报.2004,23(1):44-46,51
    来永才,等.野生大豆资源在大豆种质拓宽领域中的应用[J].沈阳农业大学学报,2004,35(3):184-188
    李军,郑师章,钱吉,等.野生大豆种子的研究[J].应用生态学报,1997,8(4):372-376
    李彦,等.盐分胁迫对植物的影响及植物耐盐机理研究进展[J].植物生理科学.2008,24(1):258-265
    李彦,罗盛国,刘元英,等.硒对番茄叶片中谷胱苷肽过氧化物酶活性及产量和品质的影响[J].山东农业科学,1999(6):38-39
    李彬,王志春,孙志高,等.中国盐碱地资源与可持续利用研究[J].干旱地区农业研究,2005,23(2):154-158
    李福山.中国野生大豆资源的地理分布及生态分化研究[J].中国农业科学,1993,26(2)47-55
    李景欣,高春宇,华晓秀.NaCl胁迫对黄芪种子萌发及幼苗生长的影响[J].内蒙古林业科技,2005,(3):11-14
    林莺,李伟,范海,等.海滨锦葵光合作用对盐胁迫的响应[J].山东师范大学学报,2006,21(2):118-120
    林凤栖,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,20(2):20-25
    刘巍,等.植物盐胁迫研究进展[J].防护林科技.2008,(1):58-61
    刘家尧,衣艳君.盐胁迫对不同抗盐性小麦叶片荧光诱导动力学影响[J].植物学通报,1998,15(2):46-49
    刘小京,刘孟雨.盐生植物利用与区域农业可持续发展[M].北京:气象出版社,2002,1-9
    刘友良,汪良驹.植物对盐胁迫的反应和耐盐性[A].余叔文,汤章城主编.植物生理与分子生物学[C].第2版.北京:科学出版社,1998,752-769
    刘祖祺,张石城.植物抗性生理学(M).北京:中国农业出版社,1994,1230-250
    卢丽萍,高贤彪,李彦,等.盐渍土番茄苗期养分吸收特性的研究[J].植物营养与肥料学报,2000,6(增刊):83-86
    陆静梅,刘友良,历锡亮,等.不同进化型大豆花的结构研究[J].应用生态学报,1997,8(4):377-380
    吕宪禹,等.导入野生大豆DNA小麦后代的农艺性状研究[J].南开大学学报(自然科学版),2002,35(4):103-104
    罗庆云,刘友良,章元明,薛 艳,张 艳.苗期栽培大豆Cl~-耐性的遗传分析[J].大豆科学,2006,25(4):390-394
    罗庆云,於丙军,刘友良.NaCl胁迫下Cl~-和Na~+对大豆幼苗胁迫作用的比较.中国农业科学,2003,36(11):1390-1394
    苗济文,马云瑞,罗代雄,等.土壤盐分对宁夏春小麦的影响[J].西北农业学报,1995,4(3):81-84
    牟永花,张德威.NaCl胁迫下番茄苗的生长和营养元素积累[J].植物生理学通讯,1998,34(1):14-16
    彭宇,张春兰,沈其荣,等.盐胁迫下两种外源酚酸对黄瓜种子萌发及幼苗体内某些酶活性的效应[J].南京农业大学学报,2003,26(1):33-36
    蒲光兰,周兰英,胡学华,等.干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响[J].干旱地区农业研究,2005,23(3):44-48
    屈娅娜,於丙军.氯离子通道抑制剂对盐胁迫下野生和栽培大豆幼苗离子含量等生理指标的影响[J].南京农业大学学报,2008年第2期(印刷中)
    邵桂花,常汝镇,陈一舞.大豆耐盐性研究[J].大豆科学,1993,12(3):244-248
    邵桂花,常汝镇,陈一舞.大豆耐盐性遗传的研究[J].作物学报,1994,20(6):721-726
    宋凤斌,徐世昌.玉米抗旱性鉴定指标的研究[J].中国生态农业学报..2004,12(1):127-129
    孙小芳,刘友良,陈沁.棉花耐盐性研究进展[J].棉花学报,1998,10(3):118-124
    唐薇,罗振,温四民,等.干旱和盐胁对棉苗光合抑制效应的比较[J].棉花学报,2007,19(1):28-32
    陶晶,李铁,孙长彬,等.植物盐胁迫研究进展[J].吉林林业科技,2003,32(5):1-7
    王苗,齐树亭,葛美丽.盐生植物对滨海盐渍土生物改良的研究进展[J].安徽农业科学.2008,36(7):2898-2899,2954
    王萍,殷立娟,李建东.NaCl胁迫下羊草幼苗的生理反应及外源ABA的缓解效应[J].应用生态学报,1996,7(2):155-158
    王宝山,赵可夫.NaCl胁迫下玉米黄化苗质外体和共质体Na~+与Ca~(2+)浓度的变化[J].作物学报,1997,23(1):27-33
    王宝山,赵可夫.抗盐剂浸种对盐抑制玉米幼苗生长的缓解效应[J].山东师大学报(自然科学版),1995,10(1):66-69
    王丽燕,赵可夫.玉米幼苗对盐胁迫的生理响应[J].作物学报,2005,31(2):264-266
    王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响[J].南京农业大学学报,2002,25(4):11-14
    王新伟.同盐浓度对马铃薯试管苗的胁迫效应[J].马铃薯杂志,1998,12(4):203-207
    王学征,韩文灏,于广建.盐分胁迫对番茄幼苗生理生化指标影响的研究[J].北方园艺,2004,3:48,49
    王羽梅,任安祥,潘春香,等.长时间盐胁迫对苋菜叶片细胞结构的影响[J].植物生理学通讯,2004,40(3):289-292
    王玉祥,李德生,刘桂军,等.转抗盐碱基因八里庄杨大田释放试验[J].东北林业大学学报,2004,32(3):23-25
    王转斌.将杨树和野生大豆DNA直接导入栽培大豆的研究[J].东北林业大学学报,2001,29(3):93-94
    魏国强,朱祝军,方学智,等.NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响[J].中国农业科学.2004,37(11):1754-1759
    翁锦周,等.盐胁迫对桉树幼苗的生长及叶绿素含量的影响[J].热带作物学报.2007,28(4):15-20
    吴关庭,郎春秀,胡张华,等.转CBF1基因增强水稻的耐逆性[J].核农学报.2006,20(3):169-173
    夏丽华,郭继勋.磁处理种子对羊草生长及抗盐碱性的影响[J].草业科学,2001,10(1):58-63
    肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报,2000,20(5):818-825
    徐豹,等.中国野生大豆(G.soja)脂肪及其脂肪酸组成的研究[J].吉林农业科学,1993,(2):1-6
    许兴,李树华,惠红霞,等.NaCl胁迫对小麦幼苗生长、叶绿素含量及Na~+、K~+吸收的影响[J].西北植物学报,2002,22(2):278-284
    许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244
    许大全.光合作用效率[M].上海科学技术出版社,2002,39-98
    晏斌,汪宗立.盐逆境下两个水稻品种根系Na~+吸收及质膜ATP酶的作用[J].中国水稻科学,1992,6(1):27-32
    杨光宇,等.野生大豆种质资源评价与利用研究进展[J].吉林农业科学,2005,31(2):61-63
    杨洪兵,丁顺华,邱念伟,等.小麦幼苗拒Na~+部位的Na~+拒机理[J].植物生理与分子生物学学报,2001,27(2):179-185
    杨少辉,季静,王罡宋,等.盐胁迫对植物影响的研究进展[J].分子植物育种,2006,4(3):139-142
    杨晓英,章文华,王庆亚,等.江苏野生大豆的耐盐性和离子在体内的分布及选择性运输[J].应用生态学报,2003,14(12):2237-2240
    杨秀玲,郁继华,李雅佳,等.NaCl胁迫对黄瓜种子萌发及幼苗生长的影响[J].甘肃农业大学学报,2004,39(1):6-17
    于海武,李莹.植物耐盐性研究进展[J].北华大学学报,2004,3(5):257-263
    余叔文,汤章成.植物生理与分子生物学[M].北京:科学出版社,1998
    於丙军,刘友良.植物中的氯、氯通道和耐氯性[J].植物学通报,2004,21(4):402-410
    於丙军,李锁娜,刘友良.大豆苗期盐害离子效应的比较[J].南京农业大学学报,2002,25(1):16-21
    於丙军,罗庆云,曹爱忠,等.栽培大豆和野生大豆耐盐性及离子效应的比较[J].植物资源与环境学报,2001,10(1):25-29
    张建锋,李吉跃,宋玉民,等.植物耐盐机理与耐盐植物选育研究进展[J].世界林业研究,2003,16(2):19-20
    李合生,孙群,等.植物生理生化实验原理和技术[M].高等教育出版社,2000:134-137
    张艳艳,刘俊,刘友良.一氧化氮缓解盐胁迫对玉米生长的抑制作用[J].植物生理与分子生物学学报,2004,30(4):455-459
    赵会杰,邹琦,余振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报,2000,34(3):248-251
    赵可夫,范海,Harris.盐胁迫下外源ABA对玉米幼苗耐盐性的影响[J].植物学报,1995,37(4):295-300
    赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993:24-27,221-272,230,231
    郑青松,王仁雷,刘有良.钙对盐胁迫下棉苗离子吸收分配的影响[J].植物生理学报,2001,27(4):325-330
    支立峰,陈明清,余涛,等.p5cs转化水稻细胞系的研究[J].湖北师范学院学报(自然科学版),2005,25(4):39-43,51
    钟国辉,王建林.外源甜菜碱对氯化钠胁迫下白菜叶片的保护效应(简报)[J].植物生理学通讯,1997,33(5):333-335
    周强,李萍,曹金花,等.测定植物体内氯离子含量的滴定法和分光光度法比较[J].植物生理学通迅,2007,43(6):1163-1166
    朱新广,王强,张其德,等.冬小麦光合功能对盐胁迫的响应[J].植物营养与肥料学报,2002,8(2):177-180
    朱新广,张其德,匡廷云.NaCl对小麦光合功能的伤害主要是由离子效应造成的[J].植物学通报,2000,17(4):360-365
    朱新广,张其德.NaCl对光合作用影响的研究进展[J].植物学通报,1999,16(4):332-338
    庄丙昌主编.中国野生大豆生物学研究[M].北京:科学出版社.1999
    Alamgir A N M,Ali M Y.Effect of salinity on leaf pigments,sugar and protein concentrations and chloroplast ATPase activity of rice(Oryza sativa L.)[J].Bangladesh J Bot,1999,28:145-149
    Annick M,Elisabeth P,Gerard T.Osmotic adjustment,gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress[J].J.Plant Physiol,2004,161(1):25-33
    Ashraf M,Learyj W.Distribution of cations in leaves of salt-tolerant and salt-sensitive lines of sunflower under saline conditions[J].J.Plant Nutr,1995,18(11):2379-2388
    Baker N R.A possible role for photosystem II in environmental perturbations of photosynthesis[J].Physiol Plant.1991,81(4):563-570
    Bethke P C,Drew M C.Stomatal and nonstomatal components to inhibition of photosythesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity[J].J.Plant Physiol,1992,99(1):219-226
    Bhargava S,Paranjpe S.Genotypic variation in the photosynthetic competence of Sorghum bicolor seedlings subjected to polyethylene glycol-mediated drought stress[J].J.Plant Physiol,2004,161(1):125-129
    Bohnert H J,Nelson D E,Jensen R G.Adaptations to environmental stresses[J].Plant Cell,1995,7(7):1099-1111
    Bongi G,Loreto F.Gas-exchange properties of salt-stressed olive(Olea europea L.) leaves[J].J.Plant Physiol.1989,90(4):1408-1416
    Brugnoli E,Bj(o|¨)rkman O.Growth of cotton under continuous salinity stress:influence on allocation pattern,stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy[J].Planta.1992,187(3):335-347
    Brugnoli E,Lauteri M.Effects of salinity on stomatal conductance,photosynthetic capacity,and carbon isotope discrimination of salt-tolerant(Gossypium hirsutum L.) and salt-sensitive(Phaseolus vulgaris L.) C_3 non-halophytes[J].J.Plant Physiol,1991,95(2):628-635
    Burton G W,Ingold K U.β-carotene:an unusual type of lipid antioxidant[J].Science,1984,224:569-573
    Cao W H,et al.Modulation of ethylene responses affects plant salt-stress responses[J].J.Plant Physiol,2007,143(2):707-719
    Chartzoulakis K,Klapaki G.Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages[J].Sci Hortic,2000,86(3):247-260
    Chen SH F,Zhu Y L,et al.Effects of NaCl stress on activities of protective enzymes,contents of osmotic adjustment substances and photosynthetic characteristics in grafted tomato seedlings[J]. Acta Hortic Sinica, 2005, 32(4): 609-613
    Chen Y Z, Pen C L. Application of measuring chlorophyll fluorescence in dunaliella salina[J]. J Inst South China Bot, CAS, 1994, 9: 45-101
    Chen Y ZH, Li X P, Xia L, et al. The application of chlorophyll fluorescence technique in the study of responses of plants to environmental stresses[J]. J.Trop.Subt Bot, 1995,3 (4): 79-86
    Davenport R J, Tester M. A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat[J]. J. Plant Physiol, 2000, 122(3): 826-834
    De A A. Monachello D, Ephritikhine G, et al.The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles[J]. Nature, 2006,442: 939-942
    Durand M, Lacan D. Sodium partitioning within the shoot of soybean[J]. Physiol Plant, 1994,91(1): 65-71
    Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Ann. Rev. Plant Physiol,1982,33:317-345
    Ghars A M, Parre E, et al. Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophia, with special emphasis on K~+/Na~+ selectivity and praline accumulation[J]. J.Plant Physiol. 2008, 165(6): 588-599
    Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environ. Exp. Bot, 2002, 47(1):39-50
    Glenn E P, Brown J J, Khan M J. Mechanisms of salt tolerance in higher plants[A]. In: Basra A S, Basra R K(eds). Mechanisms of environmental stress resistance in plant[C]. Singapore: Harwood Academic Publisher, 1997, 83-110
    Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Ann Rev Plant Physiol, 1980,31: 149-190
    Han L M, Yu J N, Ju W F. Salt and drought tolerance of transgenic salvia miltiorrhiza Bunge with the TaLEA1 gene[J]. J.Plant Physiol. Mol Biol, 2007, 33(2): 109-114
    Hasegawa P M, Bressan R A, et al. Plant cellular and molecular responses to high salinity[J]. Ann Rev.Plant Physiol. Plant Mol Biol, 2000, 51: 463-499
    Hong S S, Xu D Q. Light induced increase in initial fluorescence parameters to strong light between wheat and soybean leaves[J]. Chin Sci Bull, 1997,42: 684-688
    Hu W H, Yu J Q. Effects of chilling under low light on photosynthesis and chlorophyll fluorescence characteristic in tomato leaves[J]. Acta Hortic Sinica, 2001, 28(1): 41-46
    Kannan S. Differential uptake of sodium and chloride in crop cultivars and their relationship to salt tolerance. J Ind Soc Coa Agri Res, 1987,5(1): 139-143
    Khavari-Nejad R A, Mostofi Y. Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars[J]. Photosynthetica, 1998,35(1): 151-154
    Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics[J]. Annu Rev. Plant Physiol. Plant Mol Biol, 1991,42: 313-349
    Kumar S, Dhingra A, Daniell H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance[J]. J. Plant Physiol, 2004, 136(1):2843-2854
    Lacan D, Durand M. Na~+ and K~+ transport in excised soybean roots. Physiol Plant, 1995, 93(1):132-138
    Lanchl I A. Salt exclusion: an adaptation of leguims for crops and padtures under saline condition[A].Stamples R C, Tonniessen G H(eds). Salinity tolerance in plant strateges for crop improvement[C].New York:Wiley-interscience, 1984:171-187
    Lazar D, Ilik P. High-temperature induced chlorophyll fluorescence changes in barley leaves.Comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve[J]. Plant Sci, 1997,124(2): 159-164
    Levitt J. Response of plants to environmental stress[M]. NewYork : Aedemic Press, 1980
    Li W Y F, Wong F L, Tsai S N, et al. Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (by)-2 Cells[J]. Plant Cell Environ, 2006,29:1122-1137
    Lu C, Qiu N, Lu Q, et al. Does salt stress lead to increased susceptibility of photosystem Ⅱ to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors?[J]. Plant Sci. 2002, 163(5): 1063-1068
    Luo J, Zhang M Q, et al. Effects of water stress on the chlorophyll a fluorescence indeuction kinetics of sugarcane genotypes[J]. J Fujian Agri Fore Univ 2000, 29(1): 18-20
    Luo Q Y, Yu B J, Liu Y L. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and Glycine soja under NaCl stress[J]. J. Plant Physiol, 2005,162: 1003-1012
    Majee M, Maitra S, Ghosh K. A novel salt-tolerant 1-myo-inositol-1-phosphate synthase from porteresia coarctata (Roxb.) tateoka, a halophytic wild rice[J]. Biol Chem, 2004,279 (27): 28539-28552
    Mansour M M F. NaCl alteration of plasma membrane of Allium cepa epidermal cells. Alleviation by calcium[J]. J. Plant Physiol. 1995,145(5-6): 726-730
    
    Mark T, Romola D. Na~+ tolerance and Na~+ transport in higher plants[J]. Ann. Bot. 2003, 91(5): 503-527
    Martinez-Atienza J, Jiang X, et al. Conservation of the Salt Overly Sensitive Pathway in Rice[J]. J. Plant Physiol, 2007,143(2): 1001-1012
    
    Meloni D A, Oliva M A, et al. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress[J]. Environ. Exp. Bot, 2003, 49: 69-76
    
    Munn R, Termaa A. Whole plant responses to salinity[J]. J. Plant Physiol, 1986,13: 143-160
    Muns R. Physiological process limitting plant growth in saline soils[J]. Plant Cell Environ, 1993,16: 15-24
    
    Netondo G W, Onyango J C, Beck E. Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity [J]. Crop Sci, 2004,44(3): 797-805
    Obata T, Kitamoto H K, et al. Rice Shaker Potassium Channel OsKAT1 Confers Tolerance to Salinity Stress on Yeast and Rice Cells[J]. J. Plant Physiol, 2007,144(4): 1978-1985
    Parida A K, Das A B. Salt tolerance and salinity effects on plants: review[J]. Ecotoxicol and Environ Saf,2005, 60(3): 324-349
    Parida A, Das A B, Das P. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove Bruguiera parviflora in hydroponic cultures[J]. J Plant Biol,2002,45:28-36
    Pitman M G. Transport across the root and shoot/root interaction[A]. In: Staples R C, Toennissen G H.Salinity Tolerance in plant strategies for crop improvement[M]. New York: John Wiley, 1984,93-123
    Qiu N, Lu C. Enhanced tolerance of photosynthesis against high temperature damage in salt-adapted halophyte Atriplex centralasiatica plants[J]. Plant Cell Environ. 2003, 26(7), 1137-1145
    Qiu N, Lu Q, Lu C. Photosynthesis, photosystem Ⅱ efficiency and the xanthophyⅡ cycle in the salt-adapted halophyte Atriplex centralasiatica[J]. New Phytol.2003,159: 479-486
    Renault S, Croser C, Frankin J A, et al. Effect of NaCl and Na_2SO_4 on red-osier dogwood(Cornus stolonifera Michx.) seedlings[J]. Plant Soil, 2001, 233(2): 261-268
    Romero-Aranda R, Soria T, Cuartero J. Tomato plant-waterup take and plant-water relationships under saline growth conditions [J]. Plant Sci, 2001,160(2): 265-272
    Sakaki T, Kondo N, Sugahara K. Breakdown of photosynthetic pigments and lipids in pinach leaves with ozone fumigation: Role of active oxygens[J]. Physiol Plant, 1983, 59(1): 28-34
    Schachtman D P, et al. Variation in sodium exclusion and salt tolerance in Triticum tauschii[J]. Crop Sci,1991, 31(3): 992-997
    Schubert S, L(a|¨)uchli A. Sodium exclusion mechanisms at the root surface of two maize cultivers[J]. Plant Soil, 1990,123(2): 205-209
    Shi H, Bressan R, Hasegawa P M, et al. Sodium[A]. Plant Nutritional Genomics[C]. Broadley M, White P. (Eds.), Blackwell Publishing, London, 2005: 127-149
    Sivritepe N, Sivritepe H O, Eris A. The effect s of NaCl priming on salt tolerance in melon seedlings grown under saline conditions[J]. Sci. Hortic. 2003, 97(3-4): 229-37
    Smillie R M, Nott R. Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo[J].J.Plant Physiol. 1982, 70: 1049-1054
    Strogonov B P. Structure and function of plant cell in saline habitats[M]. New York: Halsted Press, 1973:78-83.
    Sultana N, Ikeda T, Itoh R. Efect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains[J]. Environ Exp Bot, 1999, 42(3): 211-220
    Tian X H, Li X P, Zhou H L, et al. OsDREB4 genes in rice encode AP2-containing proteins that bind specifically to the dehydration-responsive element[J]. Acta Bot Sinica, 2005, 47 (4): 467-476
    Walker R R, Blackmore D H, Sun Q. Carbon dioxide assimilation and foliar ion concentration in leaves of lemon(Citrus limon L.) trees irrigated with NaCl or Na_2SO_4[J]. Aust. J. Plant Physiol, 1993, 20:173-185
    Wang J, Zhang L D, Zuo K J, et al. Cloning and expressional studies of the voltage-dependent anion channel gene from Brassica rapa L[J]. J Integrat Plant Biol, 2006, 48(2), 197-203
    Wang L Q, Shao M A. The salt influx transport and accumulation in higher plant[J]. Agri Res Arid Areas, 2005, 23(5): 244-249
    Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress[J]. J. Hortic. Sci. Biotechnol, 2000, 75(6): 623-627
    White P J, Broadley M R. Chloride in soils and its uptake and movement within the plant: a review[J].Ann Bot, 2001, 88(6): 967-988
    Willekens H, Vancamp W, Lnze D, et al. Ozone, sulfur dioxide, and ultraviolet B have similar effect on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L.[J]. J. Plant Physiol, 1994,106: 1007-1014
    Wolf D J, Olaf W, et al. Effect of NaCl salinity on flows and partitioning of C, N, and mineral ions in whole plants of white lupin, Lup inusalbus L[J]. J. Exp. Bot. 1992, 43 (251): 777-788
    Wu J M, Liu ZH P, Liu L, Deng L Q. Response of A loevera seedlings to seawater[J]. Acta Bot Sinica, 2005,25(8): 1584-1588
    Yang J, Blanchar R W. Differentiating chloride susceptibility in soybean cultivars[J]. Agron. J. 1993,85:880-885
    Yang G Y, Heng H Y, Han C F. A preliminary study on protein and oil contents of wild soybean in JiLin province. Soy Gene Newsletter,. 1993, 20: 35-38
    Yang X H, Lu C M. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants[J]. Physiol Plant. 2005, 124(3): 343-352
    Yu B J, Liu Y L. Chlorine, chloride channel and chlorine tolerance in plants[J]. Chin Bull Bot, 2004,21(4): 402-410
    Yu B J, Luo Q Y, Liu Y L. Effects of salt stress on growth and ionic distribution of salt-born Gl ycine soja[J]. Acta Agron Sinica, 2001, 27(6): 776-780
    Zhu J K. Plant salt tolerance[J].Trends Plant Sci. 2001, 6(2): 66-71
    
    Zhu J K. Regulation of ion homeostasis under salt stress[J]. Curr. Opin. Plant BioL 2003, 6(5): 441-445
    Ziska L H, Seemann J R, Dejong T M. Salinity induced limitations on photosynthesis in Prunus salicina,a deciduous tree species[J]. J. Plant Physiol. 1990, 93(3): 864-870

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700