用户名: 密码: 验证码:
耐Cu、Cd微生物的分离筛选及其吸附机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的不断发展,环境中的重金属污染日益加剧。铜陵地区是我国重要的铜工业生产基地之一,但发达的矿业活动同时也带来了严重的环境污染,已有研究显示,矿区不同功能区表层土壤中的Zn、Cu、Pb、Cd、Cr等严重超标。重金属是对生态环境危害极大的污染物之一,它们进入环境后不易被生物降解,大部分参与食物链循环,最终在生物体内积累,生物体正常生理代谢活动被破坏。微生物可以通过生物吸附、溶解、氧化还原等作用降低环境中的重金属,分离研究耐重金属的微生物用于吸附和积累重金属是治理重金属污染的有效措施之一。本文选择安徽铜陵新桥矿区土壤为研究对象,对其中的微生物含量与重金属含量作了对比分析,并对土壤中筛选得到的耐受微生物进行生长特性和吸附特性研究,对菌株吸附重金属的机理进行初探。
     通过研究铜陵新桥矿区污染土壤中重金属污染元素含量与土壤中微生物生物量之间的对应关系,发现土壤中细菌、放线菌、高铁还原菌三种菌种对污染元素的敏感程度不同,其敏感程度依次是:放线菌>细菌>高铁还原菌。矿集区土壤中As、Au、Cd、Zn、Cu、Pb元素含量与土壤中细菌、放线菌、高铁还原菌数量之间的相关关系为:As、Au、Zn、Cu与细菌和放线菌,Cd、Pb与放线菌的含量呈负相关关系,指示了土壤中高浓度污染元素对微生物的抑制作用;Cd、Pb与细菌,Cd、Zn与高铁还原菌的含量呈正相关关系, Au、Pb、As与高铁还原菌数量的关系不明显。
     本文充分利用微生物受自然环境重金属胁迫而产生耐性这一特点,进行土壤中耐Cu、Cd微生物的筛选研究,成功获得两株耐Cu、Cd的菌株。一株为耐Cu2+50g/L的菌株,经鉴定为类芽孢杆菌Cohnella.sp.编号为S108,另一株为耐Cd2+6000mg/L的真菌菌株,经鉴定为Fungal sp.编号为IS021。
     分别对菌株的生长特性和吸附特性进行研究,结果表明,菌株S108的生长最适pH是8.0,装液量为250mL三角瓶中装50mL培养基,铜浓度对菌株的生长影响不大,菌株IS021的生长最适pH是7.0,装液量为50mL,镉浓度对菌株的生长影响大,高浓度抑制了菌株的生长。菌株S108对Cu2+的最佳吸附条件为pH为8,菌龄为3d,Cu2+初始浓度为100mg/L,且菌株在吸附时间为12h时达到最大吸附量68%。菌株IS021对Cd2+的最佳吸附条件是pH为7,菌龄为2d,Cd2+初始浓度为100mg/L,菌株在吸附时间为7h时达到吸附平衡,其最大吸附量是65%。pH对两种菌株的吸附特性有一定的影响, pH过高和过低都不利于微生物的吸附;菌龄对菌株的吸附特性影响很大,在试验中应选择合适菌龄;重金属的初始浓度提高使得菌株的吸附率由于吸附位点的饱和而下降
     电镜观察和能谱分析图谱结果表明,菌株S108吸附Cu2+主要是基于其细胞表面的吸附沉淀作用,菌株IS021对Cd2+的吸附主要是细胞表面的生物吸附作用。微生物可能通过其表面的带电电荷和活性位点来结合重金属,从而使溶液中的金属离子减少。
With the development of social economy, the pollution of heavy metal increases greatly. Tongling district is one of the most important copper industry production bases in our country. However, the prosperous mining activities also caused serious environmental pollution. It has been investigated that the amount of Zn、Cu、Pb、Cd、Cr and other in different functional areas of the Mining are serious exceeded. Heavy metals are extremely harmful to the ecological enviroment. They are hard to biodegradation when entered the environment, therefore , most of them participated in the food chain circle and eventually accumulated in the biological and then destroy some normal physiological and metabolic activities. Microorganisms could reduce the content of heavy metals through biosorption, dissolving, reducing and redox. The purpose of isolation and study the bacteria toleranced towards heavy metals, which can adsorb and accumulate heavy metals is a effective measure to solve the heavy metal pollution. The paper have choosed the siol of Tongling Xinqiao mining, Anhui and analyzed the correspondence between heavy metal pollution element contents and microbial biomass in the soil. Screening the tolerant microorganisms and study their growth characteristics of strains and the mechanism of heavy metal adsorption.
     Through the study of the correspondence between heavy metal pollution element contents and microbial biomass in the soil of Tongling ore district have found the bacteria, actinomycetes, high iron sulfate-reducing bacteria in the soil have the different levels of pollution in sensitive elements, their degree of sensitivity are: actinomycetes> bacteria> high iron sulfate-reducing bacteria. The relationship between the content of As, Au, Cd, Zn, Cu, Pb and the biomass of soil bacteria, actinomycetes, high iron sulfate-reducing bacteria in the soil of Tongling ore district are as: As, Au, Zn, Cu and bacteria and actinomycetes, Cd, Pb and actinomycetes all displayed negative correlation between levels, reflecting that high concentrations of pollution elements in soil on microbial inhibition. Cd, Pb and bacteria, Cd, Zn and high iron sulfate-reducing bacteria were positively correlated, Au, Pb, As and high iron sulfate-reducing bacteria showed not obvious relationship on the number.
     This study fully utilized the characteristic that microorganism may produce resistance after exposed to heavy metal in natural environment for a long time. Therefore, the research of screening bacteria tolerance towards Cu、Cd in soil and successfully obtained two strains. One strain is Cu-tolerant at 50g/L and identified as Paenibacillus Cohnella.sp., numbered as S108;another is Fungi strain that can be tolerant Cd2+ at 6000mg/L and identified as Fungal sp, numbered as IS021.
     By investigating the growth and adsorption characteristics of the strains it have concluded that: the optimum pH of the strain S108 growth is 8.0, 50ml medium was added to a 250ml flask, the effect of Cu2+concentration to the growth of strain was small. The optimum pH of strain IS021 is 7.0, 50ml medium, high Cd2+concentration inhibited the growth of strain. The best condition of strain S108 adsorpted Cu2+ are pH 8.0, strain age is 3d, the Cu2+ initial concentration is 100mg/L, the maximum adsorption time is 12h 68%. The best condition of strain IS021 adsorpted Cd2+ are pH 7.0, strain age is 2d, the Cu2+ initial concentration is 100mg/L, the adsorption time to equilium is 7h and the maximum adsorption was 65%. pH has some effect to the adsorption characteristic of the strains. Too high or low pH goes against the adsorption of microorganism; cell age has great impact on the adsorption characteristic of the strains; the initial concentration of heavy metal increases, will decrease the adsorption rate due to the saturation of adsorption point.
     The result of Electron microscope and energy dispersive analysis (EDS) shows that the adsorption of Cu2+ by the S108 is based on adsorption sedimentation on the surface of cells, meanwhile, the adsorption of Cd2+ by the IS021 is based on biosorption on the surface of cells. Microorganism may reduce the metal ion in the solution with its surface electricity and active spot.
引文
[1]郑喜珅,鲁安怀,高翔,赵谨,郑德圣.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [2]王学锋,朱桂芬.重金属污染研究新进展[J].环境科学与技术,2003,26(1):54-56.
    [3]陈志良,仇荣亮,张景书,万云兵.重金属污染土壤的修复技术[J].环境保护,2002, 6:21-23.
    [4]陈华勇,欧阳建平,马振东.大冶有色冶炼厂附近农田镉污染的现状与治理对策[J].土壤.2003, 1:76-80.
    [5]夏立江,王宏康.土壤污染及其防治[M].上海:华东理工大学出版社, 2001.
    [6]孔志明.环境毒理学(第二版)[M].南京大学出版社.2004.
    [7]黄铭洪.环境污染与生态恢复【M].北京:科学出版社.2004.
    [8]王燮.生命科学中的微量元素(第二版)[M].北京:中国计量出版社. 1996.
    [9]马榕.重视磷肥中重金属9的危害[J].磷肥与复肥.2002, 17(6):5-7.
    [10]毛跟年,许牡丹,黄建文.环境中有毒有害物质与分析检测[M].北京:化学工业出版社.2004.
    [11]吕中明,杨永年.镉的遗传毒性作用及作用机理研究进展[J].职业医学.1995, 22(5): 43-45.
    [12]任继平,李德发,张丽英.镉毒性研究进展[J].动物营养学报.2003, 15 (1) :1-6.
    [13] Smeets J, Amavis R. European communities directive relation to the quality of water intended fou human consumption[M]. Commission of the European Communities, Belgium.
    [14]夏立江,王宏康.土壤污染及其防治[M].上海,华东理工大学出版社,2001.
    [15] Leeper GW. Managing the heavy metals on the land.Marcel Dekker, Inc.New York and Basel, 1978.
    [16]郁建栓.浅谈重金属对生物毒性效应的分子机理[J].环境污染与防治, 1996, 18(4): 28-31.
    [17] Malins D C and Ostrander G K. Aquatic toxicology:molecular,biochemical,and cellular perspectives.CRC press,Inc.1994, Florida,USA.
    [18] Botkin D and Keller E. Environmental science: Earth as a living planet. John Wiley and Sons,Inc.,USA,1995, pp.275-293.
    [19] Newman MC. Fundamentals of ecotoxicology.Ann Arbor Press,1998, pp.25-70.
    [20]王嘉,王仁卿,郭卫华.重金属对土壤微生物影响的研究进展[J].山东农业科学, 2006, 1: 101-103.
    [21]陈牧霞,地里拜尔,苏力坦,王吉德.污水灌溉重金属污染研究进展[J].干早地区农业研究, 2006, 24(2):52-53.
    [22]田生科.香蕃植物对Cu、Pb的耐性积累特性及对污水中重金属的去除效率研究[D].四川农业大学, 2005: 75-82.
    [23] Robinson J B . Microbiologcial Review . 1984, 48(2): 95-124.
    [24] Williams T W. Ensyme Mierobial Technol.1984, 8:530-537.
    [25]俞慎一,何振立,黄昌勇.重金属胁迫下土壤微生物和微生物过程研究进展[J].应用生态学报.2003, 14(4): 118-119.
    [26]高焕梅,孙燕,和林涛.重金属污染对土壤微生物种群数量及活性的影响[J].江西农业学报, 2007, 19(8): 83-85.
    [27] Tyler G, Balsberg Pahlon A M, Giles J, et a1. Heavy metal ecology of terrestrial plants,microorganisms and invertebrates:a review[J].Water,Air and Soil Pollution, 1989, 47: 189-215.
    [28] Garland C D. Classifieation and characterization of heterotrophic mierobial communities on the basis of patterns of cornmunity level sole-carbon—source utilization. Appl Eniviton M- icrobio1. 1991, 57 :2351-2359.
    [29] S. L.Tucker, C.R.Thornto, K.Tasker, et al. A fund metallothionein is repuired for pathogenicity of Magnaporthe grisea[J], Plant Cell, 2004, 16:1575-1588.
    [30]杨元根, E. Paterson . C. Campbell.城市土壤中重金属元素的积累及其微生物效应[J].环境科学, 2001, 22(3): 44-48.
    [31] Brookes PC,McGrmh S P.Efects of metal toxicity on the size of the soil microbial biomass[J]. Journal of Soil Science, 1984, 35: 341-346.
    [32]杨景辉.土壤污染与防治[M].北京:科学出版社, 1995.
    [33]王焕校.污染生态学[M].北京:高等教育出版社, 2000:192-194.
    [34] VanElsas Trevors J T, WIlington EMH, Modem soil mierobiolngy, NewYork:Marcel Dekker, 1997, 153-201.
    [35]滕应,黄昌勇,骆永明,姚槐应.铅锌银尾矿区土壤微生物活性及其群落功能多样性研究[J].土壤学报, 2004, 41(1):113-119.
    [36] Pennanen T A,Frestgard H Fritze,Baath E.Phospholioid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal polluted gradients in coniferous forests[J]. Applied Environmental and Microbiology, 1996, 62:42-48.
    [37]藤应,黄昌勇,龙健,姚槐应.铅锌银尾矿污染区土壤微生物区系及主要生理类群研究[J].农业环境科学学报, 2003,22(4):408-411.
    [38] Lee D H, Zo Y G, Kim S J. Nonradioactive methods to study genetic profiles of natural bacterial communities by PCR-single-strand conformation polymorphism[J]. AppI .Environ Microbial, 1996, 62: 3112-3120.
    [39] Chander K, Brookes P.C. Synthesis of microbial biomass from added glucose in metal-contaminated and non--contaminated soils following repeated fumigation. Soil Bio1. Biochem, 1992, 24: 61 3-614.
    [40] Kandeler E, Luftenegger G, Sohwa S. Influence of heavy metals on the functional divemity of soil microbial communities[J]. Biology Fertility of Soils, 1997, 23: 299-306.
    [41] Kandeler E, Iar,thoi J, Tscherko D, Magid J. Xylanae, invertase and protease at the soil-litter interface of a loamy sand[J]. Soil Biology & Biochemistry, 1999, 31:l171-1179.
    [42]王保军,杨惠芳.微生物与重金属相互作用[J].重庆环境科学.1996, 18(l):35-38.
    [43]陈灿,王建龙.酿酒酵母吸附重金属离子的研究进展[J].中国生物工程杂志, 2006, 26(1):69-76.
    [44] Suh J H , Yun J W , Kim D S . Effect of extracellular polymeric substances(EPS)on Pb accumulation by Aureobasidium pullulans[J]. Bioprocess and Biosystems Engineering, 1999, 21(1): 1-4.
    [45] Beveridge TJ. The response 0f cell walls 0f Bacillus subtils to metaIs and electron microscopic strains Can J Microbial, 1978, 24: 89-104.
    [46] Ledin Maria. Accumulation of metals by microorganisms processes and importance for soil systems[J]. Earth-Science Reviews, 2000, 51(1): 1-31.
    [47] Beveridge T J. Role of cellular design in bacterial metal accumulation and minera1ization[J]. Annu. Rev. Microbio1, 1989, 43: 147-171.
    [48] Beveridge T J, Schultze-Lam S. Detection of anionic sites on bacterial walls, their ability to bind toxic heavy metals and form sedimentable floes and their contribution to mineralization in natural freshwater environments[A]. In: Allen H E,Huang C P,Bailey G W. Metal speciation and contamination of soil[M]. BocaRaton: CRG Press Lewis Publisher, 1995.
    [49] Macaskie L E, Dean A C R, Cheethan A K. Cadmium accumulation by a Citrobacter sp.: The chemical nature of the accumulated metal precipitate and its location on the bacterial cells. [J]. Gen. Micro1.,1987, l33: 539 -544.
    [50] Gadd G M, Fry J C. Microbial control of pollution. Cambridge. UK: Cambridge University Press, 1992 , 59 -84.
    [51] Srivastava Shaili, Thakur I S. Evaluation of bioremediation anddetoxification po tentiality of AspergiUus niger for remova1 of hexavalent chromium in soil microcosm[J]. Soil Biology and Biochemistry, 2006, 38(7): 1094-1911.
    [52] Dursum Ozer, Ayla Ozer . [J] . Journal of Chemical Technology and Biotechnology.,2001,75(5):410-416
    [53] Wang J L, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae:A review[J].Biotechnology Advances,2006.24(5):427-451
    [54] Kratochvil D, Volesky B. Advances in the biosorption of heavy metals[J]. Trends in Biotechnology, 1998, 16(7): 291-300.
    [55] Davis T A, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorpti0n by brown algae[J]. Water Research, 2003, 37(18): 4311-4330.
    [56] Lin Z Y, Wu J M , Xue R.Spectroscopic characterization of Au biosorption by waste biomass of Saccharomyces cerevisiae[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2005, 61(4): 761-765.
    [57] Vijver M G, Gestel C A M V, Lanno R P, et a1. Internalmetal sequestration and its ecotoxicological relevance: a review[J]Environmental Science and Technology, 2004, 38(18): 4705-4712.
    [58] Siegel SM, Keller P. Siegel BZ, Galtm E. Metal Speciationand Recovery. Proc Intern Symp. Chicago: Kluwer Academic Publishers. 1986, 77-94.
    [59] Munier-Lamy C, Berthelin T J. Formation of polyelectrolyte complete with (Al ,Fe) and trace (V,Ca )elements during neterotrophic microbial teaching of rocks[J]. Geomicrobial, I987, 5: l19-124.
    [60] Cheung K H, Gu J D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation applicationpotential : A review [J]. International Biodeterioration&Biodegradation, 2007, 59(1): 8-l5.
    [61] Smith W L, Gadd G M. Reduction and precipitation of chromate by mixed culture sulphate -reducing bacterial biofilms[J]. App1. Microbio1, 2000, 8: 983-991.
    [62] Finneran K T, Housewright M E, Lovley D R. Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments [J] . Environ M icrobio1, 2002, 4: 510-516.
    [63] Finlay J A, Allan V J M, Conner A. Phosphate release and heavy m etal accumulation by biofilm immobilized an d chemically-coupled cells of a Citrobacter sp.pregrown in continuous culture[J]. Biotechnol Bioeng, 1999, 63(1): 87-97.
    [64] Wang C L, Michels P C. Dawson SC. Cadmium removal by a new strain ofPesudomonas Aeruginosa in aerobic culture[J].Appl Environ Microbio1.1997,63 (10):4075-4078.
    [65] Allan V J M, Callow M E, Macaskie L E, et al. Effect of nutrient limitation on biofilm formation and phosphatase activity of a citrobacter sp [J]. Microbiol Reading. 2002,148(1):277-288.
    [66] Belly RT, Kydd G C. Silverre sistance in microorganisms[J]. Dev.Ind. Microbiol.1982, 23:567-577.
    [67] Smith DH. R-Factor mediated resistance to mercury, nickel and cobalt[J]. Science 1967, 156:1114-1115.
    [68] Maceskie L E, Dean A C R. Cadmium accumulation by Citrobactersp .[J]. J Gen Microbiol.1984, 130:53-62.
    [69] Tynecka Z, Malm A , Skwarek T .Effect of Cd2+ on growth of the cadmium-resistant and- sensitive Staphylococcus aureus[J].Acta Microbiol Pol.1989, 38:117-129.
    [70] De Vicente A, Aviles M. Codina JC, et al. Resistance to antibiotic and heavy metals of Pseudomonas aeruginosa isolated from natural waters[J]. Appl Bacteriol.1990,68 :625-632.
    [71] Barkly N P. Extraction of Mercury from Groundwater Using Immobolized Algae[7].Air waste Manage Assoc, 1991, 41(10):1387-1392.
    [72] Volesky B , Pmsetyo I .Cadmium Removalin a Biosorption column[J]. Biotechnol Bioeng, 1994 , 43 (11):1010-1015.
    [73] Jose T ,Yu Qiming ,Gavin M.Wodbum Biosorption of Cadnriun from aqueous solutions by Preterated Biomass of marine Alga Durvillaea Potatogum[J].Wat.Res,1999,33(2):335-342.
    [74] Roane T M, Josephson K L. Pepper I L. Dual-bioangmentation strategy to enhance remediation of contanminated soil[J]. Applied and Environmental Microbiology, 2001, 7: 3208-3215.
    [75] Haq R, Zaidi S K, Shakoori A R. Cadmium resistant Enterobacter cloacae and Klebsiella sp. isolated from industrial effluents and their possible role in cadmium detoxitication[J]. Word Microbiol Biatechnol, 1999, 15: 283-290.
    [76] Vullo Diana L, Ceretn Helena M, Daniel Allejandra, et a1. Cadmium,zinc and copper biosorptiou mediated by Pseudomonas veronii 2E[J].Bioresource Technology, 2008, 99: 5574-5581.
    [77] MassaccesiI G, Romero M C, Cazau M C, et a1. Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata(Argentina)[J]. World J Microbiol Biotechnol, 2002, 18: 817-820.
    [78] Magyro Y A, Laidlaw R D,Kilaas R, et a1. Nickd accumulation and nickel oxalate precipitation by Aspergillus niger[J]. Microbiol Biotechnol, 2002, 59: 382-388.
    [79] Shankar Congeevar A M, Sridevi Dhanarani, Joonhong Pailk, et al. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates[J]. Journal of Hazardous Materials, 2007, 146: 270-277.
    [80] Domionica del, Mundo Dacera, Sandhya Babel. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes[J]. Bioresource Technology, 2008, 99: 1682-1689.
    [81] ARMELLE BRAUD, KARINE JEZEQUEI, STEPHANE BAZOT, et a1. Enhanced phytoextraction of agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria[J]. Chemosphere, 2008, 9: 13.
    [82] Tolgabahadir, Gulfem Bakan, Levent Altas. The investigation of lead removal by biosorption: An application at storage battery industry wastewaters[J]. Enzyme and Microbial Technology, 2007, 41: 98-102.
    [83] Jianlong Wang. Biosorption of copper(Ⅱ)by chemically modified biomass of saccharomyces cerevisiae[J]. Process Biochemistry, 2002, 37(8): 847-850.
    [84]张启焕,江昕,闫玉华,等. [J ] .佛山陶瓷, 2003 ,9 : 33-34
    [85]吴烈,潘志平.含重金属离子废水的生物处理[J].中国给水排水.2001,17(10):31-34.
    [86]郑喜珅,鲁安怀,高翔,赵谨,郑德圣.土壤中重金属污染现状与防治方法[J].土壤学报, 2002, 11(1): 79-84.
    [87]陈剑虹,曾光明.重金属污染及其生物治理技术[J].青海环境, 2003, 13(4): 177-180.
    [88]徐亚同,史家梁,张明.生物修复技术的作用机理和应用[J].上海化工, 2001,4 (20): 4-7.
    [89]安正阳,江映翔.污染土壤的生物修复技术进展及其应用前景[J].广州环境科学, 2003, 18(4): 31-33.
    [90] Vivas A, Voroa B, Bifo J M, BareaJ M, Ruiz-Lozano R A. Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. In improving plant tolemnce to Cd contamination[J]. Applied Soil Ecology, 2003(24): 177-186.
    [91] SASTRE J, HERNANDEZ E, RODRIGUEZ R, et al. Use of sorption and extraction tests to predict the dynamics of the interaction of trace elements in agricultural soils contaminated by a mine tailing accident[J]. Science of TheTotal Environment, 2004, 329(1-3): 261-281.
    [92]周涛发,殷汉琴,张鑫,肖正辉,袁峰.铜陵矿区土壤中铅的存在形态及生物有效性[J].合肥工业大学学报(自然科学版), 2005, 28(9): 1146-1150.
    [93] CHEN H M , ZHEN G C R , TU C, et al. Heavy metal pollution in soils in China : status and counter-measures . [J]. 1999 , 28 (2): 130-134.
    [94]袁峰,白晓宇,张颖慧,等.典型矿集区土壤中重金属元素的多维分形空间分布特征研究-以铜陵矿集区土壤中Cd为例[J].土壤通报, 2009, 40(1): 167-170.
    [95]张鑫,周涛发,袁峰,史晓莉,范裕,廖新娜.铜陵矿区土壤中镉存在形态及生物有效性.生态环境, 2004, 13(4): 572-574.
    [96]左振鲁,陈骏,王汝成,季峻风,裘丽雯.铜陵鸡冠山硫铁矿废矿堆积区的重金属分布与磁化率变化[J].岩石矿物学杂志, 2001, 20(2): 199-207.
    [97]李湘凌,白晓宇,袁峰,周涛发,陈兴仁,陈永宁,陈富荣,贾十军.基于多维分形的铜陵地区土壤Pb元素空间分布[J].农业工程学报, 2008, 24(11): 193-196.
    [98]殷汉琴,周涛发,张鑫,袁峰,李湘凌,陈永宁,陈兴仁,陈富荣,贾十军.铜陵市大气降尘中铜元素的污染特征.吉林大学学报(地球科学版), 2009, 39(4): 734-738.
    [99]张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究[D].合肥工业大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700