用户名: 密码: 验证码:
脉络膜黑色素瘤微循环模式及姜黄素联合内皮抑素对眼内移植瘤的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.研究脉络膜黑色素瘤中不同微循环模式与临床病理参数及预后的关系;阐明其不同微循环模式中MMP-2、MMP-9、EphA2及VEGF的表达及意义。
     2.探讨姜黄素联合内皮抑素对眼内黑色素移植瘤微循环模式及生长的抑制作用;研究其对MMP-2、MMP-9、EphA2及VEGF表达的影响,从而揭示二者从不同途径抑制肿瘤血管生成的相关分子机制,为临床恶性肿瘤的治疗提供新靶点,为寻求高效低毒的治疗药物提供实验依据。
     方法
     1.收集脉络膜黑色素瘤56例,复读HE染色切片,初步观察其微循环模式,利用电镜观察血管生成拟态的超微结构;采用CD34/PAS双重染色进一步确认脉络膜黑色素瘤中内皮依赖性血管(E)、马赛克血管(MV)、血管生成拟态(VM)三种微循环模式。根据有无VM分组。分别计数微血管密度(MVD)、MV及VM,以探讨其与病人临床病理指标之间的关系;使用单因素和多因素生存分析研究VM对预后的影响;免疫组化染色检测并比较MMP-2、MMP-9、EphA2及VEGF蛋白的表达,分析这些分子在VM形成中的作用。
     2.C57/BL6小鼠72只,右眼视网膜下腔注射1×10~5B16黑色素瘤细胞悬液建立移植瘤模型。接种后第3天开始腹腔注射给药,持续18天;给予姜黄素(100mg/kg/日)和内皮抑素(10mg/kg/日)处理,依据处理方式不同分为4组:对照组、姜黄素组、内皮抑素组、姜黄素联合内皮抑素组。于取材前每组挑选2只进行活性炭示踪,以判断VM的功能;每组选2只,用于电镜观察VM结构;同时完整摘取脑、肺、肝、肾、脾,观察药物毒副作用及有无转移;用游标卡尺测量肿瘤体积,比较肿瘤的大小及生长速度;免疫组化法检测并比较移植瘤组织中MMP-9、MMP-2、EphA2及VEGF表达水平的差异;同时采用Real time RT-PCR技术检测并比较各组MMP-2、MMP-9、EphA2 mRNA表达量的差异。
     结果
     1.(1)VM与与性别、眼别、年龄无关(P=0.618,0.560,0.687),而与细胞类型、肿瘤最大直径(LTD)、转移有关,差异均有统计学意义。其中含有类上皮细胞患者瘤组织中的VM阳性率(91.67%)高于无类上皮细胞者(48.30%)(P=0.025);有转移者VM阳性率(81.80%)高于无肝转移病人(37.80%)(P=0.027);肿瘤最大直径>12mm的患者VM阳性率(58.5%)高于=12mm者(47.8%)(P=0.021)。
     (2)MVD与性别、眼别、年龄无关(P=0.266,0.430,0.316),而与细胞类型、肿瘤最大直径(LTD)及转移有关。并且有类上皮细胞的瘤组织中MVD(53.48±5.14)高于无类上皮细胞者(38.55±3.32)(P=0.017);肿瘤最大直径>12mm者MVD(55.80±4.86)高于肿瘤最大直径=12mm的MVD(40.16±3.88)(P=0.014);有转移患者的MVD(64.27±8.16)高于无转移者MVD(41.18±3.08)(P=0.003)。
     (3)VM组中MVD略微低于对照组MVD,但差异无统计学意义(P=0.082)。
     (4)单因素生存显示,VM组患者生存时间与对照组相比较短(P=0.0076);肿瘤细胞类型、肿瘤最大直径、转移、MVD对患者预后有影响(P=0.0193,0.0231,0.0328,0.0321);而性别、年龄、眼别对预后无影响(P=0.662,0.278,0.885);多因素生存分析显示,肿瘤细胞类型、肿瘤最大直径及VM是影响CM患者预后的独立危险因素(P=0.005,0.000,0.003)。
     (5)免疫组化染色结果:MMP-2、MMP-9在VM组中的阳性率分别为96.15%与100.0%高于对照组66.67%与80.00%,差异有统计学意义(P=0.000,0.002)。并且VM组MMP-2、MMP-9表达量增高,分别为(57.16±6.39)、(55.96±7.67)高于对照组表达量(36.18±4.55)(38.75±4.12),差异有统计学意义(P=0.000,0.000);EphA2在VM组中的阳性率92.31%高于对照组阳性率70.00%,表达量也随之增高(39.807±8.79),高于对照组表达量(33.36±4.86),差异具有统计学意义(P=0.002,0.002);VEGF在VM组与对照组的阳性率及表达量之间差异均无统计学意义(P=0.089,0.419)。
     2.(1)免疫组化双重染色和电镜结果显示:眼内移植瘤微循环模式中三种微循环
     2.(1)免疫组化双重染色和电镜结果显示:眼内移植瘤微循环模式中三种微循环模式共存。MVD及MV数目在各实验组瘤组织中明显降低(P<0.05);MV数目仅在姜黄素组及联合组瘤组织中显著减少(P<0.05)。
     (2)活性炭示踪结果显示:移植瘤中VM结构中央区大量黑色炭颗粒出现,提示VM与内皮依赖性血管是相互连通的,以不同的方式维持肿瘤组织的血液供应。
     (3)肿瘤体积测量及器官转移结果:各处理组肿瘤均较对照组生长缓慢(F=8.30,P<0.05);其中,姜黄素组、联合组与对照组之间肿瘤平均生长体积差异有统计学意义(t=P<0.05)。各实验组肺转移率5.6%低于对照组16.7%,但差异无统计学意义(P>0.05)。
     (4)免疫组化及实时荧光定量PCR结果:①MMP-9、MMP-2、EphA2胞浆阳性着色,棕黄色,肿瘤细胞阳性表达率从高到低依次为对照组、内皮抑素组、姜黄素组、联合组;VEGF阳性表达率内皮抑素组最低,对照组最高。而且MMP-2、MMP-9、EphA2及VEGF在各处理组中的表达与对照组比较,差异均有统计学意义(F=15.48,F=17.35,F=4.56,F=6.08,P<0.05)。②MMP-2、MMP-9及EphA2mRNA在各处理组表达量也明显低于对照组(F=19.35,F=19.43,F=8.13,P<0.05),其中MMP-2、MMP-9 mRNA在姜黄素组及联合组与对照组之间平均表达量差异有统计学意义(t=7.17,4.53,P<0.05);EphA2 mRNA表达量在联合组瘤组织中明显降低(t=2.52,P<0.05)。
     结论
     1.(1)在脉络膜黑色素瘤中,VM、MVD与肿瘤细胞类型、肿瘤最大直径及转移有关。
     肿瘤体积越大,VM阳性率越高,且患者越易发生转移,有VM患者的生存时间明显短于无VM者;含有类上皮细胞的CM中VM阳性率增高。
     (2)VM可作为判断脉络膜黑色素瘤患者预后的一项指标,是影响其预后的独立危险因素。
     (3)VM阳性的脉络膜黑色素瘤中MMP-2、MMP-9及EphA2表达明显增高,而VEGF无显著升高,提示VM的形成机制不同于经典的内皮依赖性血管生成,MMP-2、MMP-9、EphA2是VM形成中的重要分子,VEGF不是影响VM的主要因素。
     2.(1)眼内移植瘤组织并存有VM、马赛克血管和内皮依赖性血管三种微循环模式,并且VM与宿主血管相连,共同为肿瘤提供营养。
     (2)姜黄素主要通过下调MMP-2、MMP-9及EphA2的表达,抑制VM的形成及肿瘤血管生成。内皮抑素主要通过下调VEGF的表达,抑制内皮依赖性血管生成,二者联合应用,具有协同增效作用。
     (3)姜黄素联合内皮抑素将成为一种安全有效的抗肿瘤方法。
Objective:
     1.To investigate the correlation between the different microcirculation patterns and clinicopathologic parameters and its prognosis;to evaluate thc cxprcssions of MMP-2, MMP-9,EphA2 and VEGF in different microcirculation of choroidal melanoma(CM) and its clinical significance.
     2.To study curcumin and endostatin effect on intraocular melanoma model growth and microcirculation patterns;to examine curcumin and endostatin influcnce on the expressions of MMP-2,MMP-9,EphA2 and VEGF,and thereby reveal the molecular mechanism in suppressing angiogenesis and proliferation of melanoma cells in order to provide new targets and experimental data for the treatment of malignant tumors.
     Methods:
     1.56 cases of CM were collected and HE stainings were studied to check CM microcirculation patterns and the transelectron microscopy was used to observe the vasculogenic mimicry(VM)ultrastructure.Then PAS staining and CD34/PAS double staining were adopted to confirm three microcirculation patterns of CM.According to the presence of VM,All cases were divided into two groups,and also microvessel density(MVD),mosaic vessels and VM were counted to explore the correlation between CM and clinicopathologic parameters.Univariate and multivariate survival analysis were adopted to analyze VM effect upon prognosis,immunohistochemical staining was used to study the expression level of MMP-2,MMP-9,EphA2 and VEGF,and compare the difference between the VM group and the control group and analyze its role in the formation of VM and their correlation.
     2.1×10~5B16 melanoma cell suspension was injected into the retinal subspace cavity of right eye for each of 72 C57/BL6 mice.72 mice wcrc randomly divided into 4 groups.3 days after inoculation,we administered intraperitoneally circumin at a dose of 100 mg/kg/day,endostatin at a dose of 10 mg/kg/day and circumin and endostatin at the same dose receptively in the treatment groups.We administered 0.9%NaCl solution to the control group.Injection continued 18 days.Animals were sacrificed on Day 21.30 minutes before the mice were sacrificed a diluted suspension of activated carbon was injected into the circulation of mice previously through the caudal veins to test the function of VM.2 models were chosen to observe the VM structure by the transelectron microscopy.At the same time,lung,liver,kidney,lien,brain were removed to observe side effect of the drug and the presence of metastasis.We measured tumor sizes with a vemier caliper and compared the sizes of the tumors. Immunohistochemical staining test was used to analyze the expression level of MMP-9,MMP-2,EphA2 and VEGF in the different groups.Real time RT-PCR test was used to detect MMP-2,MMP-9 and EphA2 mRNA level in the fresh tumor tissue in each group.
     Results
     1.(1)Statistical analysis found that VM was not related to gender,eye,and age(P=0.618,0.560,0.687),but was related to cell type,LTD and metastasis,and the differences were statistically significant.VM positive rate of the cases with epithelioid cells(91.67%)was higher compared with the control group (48.30%)(P=0.025);VM positive rate of the tumor with LTD>12mm(58.5%)was higher than that of the tumor with LTD=12mm(47.8%)and the differences were statistically significant(P=0.021);VM positive rate of the patients with metastasis(81.80%)was higher compared with the control group(37.80%)(P=0.027).
     (2)Similarly,MVD was not related to gender,eye,and age(P=0.266,0.430,0.316) but was related to celltype,LTD and metastasis.There were more MVD(53.48±5.14) with epithelioid cells MVD(38.55±3.32)compared with the control group(P=0.017). There were more MVD(55.80±4.86)with LTD>12mm compared with the cases of LTD=12mm MVD(40.16±3.88)and the difference was statistically significant (P=0.014).MVD(64.27±8.16)of patients with metastasis was higher than that of patients without tumor metastasis(41.18±3.08)(P=0.003).
     (3)The number of MVD in the VM group was slightly lower compared with that in the control group(P=0.082).
     (4)Univariate survival analysis found that the survival rate for the patients with VM was significantly poorer than that for the patients without VM(P=0.000).Celltype, LTD,metastasis,MVD(average value 45.00),and VM had an effect on the prognosis(P=0.0193,0.0231,0.0328,0.0321,0.0076),while gender,age and eye, had no effect on it(P=0.662,0.278,0.885).
     (5)Immunohistochemical staining result:The positive rates of MMP-2 and MMP-9 (96.15%,100.0%,respectively)in the VM group were higher than those in the control group(66.67%,80.00%,respectively)(P=0.000,0.002).The expression level of MMP-2 and MMP-9 in the VM group were increased(57.16±6.39,55.96±7.67 respectively)compared with the control group(36.18±4.55,38.75±4.12, respectively)(P=0.000,0.000).The positive rate and expression level for EphA2 (92.31%,39.807±8.79)were higher compared with the control group(70.00%, 33.36±4.86)and the difference was statistically significant(P=0.002).The difference in positive rates and expression level of VEGF between the VM group and the control group was not statistically significant(P=0.089,0.419).
     2.(1)Immunohistochemical staining and transelectron microscopy showed that three blood supply patterns coexist in the intraocular malignant melanin transplanted tumor microcirculation patterns and the number of endothelium-dependent vessels,mosaic vessels and VM was obviously lower compared with the control group(P<0.05).
     (2)Activated-carbon tracing showed that numerous carbon grains appeared in the central area of VM structure and it suggested that VM and endothelium-dependent vessels are interconnected and that VM together with endothelium-dependent vessels and mosaic vessels provided blood to tumor tissue.
     (3)Tumor size measurement showed that tumor growth in each treatment group was slower compared with the control group(F=8.30,P<0.05).Tumors in curcumin group and in curcumin and endostatin group grew slower than in the control group(t =P<0.05).Compared with the control group tumor metastasis in each treatment group was no significance(P>0.05).
     (4)①All of the melanoma cells were positive for MMP-2,MMP-9 and EphA2 as detected by immunohistochemical staining,and the cytoplasm of positive cells was dark brown.The positive rates went from high to low as follows:the control group, endostatin group,curcumin group,curcumin and endostatin group.The positive rate for VEGF was higher than the control group.The positive rates of MMP-2,MMP-9, EphA2 and VEGF in each treatment group were statistically different from the contro 1 group(F=15.48,F=17.35,F=4.56,F=6.08,P<0.05).②Real time PCR demonstrated that the expressions of MMP-9,MMP-2 and EphA2 in the treatment group were lower compared with the control group(F=19.35, F=19.43,F=8.13,P<0.05).The expression level of MMP-2,MMP-9 mRNA in curcumin group and in curcumin and endostatin group was lower compared with the control group(t=7.17,4.53,P<0.05).The expression of EphA2 mRNA was decreased in the curcumin and endostatin group compared with the control group (t=2.52,P<0.05).
     Conclusion:
     1.(1)MVD and VM are related to LTD,tumor celltype and tumor metastasis rate. Moreover,the larger the tumor,the higher the MVD and VM and the more tumor metastasis.The positive rate for VM with epithelioid cell was increased.(2)VM can be used as an indicator of poor prognosis of CM patients.The survival rate for the patients with VM was poorer compared with the control group.Tumor celltype,LTD, VM are important and independently prognostic factors for CM patients.(3)The expression level of MMP-2,MMP-9 and EphA2 in the VM group was increased obviously while VEGF remained low.MMP-2,MMP-9,EphA2 are necessary for the formation of VM in CM and are important enhancing factors whereas VEGF is not a major factor.This shows that the mechanism of VM formation is different from that of endothelium-dependent vessels formation.
     2.(1)Three blood-supply patterns coexist in intraocular malignant melanin transplanted tumor microcirculation patterns.VM and host vessels are interconnected to supply tumor cells with nutrition.(2)Curcumin decreased MMP-2,MMP-9 and EphA2 expression,and inhibit the vasculogenic mimicry,mosaic vessel and endothelial dependent vessel formation.Endostatin decreased VEGF expression,and inhibit endothelial dependent vessel formation.The combination of curcumin and endostatin enhances the effect of anticancer.(3)Curcumin can decrease the activity of tumor cell proliferation and inhibit melanoma growth.
引文
[1] Egan KM, Seddon JM, Glynn RJ, et al. E pidemiologic aspects of uveal m elanoma [J].Surv Ophthalmol, 1988,3 2(2):239-251.
    [2] Zhang S, Guo H, Zhang D, et al. Microcirculation patterns in different stages of melanoma growth[J]. Oncol Rep, 2006,15(1):15-20.
    [3] Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis[J]. Am J Pathol,2000,156(2):361-381.
    [4] McDonald DM, Munn L, Jain RK. Vasculogenic mimicry: how convincing, how novel, and how significant [J]? Am J Pathol,2000,156(2):383-338.
    [5] Dennie CJ, Veinot JP, McCormack DG, et al. Intimal sarcoma of the pulmonary arteries seen as a mosaic pattern of Lung attenuation on high-resolution CT [J]. Am J Roentgenol, 2002,178(5):1208-1210.
    [6] Folkman J. Can mosaic tumor vessel facilitate molecular diagnosis of cancer[J]? Proc Natl Acad Sci USA, 2001,98(2):398-400.
    [7] T Dorai, YC Cao, B Dorai, R Buttyan et al, Therapeutic potential of curcumin in human prostate cancer III. Curcumin inhibits proliferation, induces apoptosis and inhibits angiogenesis of LNCAP prostate cancer cells in vivo [J]. Prostate and June; 2001;47(4):293-303.
    [8] Aniruddha Banerji, Jayati Chakrabarti, Aparna Mitra, Amitava Chatterjee.Effect of curcumin on gelatinase A (MMP-2) activity in B16F10 melanoma cells [J].Cancer Letters,2004; 211 (3): 235-242.
    [9] Han SS, Chung ST, Robertson DA, et al Curcumin causes the growth arrest and apoptosis of B cell lymphoma by down regulation of egr-1,c-myc,bcl-xL, NF-KappaB and P53[J]. Clin Immunol 1999,93(1):152-161.
    [10]Anupama E,Gururaj,Madesh Belakavadi,et al . Molecular mechanisms of anti-angiogenic effect of curcumin [J],Biochemical and Biophysical Rearch Communication,2002, 297(4):934-942.
    [11]OhS P,Warman ML, Seldin MF,et a l.Cloning of cDNA and g enomic DNA encoding human type ⅩⅧ collagen and localization of the alpha I (ⅩⅧ) collagen gene to mouse chromosome 10 and human chr omosome 21 [J] .Genomics, 1994,19(3):494-499.
    [12]Sauter BV, Martinet O, Zhang WJ, et al. Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene exp ression and inhibition of tumor growth and metastases [J].Proc Natl Acad Sc I USA, 2000, 97(9):4802-4807.
    [13] Wen W, Moses MA,Wiederschain D, et al.The generation of edostatin is mediated by elastase [J].Cancer Res,1999,59(24):6052-6056.
    [14]Shields JA. Malignant melanoma of uveal tract. In: Spencer WH.ed. Ophthalmio pathology. An Atlas and Textbook[M]. Philadephia:Wh Saunder,1992, 2(1):118-124.
    [15]Weidner N, Gasparini G Determination of epidermal growth factor receptor provides additional prognostic information to measuring tumor angiogenesis in breast carcinoma patients[J]. Breast Cancer Res Treat,1994,29(1):97-107.
    [16]Tanigawa N, Amaya H, Matsumura M, et al. Tumor angiogenesis and mode of metastasis in patients with colorectal cancer [J]. Cancer Res,1997,57 (6):1043-1046.
    [17]Shimizu K,Asai T,Oku N.Antineovascular therapy,a novel antiangiogenic approach[J].Expert Opin Ther Targets,2005,9(1):63-76.
    [18] Wilkinson DG Multiple roles of EPH receptors and ephrins in neural development [J]. Nat Rev Neurosci, 2001, 2 (2):155-164.
    [19]Seftor EA, Meltzer PS, Kirschmann DA, et al. Molecular eterminants of human uveal melanoma invasion and metastasis [J].Clin Exp Metastasis 2002,19 (3):233-246.
    [20] Cheng N, Brantley DM, Liu H, et al. Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis [J].Mol Cancer Res, 2002,1(1):2-11.
    [21]Folberg R., Rummelt, V., Parys-Van Ginderdeuren, R., Hwang, T., Woolson, R. F., Peer, J., et al. The prognostic value of tumor blood vessel morphology in primary uveal melanoma[ J]. Ophthalmology, 1993.100(7):1389-1398.
    [22]Thies A., Mangold, U., Moll, I., & Schumacher, U. PAS positive loops and networks as a prognostic indicator in cutaneous malignant melanoma[J]. Journal of Pathology, 2001,195(3): 537-542.
    [23] Lee, Y. J., Nagai, N., Siar, C. H., Nakano, K., Nagatsuka, H., Tsujigiwa, H., et al. Angioarchitecture of primary oral malignant melanomas [J]. Journal of Histochemistry and Cytochemistry, 2002,50(11):1555-1562.
    [24]Sharma, N., Seftor, R. E., Seftor, E. A., Gruman, L. M., Heidger, P. M., Jr., Cohen, M. B., et al. Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: Role in vasculogenic mimicry[J]. Prostate, 2002,50(2): 189-201.
    [25]Sood, A. K., Seftor, E. A., Fletcher, M. S., Gardner, L. M., Heidger, P. M., Buller, R. E., et al. Molecular determinants of ovarian cancer plasticity [J].American Journal of Pathology, 2001,158(13) :1279-1288.
    [26] Sun, B., Zhang, S., Zhang, D., Du, J., Guo, H., Zhao, X., et al. Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma [J].Oncology Reports, 2006,16(5):693-698.
    [27]Fujimoto, A., Onodera, H., Mori, A., Nagayama, S., Yonenaga, Y., & Tachibana, T. Tumour plasticity and extravascular circulation in ECV304 human bladder carcinoma cells [J]. Anticancer Research, 2006,26(1) 59-69.
    [28] Sun, B., Zhang, S., Zhao, X., Zhang, W., & Hao, X. Vasculogenic mimicry is associated with poor survival in patients with mesothelial sarcomas and alveolar rhabdomyosarcomas [J].International Journal of Oncology, 2004,25(12): 1609-1614.
    [29]Cai, X. S., Jia, Y. W., Mei, J., & Tang, R. Y. Tumor blood vessels formation in osteosarcoma: Vasculogenesis mimicry [J].Chinese Medical Journal, 2004,117(1):94-98.
    [30]Yue, W. Y. & Chen, Z. P. Does vasculogenic mimicry exist in astrocytoma [J]?Journal of Histochemistry and Cytochemistry, 2005,53(8):997-1002.
    [31]Favier, J, Plouin, P. F, Corvol, P, & Gasc, J. M. Angiogenesis and vascular architecture in pheochromocytomas: Distinctive traits in malignant tumors[J].American Journal of Pathology, 2002,161(7):1235-1246.
    [32]Shirakawa, K., Kobayashi, H., Heike, Y., Kawamoto, S., Brechbiel, M. W., Kasumi, F., et al. Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft [J].Cancer Research, 2002,62(4): 560-566.
    [33] van der Schaft, D. W., Hillen, F., Pauwels, P., Kirschmann, D. A., Castermans, K., Egbrink, M. G., et al. Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia [J].Cancer Research, 65, 2005(25):11520-11528.
    [34] Sod AK,Sefior EA,Fletcher MS,et al. Molecular determ inants of ovarian cancer plasticity [J].Am J Pathol,2001,158(4):1279-1288.
    [35]Liu C,Huang H,Donate F,et al. Prostate-specific membrane an tigendirected selective thrombotic infarction of tumors [J].Cancer Res,2002,62(19):5470-5475.
    [36] Shirakawa K,Tsuda H,Heike Y,et al. Absence of endothelial cells,central necrosis. and fibrosis are associated with aggressive inflammatory breast cancel [J]. Cancer Res,2001,61(2):445-451.
    [37]Hao X,Sun B,Zhang S,et al.Microarray study of vasculogenic miraicry in bi-directional diferentiation malignant tumor [J].Zhong hua Yi Xue Za Zhi,2002,82(19):1298-1302.
    [38]Mary JC Hendrix, Elisabeth A Seftorl, Angela R Hessl and Richard EB Seftorl .Molecular plasticity of human melanoma cells [J] Oncogene 2003, 22(10):3070-3075.
    [39] Rodriguez Manzaneque JC, Lane TF, Ortega MA, et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor [J].Proc Natl Acad Sci U S A. 2001,98(22):12485-12490.
    [40] Anil KS, Mavis S, Fletcher MD, et al. Functional role of matrix metalloproteinases in ovarian tumor cell plasticity [J]. Am J Obstet Gynecol, 2004, 190 (4): 899-909.
    [41]Rangel LB, Sherman-Baust CA, Wernyj RP, et al. Characterization of novel human ovarian cancer-Specific transcripts (HOSTs) identified by serial analysis of gene expression[J].Oncogene, 2003, 22 (46) :7225-7232.
    [42] .Hendrix MJ, Seftor EA,melanoma cells.Hess AR, et al. Molecular plasticity of human Oncogene [J]. Oncogene, 2003,22(20):3070-3075.
    [43]Sood AK, Fletcher MS Coffin JE, et al.Functional role of matrix metalloproteinases in ovarian tumor cell plasticity [J]. Am J Obstet Gynecol.2004,190(4):899-909.
    [44] Brantley-Sieders DM, Caughron J, Hicks D, et al. EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Racl GTPase activation [J].J Cell Sci. 2004,117(10):2037-2049.
    [45]Hess AR,Seftor EA,Gardner LM,et al.Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation:role of epithelial cell kinase (Eck/EphA2)[J].Cancer Res.2001,61(8):3250-3255.
    [46]Isayeva T,Kumar S,Ponnazhagan S.Anti-angiogenic gene therapy for cancer[J].Int J Oncol.2004,25(2):335-43.
    [47]Daisy WJ.Van DS,Richard EB,et al.Effects of Angiogenesis Inhibitors on Vascular Network Formation by Human Endothelial and Melanoma Cells[J].J N atl Cancer Inst,2004,96(19):1473-1476.
    [48]TT Phan,P See,ST Lee and SY Chan,Protective effects of curcumin against oxidative damage on skin cells in vitro:its implication for wound healing[J].J Trauma,2001;51(5):927-31.
    [49]Folkman J.Tumor angiogenesis:therapeutic implications[J].N Engl J Med,1971,285(21):1182-1186.
    [50]Duran Garcia E,Santolaya R,Requena T.Treatment of malignant melanoma[J].Ann Pharmacother,1999,33(5):730-738.
    [51]刘叙仪.抗肿瘤新靶点药物的临床应用进展[J].中国肺癌杂志.2001.4(3):203-206.
    [52]Arbiser JL,Klauber N,Rohan R,et al.Curcumin is an in vivo inhibitor of angiogenesis[J].Mol Med,1998,4(6):376-383.
    [53]钟静芬主编,表面活性剂在药学中的应用[M].北京,人民卫生出版社,1999,39.
    [54]Kabanov AV,Batrakova EV;Alakhov VY,Pluronic block copolymers for overcoming drug resistance in cancer,Adv Drug Deliv Res,2002,54(5):759-79.
    [55]Zatterstrom UK,Felbor U,Fukai N,et al.CollagenⅩⅧ/endostatin structure and functional role in angiogenesis[J].Cell Struct Funct,2000,25(1):97-101.
    [56]Kaftan R. Potential anticancer activity of turmeric (Curcuma bnga) [J].Cencer Lett, 1985, 29(2): 197-198.
    [57] Lin LI, Ke YF, KoYC.Curcumin inhibits SK-Hep-1 hep-ato cellular carcinoma cell invasion invitro and suppresses matrixmetall proteinase-9secretion[J].Oncology,1998,55(4):349-353.
    [58]Balazs Do'me, Mary J.C. Hendrix, Sandor Paku, Jozsef Tovari, and Jozsef Timar. Alternative Vascularization Mechanisms in Cancer Pathology and Therapeutic Implications [J]. The American Journal of Pathology, 2007,170,(1):1-15.
    [59] van der Schaft, D. W., Hillen, F., Pauwels, P., Kirschmann, D. A., Castermans, K., Egbrink, M. G., et al. Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. [J].Cancer Research, 2005,65(261), 11520-11528.
    [60]Handsley MM, Edwards DR. Metalloproteinases and their inhibitors in tumor angiogenesis[J]. Int J Cancer,2005,115(6):849-860.
    [61] Hess AR, Seftor EA, Seftor RE, et al. Phosphoinositide 3-kinase regulates membrane Type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry[J]. Cancer Res,2003,63(16):4757-4762.
    [62] Seftor RE, Seftor EA, Kirschmann DA, et al. Targeting the tumor microenvironment with chemically modified tetracyclines: inhibition of laminin 5 gamma2 chain promigratory fragments and vasculogenic mimicry [J]. Mol Cancer Ther,2002,l(13):1173-1179.
    [63] Hendrix MJ, Seftor EA, Hess AR, et al. Molecular plasticity of human melanoma cells[J]. Oncogene, 2003,22(20):3070-3075.
    [64]Bittner M, Meltzer P, Chen Y, et al.Molecular classification of utaneous malignant melanoma by gene expression profiling[J].Nature. 2000,406(6795):536-540.
    [65] Kim I, Kim HG, Moon SO, et al. Angiopoietin induces endothelial cell sprouting through the activation of focal adhesion kinase and min secretion[J].Circ Res,2000,86(9):952-959.
    [66]Hendrix MJ, Seftor EA, Meltzer PS, et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells:Role in vasculogenic mimicry [J]. Proc Natl Acad Sci U S A, 2001,98 (14):8018-8023.
    [67] Hess AR, Seftor EA, Gruman LM, et al.VE-Cadher in regulates EphA2 aggressive melanoma cells through a novel signaling Pathway-implieations for vaseulogenic mimiery[Jl.Cancer Biol Ther, 2006,5(2):228-233.
    [68] Seftor RE, Seftor EA, Koshikawa N, et al.Cooperativeinteraetions oflaminins-ehain, matrixmetalloproteinase-2, and membrane Type-1 -matrix/metalloproteinase are required for mimiery of embryonie vasculogenesis by aggressive melanoma[J].Cancer Res, 2001, 61(17):6322-6327.
    [69]Sund M , Hamano Y,Sugimoto H , et al. [J] Proc Natl Sci U S A , 2005, 102 (8) :2934-2939.
    [70] Li L, Braiteh FS, Kurzrock R. Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis[J].Cancer. 2005,104(6):1322-1331.
    [71]Ferrara N, Henzel W.J. Pituitary follicular cellssecrete a novelheparin-binding growth factor specific for vascular endothelial cells [J]. Biochem Biophys Res Commun ,1989,161 (2) :8511-.8519.
    [72]Senger D R, Galli S J, Dvorak A M, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid [J] . Science ,1983 ,219 (4587) :983.
    [73] Crosby JA,stromal tumors Canon CN, Davis A, et al.Malignant gastrointestinal of the small intestine:A review of 50 cases from a prospective database[J].Ann Surg Oncol, 2001, 8 (1):50-59.
    
    [74] Christopher R. Ireson, Donald J. L.Jones, et al. Metabolism of the Cancer Chemopreventive Agent Curcumin in Human and Rat Intestine[ J].Cancer Epidemiology, Biomarkers&Prevention, 2002 Jan(11):105-111.
    
    [75]Cheng AL,Hsu CH,Lin JK, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions[J]. Anticancer Res, 2001,21(4): 2895-2900.
    [76]Standker L, Schrader M, Kanse S M, et al.Isolation and c haracterization of the circulating form of human endostatin[J]. FEBS Lett, 1997,420 (2): 129-133.
    [77]Boehm T, Folkman J, Browder T, et al. Antiangiogenic theaphy y of experimental cancer does not induce acquired drug resistance [J].Nature, 1997, 390(6658):404-407.
    [1] Carmeliet, P., & Jain, R. K. Angiogenesis in cancer and other diseases[J]. Nature, 2000,407(6801): 249-257.
    
    [2] Martin, A., Komada, M. R., & Sane, D. C. Abnormal angiogenesis in diabetes mellitus[J]. Medicinal Research Reviews, 2003,23(1) 117-145.
    [3] Koch, A. E. Angiogenesis as a target in rheumatoid arthritis[J]. Annals of the Rheumatic Diseases, 2003, 62 (Suppl 2): 60-67.
    [4] Cao, Y., Hong, A., Schulten, H., & Post, M. J. Update on therapeutic neovascularization[J]. Cardiovascular Research, 2005, 65(3):639-648.
    [5] Carmeliet, P. Angiogenesis in life, disease and medicine[J]. Nature, 2005,438(7070): 932-936.
    [6] Ferrara, N., Gerber, H. P., & LeCouter, J. The biology of VEGF and its receptors[J]. Nature Medicine, 2003,9(4): 669-676.
    [7] Jain, R. K. Molecular regulation of vessel maturation[J]. Nature Medicine, 2003, 9(5): 685-693.
    [8] Itoh, N., & Ornitz, D. M. Evolution of the Fgf and Fgfr gene families[J]. Trends in Genetics, 2004, 20(11): 563-569.
    [9] Ferrara, N., & Davis-Smyth, T. The biology of vascular endothelial growth factor[J]. Endocrine Reviews, 1997,18(1): 4-25.
    [10]Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis[J]. Nature Cell Biology, 2000, 2(10): 737-744.
    
    [11] Carmeliet, P., Moons, L., Luttun, A., Vincenti, V., Compernolle, V., De Mol, M., et al. G Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions [J]. Nature Medicine, 2001,7(10): 575-583.
    [12] Davis, S., Aldrich, T. H., Jones, P. F., Acheson, A., Compton, D.L., Jain, V., et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning[J]. Cell, 1996, 87(7):1161-1169.
    
    [13]Maisonpierre, P. C., Suri, C., Jones, P. E, Bartunkova, S.,Wiegand, S. J., Radziejewski, C., et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis[J]. Science, 1997,277(1):55-60.
    [14]Elliott, R. L., & Blobe, G. C. Role of transforming growth factor Beta in human cancer[J]. Journal of Clinical Oncology, 2005, 23, 2078-2093.
    [15] Armulik, A., Abramsson, A., & Betsholtz, C. Endothelial/pericyte interactions[J]. Circulation Research, 2005,97(6): 512-523.
    [16] Petit, A. M., Rak, J., Hung, M. C., Rockwell, P., Goldstein, N., Fendly, B., et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors[J]. American Journal of Pathology, 1997,151(6): 1523-1530.
    [17] Li, A., Dubey, S., Varney, M. L., Dave, B. J., & Singh, R. K. IL-8 directly enhanced endothelial cell survival, proliferation,and matrix metalloproteinases production and regulated angiogenesis[J]. Journal of Immunology, 2003,170(6):3369-3376.
    [18]Conrotto, P., Valdembri, D., Corso, S., Serini, G., Tamagnone, L., Comoglio, P. M., et al. Sema4D induces angiogenesis through Met recruitment by Plexin B1[J]. Blood, 2005,105(11): 4321-4329.
    [19]Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia[J]. Journal of Cell Biology, 2003,161(6): 1163-1177.
    [20]Brantley, D. M., Cheng, N., Thompson, E. J., Lin, Q., Brekken, R. A., Thorpe, P. E., et al. Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo[J]. Oncogene, 2002,21(46): 7011-7026.
    [21]Bielenberg, D. R., Hida, Y, Shimizu, A., Kaipainen, A., Kreuter, M., Kim, C. C., et al. Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype[J]. Journal of Clinical Investigation, 2004,114(9): 1260-1271.
    [22] Wang, B., Xiao, Y., Ding, B. B., Zhang, N., Yuan, X., Gui, L., et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity[J], Cancer Cell, 2003, 4(1): 19-29.
    [23] Arakawa, H. Netrin-1 and its receptors in tumorigenesis. Natural Reviews Cancer, 2004, 4(9): 978-987.
    [24]Rehman, A. O., & Wang, C. Y Notch signaling in the regulation of tumor angiogenesis[J]. Trends in Cell Biology, 2006,16(6): 293-300.
    [25]Rastinejad, F., Polverini, P. J., & Bouck, N. P. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene[J]. Cell, 1989,56: 345-355.
    [26]Kolber, D. L., Knisely, T. L., and Maione, T. E. Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor-4[J]. Journal of National Cancer Institute, 1995,87(3):304-309.
    
    [27] O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal,R. A., Moses, M., et al. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma[J]. Cell, 1994,79: 315-328.
    
    [28] O'Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G.,Lane, W. S., et al. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth[J]. Cell, 1997,88: 277-285.
    [29]van der Schaft, D.W., Toebes, E. A., Haseman, J. R., Mayo, K. H.,& Griffioen, A. W. Bactericidal/permeability-increasing protein (BPI) inhibits angiogenesis via induction of apoptosis in vascular endothelial cells[J]. Blood, 2000, 96(1): 176-181.
    [30]Tabruyn, S. P., & Griffioen, A. W. Molecular pathways of angiogenesis inhibition[J]. Biochemical and Biophysical Research Communications, 2007, 355(1): 1-5.
    [31]Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer[J]. New England Journal of Medicine, 2004,350(8): 2335-2342.
    [32]Glusker, P., Recht, L., and Lane, B. Reversible posterior leukoencephalopathy syndrome and bevacizumab[J]. New England Journal of Medicine, 2006,354(12): 980-982.
    [33]Ferrara, N., & Kerbel, R. S. Angiogenesis as a therapeutic target[J]. Nature, 2005,438(6791): 967-974.
    [34]Alitalo, K., Tammela, T., & Petrova, T. V. Lymphangiogenesis in development and human disease[J]. Nature, 2005,438(6790): 946-953.
    [35] Yu, J. L., Rak, J. W., Coomber, B. L., Hicklin, D. J., & Kerbel, R. S. Effect of p53 status on tumor response to antiangiogenic therapy [J]. Science, 2002, 295(5559): 1526-1528.
    [36]Rafii S,Lyden D,Benezra R,et al. Vascular and haematopoietic stem cells: novel targets for antiangiogenesis therapy [J].Nat Rev Cancer,2002,2(11): 826-835.
    [37]Caduff, J. H., Fischer, L. C., & Burri, P. H. Scanning electron microscope study of the developing microvasculature in the postnatal rat[J].1986,216(2):154-64.
    [38] Burri, P. H., Hlushchuk, R., & Djonov, V. Intussusceptive angiogenesis: Its emergence, its characteristics, and its significance [J]. Developmental Dynamics, 2004, 231(4): 474-488.
    [39] Crivellato E,Nico B,Vacca A,et al.Recombinant human erythropoietin induces intussusceptive microvascular growth in vivo[J].Leukemia,2004,18(2):331-336.
    [40]Djonov, V. G., Kurz, H., & Burri, P. H. Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism[J]. Developmental Dynamics, 2002, 224(4): 391-402.
    [41]Patan, S., Munn, L. L., & Jain, R. K. Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: A novel mechanism of tumor angiogenesis[J]. Microvascular Research, 1996,51 (2): 260-272.
    [42]Ribatti, D., Nico, B., Floris, C., Mangieri, D., Piras, F., Ennas, M. G., et al. Microvascular density, vascular endothelial growth factor immunoreactivity in tumor cells, vessel diameter and intussusceptive microvascular growth in primary melanoma[J]. Oncology Reports, 2005,14(1):81-84.
    [43] Oh, S. J., Kurz, H., Christ, B., & Wilting, J. Platelet derived growth factor-B induces transformation of fibrocytes into spindle-shaped myofibroblasts in vivo[J]. Histochemistry and Cell Biology, 1998,109(4): 349-357.
    [44]Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science, 1997, 275(5302): 964-967.
    [45]Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., et al. Transplantation of ex-vivo expanded endothelial progenitor cells for therapeutic neovascularization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3422-3427.
    [46] Lin, Y., Weisdorf, D. J., Solovey, A., & Hebbel, R. P.. Origins of circulating endothelial cells and endothelial outgrowth from blood[J]. Journal of Clinical Investigation, 2000,105(1):71-77.
    [47]Koichi H,Sergio D,Beate H,et al.Vascular endothelial growth factor and angiopoietin-l stimulate postnatalhematopoiesis by recruitment of vasculgenic andhematopoietic stem cells[J]. J Exp Med,2001,193(9):1005-1014.
    [48]Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N. R., et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand[J]. Cell, 2002,109(5) :625-637.
    [49]Aicher, A., Heeschen, C, Mildner-Rihm, C., Urbich, C., Ihling, C., Technau-Ihling, K., et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells[J]. Nature Medicine, 2003, 9(11): 1370-1376.
    [50]Takahashi, T., Kalka, C., Masuda, H., Chen, D., Silver, M., Kearney, M., et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization[J]. Nature Medicine, 1999,5(4): 434-438.
    [51]Vajkoczy, P., Blum, S., Lamparter, M., Mailhammer, R., Erber, R., Engelhardt, B., et al. Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis[J]. Journal of Experimental Medicine, 2003,197(12): 1755-1765.
    [52] Deb, A., Skelding, K. A., Wang, S., Reeder, M., Simper, D., &Caplice, N. M. Integrin profile and in vivo homing of human smooth muscle progenitor cells[J]. Circulation, 2004,110(17):2673-2677.
    [53]Chavakis, E., Hain, A., Vinci, M., Carmona, G., Bianchi, M. E., Vajkoczy, P.,et al. High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells[J]. Circulation Research, 2007,100(1): 204-212.
    [54]Gehling, U. M., Ergun, S., Schumacher, U., Wagener, C., Pantel.K., Otte, M., et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells[J]. Blood, 2000,95(10): 3106-3112.
    [55]Peichev M, Naiyer AJ, Pereira D, et al.Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors[J]. Blood, 2000,95 (3): 952-958.
    [56]Asahara, T., Masuda, H., Takahashi, T., Kalka, C., Pastore, C.,Silver, M., et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization[J]. Circulation Research, 1999, 85(1): 221-228.
    [57]Sussman, L. K., Upalakalin, J. N., Roberts, M. J., Kocher, O., & Benjamin, L. 71. Liao, F., Huynh, H. K., Eiroa, A., Greene, T., Polizzi, E., & Muller, W. A. Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1[J]. Journal of Experimental Medicine, 1995,182(21): 1337-1343.
    [58] Kim, H. K., Song, K. S., Kim, H. O., Chung, J. H., Lee, K. R., Lee, Y. J., et al. Circulating numbers of endothelial progenitor cells in patients with gastric and breast cancer. Cancer Letter, 2003,198(1): 83-88.
    
    [59]Lyden, D., Young, A. Z., Zagzag, D., Yan, W., Gerald, W., O'Reilly, R., et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts[J]. Nature, 1999,401(6754): 670-677.
    
    [60]Wesseling, P., van der Laak, J. A., de Leeuw, H., Ruiter, D. J., & Burger, P. C. Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme. Computer-assisted image analysis of whole-tumor sections[J]. Journal of Neurosurgery, 1994, 81(8): 902-909.
    [61]Holmgren, L., O'Reilly, M. S., & Folkman, J. Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression[J]. Nature Medicine, 1995,1(1): 149-153.
    
    [62]Pezzella, F., Pastorino, U., Tagliabue, E., Andreola, S., Sozzi, G.,Gasparini, G., et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis[J]. American Journal of Pathology, 1997,151(5): 1417-1423.
    [63]Holash, J., Maisonpierre, P. C, Compton, D., Boland, P., Alexander, C. R., Zagzag, D., et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF[J]. Science, 1999, 284(5422): 1994-1998.
    [64] 64 Lobov IB , Brooks PC , Lan g RA. Angiopoietin-2 displays VEGF2 dependent modulation of capillary structure and endothelial cell survival in vivo [J]. Proc Natl Acad Sci USA, 2002, 99 (17): 11205-11210.
    [65] 65 Asahara T , Chen D , Takahashi T, et al. Tie-2 receptor ligands , angiopoietin21 and angiopoietin22 , modulate VEGF2induced postnatal neovas cularization [J]. Circ Res , 2004, 83 (3): 233- 240.
    [66] Zhang, L., Yang, N., Park, J. W., Katsaros, D., Fracchioli, S.,Cao, G, et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer[J]. Cancer Research, 2003, 63(12): 3403-3412.
    [67] Dome, B., Paku, S., Somlai, B., & Timar, J. Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance [J]. Journal of Pathology, 2002,197(2): 355-362.
    [68] Kim, E. S., Serur, A., Huang, J., Manley, C. A., McCrudden, K. W., Frischer, J. S., et al. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(17): 11399-11404.
    [69]Kunkel, P., Ulbricht, U., Bohlen, P., Brockmann, M. A., Fillbrandt, R., Stavrou, D., et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2[J]. Cancer Research, 2001,61(18): 6624-6628.
    [70]Dennie CJ,Veinot JP,McCormack DG,et al.Intimal sarcoma of the pulmonary arteries seen as a mosaic pattern of lung attenuation on high-resolution CT[J].Am J Roentgenol,2002,178(5):1208-1210.
    [71] Chang YS,de Tomaso E,McDonald DM,et al.Mosaic blood vessels in tumors:frequency of cancer cells in contact with flowing blood[J].Proc Natc Acad Sci USA,2000,97(26):14608-14613.
    [72] Zhang, S., Guo, H., Zhang, D., Zhang , W., Zhao, X.,Ren, Z.,Sun, B. Microcirculation patterns in different stages of melanoma growth [J]. Oncology Reports.2006,15(1):15-20.
    [73]Maniotis, A. J., Folberg, R., Hess, A., Seftor, E. A., Gardner, L.M., Pe'er, J., et al. Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry[J]. American Journal of Pathology, 1999,155(7): 739-752.
    [74] Folberg, R., Rummelt, V., Parys-Van Ginderdeuren, R., Hwang, T., Woolson, R. F., Pe'er, J., et al. The prognostic value of tumor blood vessel morphology in primary uveal melanoma[J]. Ophthalmology, 1993,100(9):1389-1398.
    [75]Kerbel, R. S. Tumor angiogenesis: Past, present and the near future[J]. Carcinogenesis, 2000, 21(3):505-515.
    [76]Ruf, W., Seftor, E. A., Petrovan, R. J., Weiss, R. M., Gruman, L. M., Margaryan, N. V., et al. (2003). Differential role of tissue factor pathway inhibitors 1 and 2 in melanoma vasculogenic mimicry[J]. Cancer Research, 63(17):5381-5389.
    [77]Hendrix, M. J., Seftor, E. A., Hess, A. R., & Seftor, R. E. Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma[J]. Nature Reviews Cancer, 2003,3(6): 411-421.
    [78] Seftor, R. E., Seftor, E. A., Koshikawa, N., Meltzer, P. S.,Gardner, L. M., Bilban, M., et al. Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma[J]. Cancer Research, 2001, 61(17): 6322-6327.
    [79]Seftor RE,Seftor EA,Kirsehmann DA,et al.Targeting the tumor microenvironment with chemically modified tetracychnes: inhibition of laminin 5 gamma 2 chain promigratory fragments and vasculogenic mimicry[J]. Mol Cancer Ther,2002,l(13) :1173-1179.
    [80]Seftor, E. A., Brown, K. M., Chin, L., Kirschmann, D. A.,Wheaton, W. W., Protopopov, A., et al. Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma microenvironment[J]. Cancer Research, 2005, 65(22): 10164-10169.
    [81]Rofstad, E. K., Rasmussen, H., Galappathi, K., Mathiesen, B., Nilsen, K., & Graff, B. A. Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor[J]. Cancer Research, 2002,62(6): 1847-1853.
    [82]Bedogni, B., Welford, S. M., Cassarino, D. S., Nickoloff, B. J., Giaccia, A. J., & Powell, M. B. The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation[J]. Cancer Cell, 2005, 8(6): 443-454.
    [83]Rybak, S. M., Sanovich, E., Hollingshead, M. G., Borgel, S. D., Newton, D. L., Melillo, G., et al. "Vasocrine" formation of tumor cell-lined vascular spaces: Implications for rational design of antiangiogenic therapies[J]. Cancer Research, 2003, 63(11): 2812-2819.
    [84] van der Schaft, D. W., Hillen, F., Pauwels, P., Kirschmann, D. A., Castermans, K., Egbrink, M. G., et al. Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia[J]. Cancer Research, 2005,65(24):11520-11528.
    
    [85]Clarijs, R., Otte-Holler, I., Ruiter, D. J., & de Waal, R. M. Presence of a fluid-conducting meshwork in xenografted cutaneous and primary human uveal melanoma[J]. Investigative Ophthalmology and Visual Science, 2002,43(4): 912-918.
    
    [86]Shirakawa, K., Kobayashi, H., Heike, Y., Kawamoto, S., Brechbiel, M. W., Kasumi, F., et al. Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft[J]. Cancer Research, 2002, 62(5): 560-566.
    [87]Frenkel, S., Barzel, I., Levy, J., Lin, A. Y., Bartsch, D. U., Majumdar, D., Folberg, R., & Pe'er, J. Demonstrating circulation in vasculogenic mimicry patterns of uveal melanoma by confocal indocyanine green angiography[J], Eye, 2007,10(16):1038-1042.
    [88] Hess AR,Seftor EA,SeftorRE.et al.Phosphoinositide 3-Kinase regulates membrane type 1-matrix metalloproteinase(MMP)and MMP-2 activity during melanoma cell vaseulogenie mimicry [J].Cancer Res,2003, 63(16): 4757-4762.
    [89]van der Schaft, D. W., Seftor, R. E., Seftor, E. A., Hess, Gruman, L. M., Kirschmann, D. A., et al. Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells[J]. Journal of the National Institute, 2004,96(19): 1473-1477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700