用户名: 密码: 验证码:
促进药物透皮和皮肤靶向的纳米载药系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经皮给药系统是药剂学中快速发展一个领域。在降低不良反应、提高治疗指数和用药顺应性方面具有明显的优势。经皮给药系统的研究主要包括药物的透皮吸收、局部组织和局部皮肤吸收等方面。近年来,以胰岛素为代表的多肽蛋白类药物的透皮给药和皮肤疾病治疗药物的皮肤靶向给药是经皮给药系统研究中的两个热点问题。随着纳米技术的快速发展,纳米载药系统已开始应用于解决上述两个问题。
     在本论文中,制备、表征了不同粒径和电位的胰岛素纳米囊泡,评价了微针、离子导入及两者联合应用对胰岛素纳米囊泡透皮的协同促渗作用,并考察了不同促渗条件下胰岛素纳米囊泡对糖尿病大鼠的降糖作用及其透皮机理。在皮肤靶向研究方面,构建并表征了鬼臼毒素微乳凝胶(HTM)和固体脂质纳米粒(SLN),考察其皮肤靶向性,并探讨了其皮肤靶向机制。在此基础上,在微乳凝胶中引入固体脂质材料,构建了一种新型的微乳凝胶,用于皮肤靶向给药。主要完成了以下研究工作:
     (1)采用高剪切法、超声波法、高压匀质法等制备了纳米囊泡。通过改变制备工艺条件,制备了粒径分别为91.0 nm、143.0 nm、175.9 nm的胰岛素纳米囊泡。进一步对纳米囊泡表面电荷进行修饰,制得了zeta电位分别为+27.8 mV、-25.3 mV、-50.5 mV的胰岛素纳米囊泡。采用量子点示踪技术和高分辨透射电镜观测了纳米囊泡的微区结构,纳米囊泡脂质双层膜厚度在3~5 nm之间,并观测到胰岛素聚集体在囊泡内外均有分布。Sephadex G25凝胶柱法测得胰岛素纳米囊泡的包封率为(89.05±0.91)%。纳米囊泡能促进胰岛素以被动扩散方式透过离体皮肤,但其透皮速率较低,仅为0.19±0.01μg/(cm2·h)。
     (2)微针预处理皮肤后,形成了皮肤微通道,有效克服了角质层的屏障作用,胰岛素纳米囊泡的透皮速率增加了86~166倍,最高可达31.68±0.79μg/(cm2·h),透皮时滞在0.9~1.2 h之间,透皮释药行为符合Fick’s第一扩散定律。而纳米囊泡在离子导入促渗时,其透皮速率仅为被动扩散的3.9~4.3倍,最高透皮速率为0.97±0.05μg/(cm2·h),其促渗能力作用明显弱于微针。在微针促渗时,上述胰岛素纳米囊泡的透皮速率分别是胰岛素溶液的3.3~13.0倍,表明纳米囊泡也具有重要的促渗作用。微针主要通过提高胰岛素的扩散系数来提高透皮能力,纳米囊泡则可能对扩散系数和分配系数均有提高。表面的正电荷修饰增强了胰岛素纳米囊泡在微针或离子导入促渗时的透皮能力,而表面负电荷修饰对胰岛素透皮影响较小。
     (3)微针和离子导入联合促渗作用下,胰岛素纳米囊泡的透皮释药行为符合Fick’s第一扩散定律,透皮时滞范围为1.0~1.3 h,其离体透皮速率在60.23~106.99μg/(cm2·h)之间,为胰岛素PBS溶液对照组透皮速率的3.9~7.0倍,是微针单独促渗时的3.4~7.1倍,离子导入单独促渗时的92.5~134.9倍,被动扩散时的359.6~713.3倍。微针、离子导入和纳米囊泡在胰岛素透皮过程中具有明显的协同促渗作用。微针联合离子导入促进胰岛素纳米囊泡透皮时具有显著降糖作用(P<0.01),在第3~6 h时血糖水平为初始值的28.3~41.7%,与皮下注射组无显著性区别,明显高于微针、离子导入以及纳米囊泡单独促渗时的降糖作用,与离体透皮实验结果一致。荧光成像实验表明,在微针和离子导入联合促渗时,纳米囊泡导致了荧光标记的胰岛素在皮肤中的富集,皮肤微通道和角质层途径均有较好的通透作用。联合促渗的主要透皮机制包括以下几个方面:微针预处理皮肤所诱导的微通道成为胰岛素纳米囊泡透皮的主要透皮途径之一;纳米囊泡在电场推动下沿微通道向皮肤深部渗透,可引起胰岛素纳米囊泡在皮肤层中的富集,进而降低角质层的屏障作用;纳米囊泡较高的包封率可显著提高胰岛素在皮肤中的分配系数,同时还可避免胰岛素分子在离子导入过程中存在的电荷反转问题。
     (4)制备、表征了鬼臼毒素微乳凝胶,微乳凝胶中的凝胶对微乳结构和透皮释药行为无明显影响。通过调节微乳凝胶中Tween 80的比例,鬼臼毒素的透皮速率和皮肤滞留量可同时下降或升高,其皮肤靶向性有待于进一步提高。此外,分别制备了泊洛沙姆188稳定的鬼臼毒素SLN(P-SLN)和Tween 80稳定的鬼臼毒素SLN(T-SLN),两者的平均粒径分别为73.4 nm、123.1 nm。原子力显微镜和扫描电镜研究表明两种SLN均为球形纳米粒, P-SLN具有更较好的物理稳定性。离体透皮实验结果显示,两种SLN均未透过皮肤,避免了鬼臼毒素的透皮吸收,而酊剂则有明显的透皮吸收。P-SLN和T-SLN的皮肤滞留量分别为23.38±0.55μg、6.82±0.34μg,比微乳凝胶有更好的皮肤靶向性。荧光成像研究发现SLN可促使药物分布于表皮层,表明P-SLN具有表皮靶向性。在SLN皮肤靶向机制方面,除现有的闭合膜和缓控释机理之外,推测SLN也可能进入角质层,改变药物在角质层中分配系数,从而实现皮肤靶向。
     (5)以熔融的脂质材料Compritol 888 ATO为微乳凝胶的油相,制成了热微乳凝胶,在-20℃和5℃时冷却可得到粒径分布分别为20~50 nm和20~200 nm的新型微乳凝胶(SHTM)。前者粒径分布窄、具有较好的单分散性,而后者在冷却过程中可能存在液滴融合的现象,导致粒径明显增加、分布较宽。离体小鼠透皮实验表明,雷公藤内酯SHTM具有较强的皮肤滞留能力,可明显降低药物的透皮速率,具有较好的靶向性。有关SHTM的纳米结构、释药行为及其皮肤靶向机制等还有待于深入研究。
     本论文的研究结果表明微针、离子导入协同促进胰岛素纳米囊泡透皮可有效克服皮肤的屏障作用,对胰岛素的透皮给药研究具有重要意义,对其它多肽蛋白药物的透皮给药也具有借鉴意义。有关皮肤疾病治疗药物的皮肤靶向载体研究为开发高效、低毒的局部给药新制剂提供了新的思路。
Recently, the rapid development in transdermal drug delivery systems (TDDS) has been made in pharmaceutical science. TDDS are of advantage to reduce adverse side effects and to enhance therapy index and convenience for clinical uses. Much attention has been paid on transdermal delivery, topical delivery and dermal delivery in TDDS. The transdermal delivery of peptides and proteins with large molecular weights and skin targeting delivery of drugs for the therapy of skin diseases are attractive challenges in TDDS. Nano drug delivery systems (NDDS) are used to conquer these challenges due to the rapid development of nanotechnology.
     In this dissertation, the insulin-loaded nanovesicles were prepared, characterized and used to improve the permeation rates of insulin through skins with the enhancement of microneedle, iontophoresis or their combination. The change of blood glucose levels of diabetic rats were evaluated using in vivo animal experiments. The penetration mechanisms of insulin-loaded nanovesicles through skins were also explored using fluorescence imaging. In addition, podophyllotoxin-loaded hydrogel-thickened microemulsions (HTM) and solid lipid nanoparticles (SLN) were constructed and characterized. The dermal delivery of podophyllotoxin-loaded HTM and SLN was evaluated and their permeation mechanisms were also explored. Furthermore, Compritol 888 ATO was used to costruct novel HTM based on solid lipid for dermal delivery. The following are main results:
     (1) The nanovesicles were respectively prepared using high shear, ultrasound and high pressure homogenization methods. The nanovesicles with average diameters of 91.0 nm, 143.0 nm and 175.9 nm were constructed. The nanovesicles with zeta potentials of +27.8 mV, -25.3 mV and -50.5 mV were also prepared by modifying the surface charges of nanovesicles. The microstructures of nanovesicles were investigated by quantum dots (QDs)-based trace method and high resolution transmission electron microscopy (HR-TEM). The lipid membranes were found to have the thickness of 3~5 nm and insulin molecules distributed both inside and outside membranes. The entrapment efficiency of insulin-loaded nanoveiscles from Sephadex G25 column was (89.05±0.91)%. Insulin can passively penetrate through skins from nanovesicles at a low permeation rate of 0.19±0.01μg/(cm2·h).
     (2) The microneedles-pretreated microchannels could reduce the barrier of stratum corneum and increase the permeation rate of insulin from nanovesicles 86~166 times and the highest permeation rate was 31.68±0.79μg/(cm2·h). The permeation time lag ranged from 0.9 h to 1.2 h and the penetration accorded with Fick’s first law of diffusion. The iontophoresis could also enhance the permeation rates of insulin from nanovesicles 3.9~4.3 times and the highest permeation rate was 0.97±0.05μg/(cm2·h). The microneedles had more powerful ability to enhance the permeation rates of insulin from nanovesicles when compared with iontophoresis. The permeation rates of insulin from nanovesicles combined with the microneedles or iontophoresis were 3.3~13.0 times higher than those from control solution and the nanovesicles significantly contributed to the permeation enhancement. Microneedles could enhance the diffusion coefficient of insulin in skins and nanovesicles could improve both diffusion coefficient and partition coefficient of insulin. The nanovesicles with positive charges had more powerful permeation ability when compared with those with negative charges, when microneedles or iontophoresis were used.
     (3) The penetration of insulin from nanovesicles enhanced by the combination of microneedles and iontophoresis followed with Fick’s first law of diffusion and the permeation time lag ranged from 1.0 h to 1.3 h. The permeation rates of insulin were 60.23~106.99μg/(cm2·h), which were 3.9~7.0, 3.4~7.1, 92.5~134.9 and 359.6~713.3 times, respectively, when compared with those from control solution at passive diffusion, nanovesicles combined with microneedles alone, nanovesicles combined with iontophoresis alone and nanovesicles at passive diffusion. The combination of microneedles, iontophoresis and nanovesicles resulted in synergetic effects on the penetration of insulin (P<0.01). The synergetic effect could result in significant decrease of blood glucose levels (BGL) (P<0.01). The values of BGL at 3~6 h were 28.3~41.7% of initial values, which were comparable to those of rats administrated by subcutaneous injection and higher than that of the other groups. Fluorescence imaging showed that the synergetic effects of nanovesicles, microneedles and iontophoresis resulted in the enrichment of insulin in skins. Both the skin microchannels and stratum corneum showed high permeability for the penetration of insulin. The synergetic effect might attribute to several factors. The microneedle-pretreated skin microchannels acted as one of the main routes for insulin-loaded nanovesicles. The nanovesicles with charges propelled by iontophoresis could penetrate into deep skins along the microchannels and also lead to the enrichment of insulin in skins and reduce the barriers of stratum corneum. The high entrapment efficiency of nanovesicles could also improve the partition coefficient and avoid the charge reversal of insulin under the electric field of iontophoresis.
     (4) The podophyllotoxin-loaded hydrogel-thickened microemulsions (HTM) were constructed and characterized. The hydrogel have no significant influence on the microstructure of microemulsion and the permeation ability. The permeation rates of podophyllotoxin through skins increased with the increase of the accumulative amounts of drug in skin when the concentrations of Tween 80 were changed. The further studies should be performed for enhancing the skin targeting ability of HTM. In addition, podophyllotoxin-loaded solid lipid nanoparticles (SLN) were constructed using poloxamer 188 (P-SLN) and Tween 80 (T-SLN) as stabilizers. The average diameters of P-SLN and T-SLN were 73.4 nm and 123.1 nm, respectively. Atomic force microscopy and scanning electron microscopy showed that both SLN had spherical morphology and P-SLN had good physical stability. The in vitro permeation studies showed both P-SLN and T-SLN coult not penetrate through skins and avoid the systemic absorption of podophyllotoxin. But the tincture resulted in high permeation rates of podophyllotoxin. The accumulative amounts of podophyllotoxin from P-SLN and T-SLN in skins were 23.38±0.55μg and 6.82±0.34μg, respectively. Both SLN showed more powerful skin targeting than HTM. The fluorescence imaging found that P-SLN resulted in the local distribution of podophyllotoxin in epidermis and showed an epidermal targeting ability. The epidermal targeting might contribute to the penetration of SLN into stratum corneum and further change the partition coefficient besides their occlusive effects and sustained release.
     (5) The melt Compritol 888 ATO as an oily phase was used to construct a hot HTM. A novel HTM based on solid lipid (SHTM) were obtained by cooling the hot HTM at various temperature. The size distributions of SHTM obtained at the cooling temperature of -20℃and 5℃were 20~50 nm and 20~200 nm, respectively. SHTM obtained at -20℃had a narrow size distribution. But SHTM obtained at 5℃showed significant increases of diameters and broad size distribution because of possible coalescence between droplets during cooling. The in vitro permeation studies showed that SHTM could enhance the accumulative amounts of triptolide in skins, reduce the permeation rates and show a good skin targeting. The studies about microstructure, drug release and skin targeting of SHTM should be valuable in future.
     The results of this dissertation show that the penetration strategy of insulin-loaded nanovesicles enhanced by the combination of microneedles and iontophoresis would be significantly valuable for transdermal delivery of insulin and also be promising for transdermal delivery of the other peptides and proteins with large molecular weights. The research on the drug-loaded nanocarriers with skin targetings for the therapy of skin diseases affords a novel strategy in development of novel formulations with low toxicity and good curative effects.
引文
[1]郑俊民.经皮给药新剂型.北京:人民卫生出版社; 2006.
    [2] Dubey V., Mishra D., Nahar M., et al. Vesicles as tools for the modulation of skin permeability. Expert Opin. Drug Deliv. 2007; 4(6): 579-593.
    [3] Moser K., Kriwet K., Naik A., et al. Passive skin penetration enhancement and its quantification in vitro. Eur. J. Pharm. Biopharm. 2001; 52(2): 103-112.
    [4]高天文,廖文俊.皮肤组织病理学入门.北京:人民卫生出版社; 2007.
    [5] Bronaugh R. L., Stewart R. F., Congdon E. R. Methods for in vitro percutaneous absorption studies. II. Animal models for human skin. Toxicol. Appl. Pharmacol. 1982; 62(3): 481-488.
    [6] Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 2004; 56(5): 675-711.
    [7] van Kuijk-Meuwissen M. E., Junginger H. E., Bouwstra J. A. Interactions between liposomes and human skin in vitro, a confocal laser scanning microscopy study. Biochim. Biophys. Acta. 1998; 1371(1): 31-39.
    [8] Chen Y., Shen Y., Guo X., et al. Transdermal protein delivery by a coadministered peptide identified via phage display. Nat. Biotech. 2006; 24(4): 455-460.
    [9] Alarcon J. B., Hartley A. W., Harvey N. G., et al. Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines. Clin. Vaccine Immunol. 2007; 14(4): 375-381.
    [10] Brown M. B., Traynor M. J., Martin G. P., et al. Transdermal drug delivery systems: skin perturbation devices. Methods Mol. Biol. 2008; 437: 119-139.
    [11] Sivamani R. K., Stoeber B., Wu G. C., et al. Clinical microneedle injection of methyl nicotinate: stratum corneum penetration. Skin Res. Technol. 2005; 11(2): 152-156.
    [12] Higo N. Recent trend of transdermal drug delivery system development. Yakugaku Zasshi. 2007; 127(4): 655-662.
    [13] Reaume S. E. The use of hydrofluoric acid in making glass microneedles. Science. 1952; 116(3023): 641.
    [14] Henry S., McAllister D. V., Allen M. G., et al. Microfabricated microneedles: a novel approach totransdermal drug delivery. J. Pharm. Sci. 1998; 87(8): 922-925.
    [15] Henry S., McAllister D. V., Allen M. G., et al. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci. 1999; 88(9): 948.
    [16] Sivamani R. K., Liepmann D., Maibach H. I. Microneedles and transdermal applications. Expert Opin Drug Deliv. 2007; 4(1): 19-25.
    [17] Prausnitz M. R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 2004; 56(5): 581-587.
    [18] Wu Y., Qiu Y., Zhang S., et al. Microneedle-based drug delivery: studies on delivery parameters and biocompatibility. Biomed. Microdevices. 2008. In press.
    [19] Lee J. W., Park J. H., Prausnitz M. R. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008; 29(13): 2113-2124.
    [20] Vandervoort J., Ludwig A. Microneedles for transdermal drug delivery: a minireview. Front Biosci. 2008; 13: 1711-1715.
    [21] Matriano J. A., Cormier M., Johnson J., et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm. Res. 2002; 19(1): 63-70.
    [22] McAllister D. V., Wang P. M., Davis S. P., et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl. Acad. Sci. U. S. A. 2003; 100(24): 13755-13760.
    [23] Lin W., Cormier M., Samiee A., et al. Transdermal Delivery of Antisense Oligonucleotides with Microprojection Patch (macroflux?) Technology. Pharm. Res. 2001; 18(12): 1789-1793.
    [24] Martanto W., Davis S. P., Holiday N. R., et al. Transdermal delivery of insulin using microneedles in vivo. Pharm. Res. 2004; 21(6): 947-952.
    [25] Ito Y., Hagiwara E., Saeki A., et al. Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci. 2006; 29(1): 82-88.
    [26] Davis S. P., Martanto W., Allen M. G., et al. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng. 2005; 52(5): 909-915.
    [27] Nordquist L., Roxhed N., Griss P., et al. Novel Microneedle Patches for Active Insulin Delivery areEfficient in Maintaining Glycaemic Control: An Initial Comparison with Subcutaneous Administration. Pharm. Res. 2007; 24(7): 1381-1388.
    [28] Roxhed N., Samel B., Nordquist L., et al. Painless drug delivery through microneedle-based transdermal patches featuring active infusion. IEEE Trans. Biomed. Eng. 2008; 55(3): 1063-1071.
    [29] Wu X. M., Todo H., Sugibayashi K. Effects of pretreatment of needle puncture and sandpaper abrasion on the in vitro skin permeation of fluorescein isothiocyanate (FITC)-dextran. Int. J. Pharm. 2006; 316(1-2): 102-108.
    [30] Teo M. A., Shearwood C., Ng K. C., et al. In vitro and in vivo characterization of MEMS microneedles. Biomed. Microdevices. 2005; 7(1): 47-52.
    [31] Verbaan F. J., Bal S. M., van den Berg D. J., et al. Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J. Control. Release. 2008; 128(1):80-88.
    [32]郑静南,陈华兵,张俊勇,等.不锈钢微针经皮给药的研究.中国新药杂志. 2007; 16: 877-880.
    [33] Park J. H., Allen M. G., Prausnitz M. R. Polymer Microneedles for Controlled-Release Drug Delivery. Pharm. Res. 2006; 23(5): 1008-1019.
    [34]陈绍凤,赵湛,秦宁,等.气囊驱动硅微针尖阵列微量药物输送执行器的研究.中国机械工程. 2005; 16(z1): 114-115.
    [35]傅新,焦峰,谢海波,等.用于药物透皮传输的微针阵列加工工艺.机械工程学报. 2006(2); 42: 68-75.
    [36]马斌,徐永清,甘志银,等.用于药物释放系统的柔性微针研制.半导体技术. 2005; 30(12): 19-25.
    [37]孙潇,贾书海,朱军,等.新型MEMS微针设计及其力学性能.半导体学报. 2007; 28(1): 113-116.
    [38]贾书海,李以贵,朱军,等.一种新的低成本微电子机械系统微针加工方法.西安交通大学学报. 2007(5); 41: 589-592.
    [39] Batheja P., Thakur R., Michniak B. Transdermal iontophoresis. Expert Opin. Drug Deliv. 2006; 3(1): 127-138.
    [40] Dixit N., Bali V., Baboota S., et al. Iontophoresis - an approach for controlled drug delivery: a review. Curr. Drug Deliv. 2007; 4(1): 1-10.
    [41] Wermeling D. P., Banks S. L., Hudson D. A., et al. Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc. Natl. Acad. Sci. U. S. A. 2008; 105(6): 2058-2063.
    [42] Kalia Y. N., Naik A., Garrison J., et al. Iontophoretic drug delivery. Adv. Drug Deliv. Rev. 2004; 56(5): 619-658.
    [43]许东航,梁文权,宋继芬.盐酸丁卡因离子导入研究.中国现代应用药学. 1999; 16: 26-27.
    [44] Brand R. M., Wahl A., Iversen P. L. Effects of size and sequence on the iontophoretic delivery of oligonucleotides. J. Pharm Sci. 1998; 87(1): 49-52.
    [45] Pillai O., Nair V., Panchagnula R. Transdermal iontophoresis of insulin: IV. Influence of chemical enhancers. Int. J. Pharm. 2004; 269(1): 109-120.
    [46] Pillai O., Panchagnula R. Transdermal iontophoresis of insulin. V. Effect of terpenes. J. Control. Release. 2003; 88(2): 287-296.
    [47] Kirjavainen M., UrttiA., Monkkonen J, et al. Influence of lipids on the mannitol flux during transdermal iontophoresis in vitro. Eur. J. Pharm. Sci. 2000; 10(2): 97-102.
    [48] Tokumoto S., Higo N., Sugibayashi K. Effect of electroporation and pH on the iontophoretic transdermal delivery of human insulin. Int. J. Pharm. 2006; 326(1-2): 13-19.
    [49] Boinpally R. R., Zhou S. L., Devraj G., et al. Iontophoresis of lecithin vesicles of cyclosporin A. Int. J. Pharm. 2004; 274(1-2): 185-190.
    [50] Wu X.-M., Todo H., Sugibayashi K. Enhancement of skin permeation of high molecular compounds by a combination of microneedle pretreatment and iontophoresis. J. Control. Release. 2007; 118(2): 189-195.
    [51] Badkar A., Smith A., Eppstein J., et al. Transdermal Delivery of Interferon Alpha-2B using Microporation and Iontophoresis in Hairless Rats. Pharm. Res. 2007; 24(7): 1389-1395.
    [52] Guy R. H. Current status and future prospects of transdermal drug delivery. Pharm. Res. 1996; 13(12): 1765-1769.
    [53] Weaver J. C., Chizmadzhev Y. A. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 1996; 41(2): 135-160.
    [54] Denet A. R., Vanbever R., Preat V. Skin electroporation for transdermal and topical delivery. Adv. Drug Deliv. Rev. 2004; 56(5): 659-674.
    [55] Badkar A. V., Betageri G. V., Hofmann G. A., et al. Enhancement of transdermal iontophoretic delivery of a liposomal formulation of colchicine by electroporation. Drug Deliv. 1999; 6(2): 111-115.
    [56] Burgess S. E., Zhao Y. L., Sen A., et al. Resealing of electroporation of porcine epidermis using phospholipids and poloxamers. Int. J. Pharm. 2007; 336(2): 269-275.
    [57] Jiang G., Zhu D., Zan J., et al. Transdermal drug delivery by electroporation: The effects surfactants on pathway lifetime and drug transport. Chin. J. Chem. Eng. 2007; 15(3): 397-402.
    [58] Wang R. J., Wu P. C., Huang Y. B., et al. The effects of iontophoresis and electroporation on transdermal delivery of meloxicam salts evaluated in vitro and in vivo. J. Food Drug Anal. 2008; 16(1): 41-48.
    [59] Martin G. T., Pliquett U. F., Weaver J. C. Theoretical analysis of localized heating in human skin subjected to high voltage pulses. Bioelectrochemistry. 2002; 57(1): 55-64.
    [60] Pliquett U. Mechanistic studies of molecular transdermal transport due to skin electroporation. Adv. Drug Deliv. Rev. 1999; 35(1): 41-60.
    [61] Müller R. H., Hildebramd G. E. Pharmazeutische technologie: moderne arzneiformen. Berlin: Wissenschaftliche Verlagsgesellschaft; 1997.
    [62] Cheon H. Y., Jeong N. H., Kim H. U. Spontaneous vesicle formation in aqueous mixtures of cationic gemini surfactant and sodium lauryl ether sulfate. Bull. Korean Chem. Soc. 2005; 26(1): 107-114.
    [63] Discher B. M., Won Y. Y., Ege D. S., et al. Polymersomes: Tough vesicles made from diblock copolymers. Science. 1999; 284(5417): 1143-1146.
    [64] Johnsson M., Engberts J. B. F. N. Novel sugar-based gemini surfactants: aggregation properties on aqueous solution. J. Phys. Org. Chem. 2004; 17(11): 934-944.
    [65] Li S. L., Byrne B., Welsh J., et al. Self-assembled poly(butadiene)-b-poly(ethylene oxide) polymersomes as paclitaxel carriers. Biotechnol. Progr. 2007; 23(1): 278-285.
    [66] Elsayed M. M., Abdallah O. Y., Naggar V. F., et al. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int. J. Pharm. 2007; 332(1-2): 1-16.
    [67] Torchilin V. P., Weissig,V. Liposome: A practical approach. Boston:Oxford unversity press; 2003.
    [68] Yang T. Z., Wang X. T., Yan X. Y., et al. Phospholipid deformable vesicles for buccal delivery ofinsulin. Chem. Pharm. Bull. 2002; 50(6): 749-753.
    [69] Cevc G., Gebauer D., Stieber J., et al. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim. Biophys. Acta. 1998; 1368(2): 201-215.
    [70] Kirjavainen M., Urtti A., Valjakka-Koskela R., et al. Liposome-skin interactions and their effects on the skin permeation of drugs. Eur. J. Pharm. Sci. 1999; 7(4): 279-286.
    [71] Xiao C. H., Moore D. J., Rerek M. E., et al. Feasibility of tracking phospholipid permeation into skin using infrared and raman microscopic imaging. J. Invest. Dermatol. 2005; 124(3): 622-632.
    [72] Maestrelli F., Gonzalez-Rodriguez M. L., Rabasco A. M., et al. Effect of preparation technique on the properties of liposomes encapsulating ketoprofen-cyclodextrin complexes aimed for transdermal delivery. Int. J. Pharm. 2006; 312(1-2): 53-60.
    [73] Fang J. Y., Hong C. T., Chiu W. T., et al. Effect of liposomes and niosomes on skin permeation of enoxacin. Int. J. Pharm. 2001; 219(1-2): 61-72.
    [74] Fang J. Y., Sung K. C., Lin H. H., et al. Transdermal iontophoretic delivery of enoxacin from various liposome-encapsulated formulations. J. Control. Release. 1999; 60(1): 1-10.
    [75] Cevc G., Schzlein A., Richardsen H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim. Biophys. Acta (BBA) - Biomembranes. 2002; 1564(1): 21-30.
    [76] Cevc G. Transidermal drug delivery of insulin with ultradeformable carriers. Clin. Pharmacokinet. 2003; 42(5): 461-474.
    [77] Cevc G., Schatzlein A., Blume G. Transdermal drug carriers: basic properties potimization and transfer-efficiency in the case of epicutaneously applied peptides. J. Control. Release. 1995; 36: 3-16.
    [78] Guo J. X., Ping Q. N., Zhang L. Transdermal delivery of insulin in mice by using lecithin vesicles as a carrier. Drug Deliv. 2000; 7(2): 113-116.
    [79] Godin B., Touitou E. Ethosomes: New prospects in transdermal delivery. Crit. Rev. Ther. Drug Carrier Syst. 2003; 20(1): 63-102.
    [80] Verma D. D., Fahr A. Synergistic penetration enhancement effect of ethanol and phospholipids on thetopical delivery of cyclosporin A. J. Control. Release. 2004; 97(1): 55-66.
    [81] Sen A., Daly M. E., Hui S. W. Transdermal insulin delivery using lipid enhanced electroporation. Biochim. Biophys. Acta-Biomembranes. 2002; 1564(1): 5-8.
    [82] Lee S., Lee J., Choi Y. W. Skin permeation enhancement of ascorbyl palmitate by liposomal hydrogel (lipogel) formulation and electrical assistance. Biol. Pharm. Bull. 2007; 30(2): 393-396.
    [83] Spernath A., Aserin A. Microemulsions as carriers for drugs and nutraceuticals. Adv. Colloid Interface Sci. 2006; 128-130: 47-64.
    [84] Karasulu H. Y. Microemulsions as novel drug carriers: the formation, stability, applications and toxicity. Expert Opin. Drug Deliv. 2008; 5(1): 119-135.
    [85] Kogan A., Garti N. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci. 2006; 123-126: 369-385.
    [86] Ghosh P. K., Murthy R. S. Microemulsions: a potential drug delivery system. Current Drug Deliv. 2006; 3(2): 167-180.
    [87] Jadhav K. R., Shaikh I. M., Ambade K. W., et al. Applications of microemulsion based drug delivery system. Current Drug Deliv. 2006; 3(3): 267-273.
    [88] Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv. Drug Deliv. Rev. 2002; 54(S1): S77-98.
    [89] Teichmann A., Heuschkel S., Jacobi U., et al. Comparison of stratum corneum penetration and localization of a lipophilic model drug applied in an o/w microemulsion and an amphiphilic cream. Eur. J. Pharm. Biopharm. 2007; 67(3): 699-706.
    [90] Rhee Y. S., Choi J. G., Park E. S., et al. Transdermal delivery of ketoprofen using microemulsions. Int. J. Pharm. 2001; 228(1-2): 161-170.
    [91] Paolino D., Ventura C. A., Nisticon S., et al. Lecithin microemulsions for the topical administration of ketoprofen: percutaneous adsorption through human skin and in vivo human skin tolerability. Int. J. Pharm. 2002; 244(1-2): 21-31.
    [92] Chen H., Chang X., Du D., et al. Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. Int. J. Pharm. 2006; 315(1-2): 52-58.
    [93] El Maghraby G. M. Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: Effects of cosurfactants. Int. J. Pharm. 2008; 355(1-2): 285-292.
    [94] Ambade K. W., Jadhav S. L., Gambhire M. N., et al. Formulation and evaluation of flurbiprofen microemulsion. Current Drug Deliv. 2008; 5(1): 32-41.
    [95]徐凌云,陈华兵,肖锋,等.雷公藤内酯微乳凝胶抗炎镇痛作用的实验研究.中国新药杂志. 2007; 16(15): 1175-1178.
    [96] Baboota S., Al-Azaki A., Kohli K., et al. Development and evaluation of a microemulsion formulation for transdermal delivery of terbinafine. PDA J. Pharm. Sci. Technol. 2007; 61(4): 276-285.
    [97] Hua L., Weisan P., Jiayu L., et al. Preparation and evaluation of microemulsion of vinpocetine for transdermal delivery. Die Pharmazie. 2004; 59(4): 274-278.
    [98] Kamal M. A., Iimura N., Nabekura T., et al. Enhanced skin permeation of diclofenac by ion-pair formation and further enhancement by microemulsion. Chem. Pharm. Bull. 2007; 55(3): 368-371.
    [99] Peira E., Scolari P., Gasco M. R. Transdermal permeation of apomorphine through hairless mouse skin from microemulsions. Int. J. Pharm. 2001; 226(1-2): 47-51.
    [100] Yuan J. S., Ansari M., Samaan M., et al. Linker-based lecithin microemulsions for transdermal delivery of lidocaine. Int. J. Pharm. 2008; 349(1-2): 130-143.
    [101] Kantaria S., Rees G. D., Lawrence M. J. Formulation of electrically conducting microemulsion-based organogels. Int. J. Pharm. 2003; 250(1): 65-83.
    [102] Murdan S. Organogels in drug delivery. Expert Opin. Drug Deliv. 2005; 2(3): 489-505.
    [103] Upadhyay K. K., Tiwari C., Khopade A. J., et al. Sorbitan ester organogels for transdermal delivery of sumatriptan. Drug Dev. Ind. Pharm. 2007; 33(6): 617-625.
    [104] Kantaria S., Rees G. D., Lawrence M. J. Gelatin-stabilised microemulsion-based organogels: rheology and application in iontophoretic transdermal drug delivery. J. Control. Release. 1999; 60(2-3): 355-365.
    [105] Liu H., Wang Y., Han F., et al. Gelatin-stabilised microemulsion-based organogels facilitates percutaneous penetration of Cyclosporin A in vitro and dermal pharmacokinetics in vivo. J. Pharm. Sci. 2007; 96(11): 3000-3009.
    [106] Lapasin R., Grassi M., Coceani N. Effects of polymer addition on the rheology of o/w microemulsions.Rheol. Acta. 2001; 40(2): 185-192.
    [107] Peltola S., Saarinen-Savolainen P., Kiesvaara J., et al. Microemulsions for topical delivery of estradiol. Int. J. Pharm. 2003; 254(2): 99-107.
    [108] Spiclin P., Homar M., Zupancic-Valant A., et al. Sodium ascorbyl phosphate in topical microemulsions. Int. J. Pharm. 2003; 256(1-2): 65-73.
    [109] Valenta C., Schultz K. Influence of carrageenan on the rheology and skin permeation of microemulsion formulations. J Control Release. 2004; 95(2): 257-265.
    [110] Chen H., Mou D., Du D., et al. Hydrogel-thickened microemulsion for topical administration of drug molecule at an extremely low concentration. Int. J. Pharm. 2007; 341(1-2): 78-84.
    [111] Almeida A. J., Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev. 2007; 59(6): 478-490.
    [112] Blasi P., Giovagnoli S., Schoubben A., et al. Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev. 2007; 59(6): 454-477.
    [113] Manjunath K., Reddy J. S., Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find. Exp. Clin. Pharmacol. 2005; 27(2): 127-144.
    [114] Mehnert W., Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. 2001; 47(2-3): 165-196.
    [115] Shah K. A., Date A. A., Joshi M. D., et al. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int. J. Pharm. 2007; 345(1-2): 163-171.
    [116] Wissing S. A., Kayser O., Müller R. H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 2004; 56(9): 1257-1272.
    [117] Wong H. L., Bendayan R., Rauth A. M., et al. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev. 2007; 59(6): 491-504.
    [118] Cho S. M., Lee H. Y., Kim J. C. Characterization and in-vitro permeation study of stearic acid nanoparticles containing hinokitiol. J. Am. Oil Chem. Soc. 2007; 84(9): 859-863.
    [119] Puglia C., Filosa R., Peduto A., et al. Evaluation of alternative strategies to optimize ketorolac transdermal delivery. AAPS PharmSciTech. 2006; 7(3): 64.
    [120] Joshi M., Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int. J. Pharm. 2008 Jan 4; 346(1-2): 124-132.
    [121] Han F., Li S., Yin R., et al. Investigation of nanostructured lipid carriers for transdermal delivery of flurbiprofen. Drug Dev. Ind. Pharm. 2008; 34(4): 453-458.
    [122] Jain S. K., Chourasia M. K., Masuriha R., et al. Solid lipid nanoparticles bearing flurbiprofen for transdermal delivery. Drug Deliv. 2005; 12(4): 207-215.
    [123] Liu W., Yang X., Zhu Y., et al. Nanostructured lipid carriers as vehicles for transdermal iontophoretic drug delivery. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005; 2: 1236-1239.
    [124] Mei Z., Chen H., Weng T., et al. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur. J. Pharm. Biopharm. 2003; 56(2): 189-196.
    [125] Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 2004; 56(5): 675-711.
    [126] Spemath A., Aserin A., Sintov A. C., et al. Phosphatidylcholine embedded micellar systems: Enhanced permeability through rat skin. J. Colloid Interface Sci. 2008; 318(2): 421-429.
    [127] Hendradi E., Obata Y., Isowa K., et al. Effect of mixed micelle formulations including terpenes on the transdermal delivery of diclofenac. Biol. Pharm. Bull. 2003; 26(12): 1739-1743.
    [128] Varshney M., Khanna T., Changez M. Effects of AOT micellar systems on the transdermal permeation of glyceryl trinitrate. Colloid Surf. B-Biointerfaces. 1999; 13(1): 1-11.
    [129] Alvarez-Roman R., Naik A., Kalia Y., et al. Skin penetration and distribution of polymeric nanoparticles. J. Control. Release. 2004; 99(1): 53-62.
    [130] Calderilla-Fajardo S. B., Cazares-Delgadillo J., Villalobos-Garcia R., et al. Influence of sucrose esters on the in vivo percutaneous penetration of octyl methoxycinnamate formulated in nanocapsules, nanoemulsion, and emulsion. Drug Dev. Ind. Pharm. 2006; 32(1): 107-113.
    [131] Chauhan A. S. , Sridevi S. , Chalasani K. B., et al. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J.Controll. Release. 2003; 90(3): 335-343.
    [132] Kotyla T., Kuo F., Moolchandani V., et al. Increased bioavailability of a transdermal application of a delta tocopherol nanoemulsion preparation. Faseb J. 2007; 21(5): A266-A266.
    [133] Lboutounne H., Faivre V., Falson F., et al. Characterization of transport of chlorhexidine-loaded nanocapsules through hairless and Wistar rat skin.Skin Pharmacol. Physiol 2004; 17(4): 176-182.
    [134] Shakeel F., Baboota S., Ahuja A., et al. Enhanced transdermal delivery of aceclofenac using nanoemulsion technique. J. Pharm. Pharmacol. 2007; 59(1): A35-A35.
    [135] Cotsarelis G. The hair follicle as a target for gene therapy. Ann. Dermatol. Venereol. 2002; 129(5): 841-844.
    [136] Jenning V., Gysler A., Schafer-Korting M., et al. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm. 2000; 49(3): 211-218.
    [137] Maia C. S., Mehnert W., Schafer-Korting M. Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int. J. Pharm. 2000; 196(2): 165-167.
    [138] Dingler A., Blum R. P., Niehus H., et al. Solid lipid nanoparticles (SLN/Lipopearls)--a pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products. J. microencapsul. 1999; 16(6): 751-767.
    [139] Jenning V., Schafer-Korting M., Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J. Control. Release. 2000; 66(2-3): 115-126.
    [140] Wissing S. A., Müller R. H. Solid lipid nanoparticles (SLN)--a novel carrier for UV blockers. Die Pharmazie. 2001; 56(10): 783-786.
    [141] Wissing S. A., Müller R. H. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity--in vivo study. Eur. J. Pharm. Biopharm. 2003; 56(1): 67-72.
    [142] Souto E. B., Müller R. H., Gohla S. A novel approach based on lipid nanoparticles (SLN) for topical delivery of alpha-lipoic acid. J. microencapsul. 2005; 22(6): 581-592.
    [143] Wissing S., Lippacher A., Müller R. Investigations on the occlusive properties of solid lipid nanoparticles (SLN). J. cosmet. sci. 2001; 52(5): 313-324.
    [144] Wissing S., Müller R. The influence of the crystallinity of lipid nanoparticles on their occlusive properties. Int. J. Pharm. 2002; 242(1-2): 377-379.
    [145] Wissing S. A., Müller R. H. Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm.2003; 254(1): 65-68.
    [146] Kalariya M., Padhi B. K., Chougule M., et al. Clobetasol propionate solid lipid nanoparticles cream for effective treatment of eczema: formulation and clinical implications. Indian journal of experimental biology. 2005; 43(3): 233-240.
    [147] Liu J., Hu W., Chen H., et al. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm. 2007; 328(2): 191-195.
    [148] Castro G. A., Orefice R. L., Vilela J. M., et al. Development of a new solid lipid nanoparticle formulation containing retinoic acid for topical treatment of acne. J. microencapsul. 2007; 24(5): 395-407.
    [149] Munster U., Nakamura C., Haberland A., et al. RU 58841-myristate--prodrug development for topical treatment of acne and androgenetic alopecia. Die Pharmazie. 2005; 60(1): 8-12.
    [150] Lombardi Borgia S., Regehly M., Sivaramakrishnan R., et al. Lipid nanoparticles for skin penetration enhancement-correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. J. Control. Release. 2005; 110(1): 151-163.
    [151] Sivaramakrishnan R., Nakamura C., Mehnert W., et al. Glucocorticoid entrapment into lipid carriers--characterisation by parelectric spectroscopy and influence on dermal uptake. J. Control. Release. 2004; 97(3): 493-502.
    [152] Santos Maia C., Mehnert W., Schaller M., et al. Drug targeting by solid lipid nanoparticles for dermal use. J. drug target. 2002; 10(6): 489-495.
    [153] Wissing S. A., Müller R. H. Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J. Control. Release. 2002; 81(3): 225-233.
    [154] Souto E. B., Wissing S. A., Barbosa C. M., et al. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int. J. Pharm. 2004; 278(1): 71-77.
    [155] Sanna V., Gavini E., Cossu M., et al. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: in-vitro characterization, ex-vivo and in-vivo studies. J. Pharm. Pharmacol. 2007; 59(8): 1057-1064.
    [156] Teeranachaideekul V., Souto E. B., Junyaprasert V. B., et al. Cetyl palmitate-based NLC for topical delivery of Coenzyme Q(10) - development, physicochemical characterization and in vitro release studies.Eur. J. Pharm. Biopharm. 2007; 67(1): 141-148.
    [157] Stecova J., Mehnert W., Blaschke T., et al. Cyproterone acetate loading to lipid nanoparticles for topical acne treatment: particle characterisation and skin uptake. Pharm. Res. 2007; 24(5): 991-1000.
    [158] Ahlin P., Kristl J., Pecar S., et al. The effect of lipophilicity of spin-labeled compounds on their distribution in solid lipid nanoparticle dispersions studied by electron paramagnetic resonance. J. Pharm. Sci. 2003; 92(1): 58-66.
    [159] Blaschke T., Kankate L., Kramer K. D. Structure and dynamics of drug-carrier systems as studied by parelectric spectroscopy. Adv. Drug Deliv. Rev. 2007; 59(6): 403-410.
    [160] Braem C., Blaschke T., Panek-Minkin G., et al. Interaction of drug molecules with carrier systems as studied by parelectric spectroscopy and electron spin resonance. J. Control. Release. 2007; 119(1): 128-135.
    [161] Loan Honeywell-Nguyen P., Wouter Groenink H. W., Bouwstra J. A. Elastic vesicles as a tool for dermal and transdermal delivery. J. Liposome Res. 2006; 16(3): 273-280.
    [162] Mura S., Pirot F., Manconi M., et al. Liposomes and niosomes as potential carriers for dermal delivery of minoxidil. J. drug target. 2007; 15(2): 101-108.
    [163]杨祥良,曾繁典,徐辉碧.纳米药物.北京:清华大学出版社; 2007.
    [164] Verma D. D., Verma S., Blume G., et al. Particle size of liposomes influences dermal delivery of substances into skin. Int. J. Pharm. 2003; 258(1-2): 141-151.
    [165] Bendas E. R., Tadros M. I. Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech. 2007; 8(4): E107.
    [166] Dubey V., Mishra D., Dutta T., et al. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J. Control. Release. 2007; 123(2): 148-154.
    [167] Lopez-Pinto J. M., Gonzalez-Rodriguez M. L., Rabasco A. M. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int. J. Pharm. 2005; 298(1): 1-12.
    [168] Sinico C., Caddeo C., Valenti D., et al. Liposomes as carriers for verbascoside: Stability and skin permeation studies. J. Liposome Res. 2008; 18(1): 83-90.
    [169] Chirio D., Cavalli R., Trotta F., et al. Deformable liposomes containing alkylcarbonates of gamma-cyclodextrins for dermal applications. J. Incl. Phenom. Macrocycl. Chem. 2007; 57(1-4): 645-649.
    [170] Lee J. P., Jalili R. B., Tredget E. E., et al. Antifibrogenic effects of liposome-encapsulated IFN-alpha 2b cream on skin wounds in a fibrotic rabbit ear model. J. Interferon Cytokine Res. 2005; 25(10): 627-631.
    [171] Date A. A., Patravale V. B. Microemulsions: applications in transdermal and dermal delivery. Crit. Rev. Ther. Drug Carrier Syst. 2007; 24(6): 547-596.
    [172] Peira E., Carlotti M. E., Trotta C., et al. Positively charged microemulsions for topical application. Int. J. Pharm. 2008; 346(1-2): 119-123.
    [173] Rangarajan M., Zatz J. L. Effect of formulation on the topical delivery of alpha-tocopherol. J. cosmet. sci. 2003; 54(2): 161-174.
    [174] Suppasansatorn P., Nimmannit U., Conway B. R., et al. Microemulsions as topical delivery vehicles for the anti-melanoma prodrug, temozolomide hexyl ester (TMZA-HE). J. Pharm. Pharmacol. 2007; 59(6): 787-794.
    [175] Trotta M., Ugazio E., Peira E., et al. Influence of ion pairing on topical delivery of retinoic acid from microemulsions. J. Control. Release. 2003; 86(2-3): 315-321.
    [176] Alvarez-Figueroa M. J., Blanco-Mendez J. Transdermal delivery of methotrexate: iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int. J. Pharm. 2001; 215(1-2): 57-65.
    [177] Baroli B., Lopez-Quintela M. A., Delgado-Charro M. B., et al. Microemulsions for topical delivery of 8-methoxsalen. J. Control. Release. 2000; 69(1): 209-218.
    [178] Sintov A. C., Shapiro L. New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. J. Control. Release. 2004; 95(2): 173-183.
    [179] Chen H., Chang X., Weng T., et al. A study of microemulsion systems for transdermal delivery of triptolide. J. Control. Release. 2004; 98(3): 427-436.
    [180] Rhee Y. S., Choi J. G., Park E. S., et al. Transdermal delivery of ketoprofen using microemulsions. Int. J. Pharm. 2001; 228(1-2): 161-170.
    [181] Khafagy el S., Morishita M., Onuki Y., et al. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv. Drug Deliv. Rev. 2007; 59(15): 1521-1546.
    [182] Kumar T. R., Soppimath K., Nachaegari S. K. Novel delivery technologies for protein and peptide therapeutics. Curr. Pharm. Biotechnol. 2006; 7(4): 261-276.
    [183] Malik D. K., Baboota S., Ahuja A., et al. Recent advances in protein and peptide drug delivery systems. Current Drug Deliv. 2007; 4(2): 141-151.
    [184] Smith N. B. Perspectives on transdermal ultrasound mediated drug delivery.Int. J. Nanomedicine. 2007; 2(4): 585-594.
    [185] Gonzalez C., Kanevsky D., De Marco R., et al. Non-invasive routes for insulin administration: current state and perspectives. Expert Opin. Drug Deliv. 2006; 3(6): 763-770.
    [186] Lassmann-Vague V., Raccah D. Alternatives routes of insulin delivery. Diabetes Metab. 2006; 32(5): 513-522.
    [187] Sadrzadeh N., Glembourtt M. J., Stevenson C. L. Peptide drug delivery strategies for the treatment of diabetes. J. Pharm. Sci. 2007; 96(8): 1925-1954.
    [188] Shaikh I. M., Jadhav K. R., Ganga S., et al. Advanced approaches in insulin delivery. Curr. Pharm. Biotechnol. 2005; 6(5): 387-395.
    [189] Luo Y., Xu H., Huang K., et al. Study on a nanoparticle system for buccal delivery of insulin. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005; 5: 4842-4845.
    [190] Xu H. B., Huang K. X., Zhu Y. S., et al. Hypoglycaemic effect of a novel insulin buccal formulation on rabbits. Pharmacol Res. 2002; 46(5): 459-467.
    [191] Zhu D. D., Chen H. B., Zheng J. N., et al. Preparation and permeation studies of soybean lecithin-based vesicles. Zhongguo Yi Xue Ke XueYuan Xue Bao. 2006; 28(4): 492-496.
    [192] Kohli A. K., Alpar H. O. Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge Int. J. Pharm. 2004(1-2); 275: 13-17.
    [193]王思玲,苏德森.胶体分散药物制剂.北京:人民卫生出版社; 2006.
    [194] Lopez O., Cocera M., Walther P., et al. Liposomes as protective agents of stratum corneum against octyl glucoside: a study based on high-resolution, low-temperature scanning electron microscopy. Micron. 2001; 32(2): 201-205.
    [195] Khopade A. J., Arulsudar N., Khopade S. A., et al. From ultrathin capsules to biaqueous vesicles. Biomacromolecules. 2005; 6(6): 3433-3439.
    [196] Michalet X., Pinaud F. F., Bentolila L. A., et al. Quantum dots for live cells, in vivo imaging, anddiagnostics. Science. 2005; 307(5709): 538-544.
    [197] Norris D. J., Efros A. L., Erwin S. C. Doped nanocrystals. Science. 2008; 319(5871): 1776-1779.
    [198] Stroh M., Zimmer J. P., Duda D. G., et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med. 2005; 11(6): 678-682.
    [199] Voura E. B., Jaiswal J. K., Mattoussi H., et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 2004; 10(9): 993-998.
    [200] Yi D. K., Selvan S. T., Lee S. S., et al. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J. Am. Chem. Soc. 2005; 127(14): 4990-4991.
    [201] Apkarian R. P., Wright E. R., Seredyuk V. A., et al. In-lens cryo-high resolution scanning electron microscopy: methodologies for molecular imaging of self-assembled organic hydrogels. Microsc Microanal. 2003; 9(4): 286-295.
    [202] Menger F. M., Peresypkin A. V. Strings of vesicles: flow behavior in an unusual type of aqueous gel. J. Am. Chem. Soc. 2003; 125(18): 5340-5345.
    [203] Sarkar R., Pal S. K. Interaction of Hoechst 33258 and ethidium with histone1-DNA condensates. Biomacromolecules. 2007; 8(11): 3332-3339.
    [204]吴正红,平其能,张磊,等.反相高效液相色谱法测定多糖包覆脂质体中胰岛素.药物分析杂志. 2002; 22(6): 425-427.
    [205] Chen H., Chang X., Du D., et al. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release. 2006; 110(2): 296-306.
    [206] Attwood S. Microemulsions. New York: Marcel Dekker; 1994.
    [207]戚明,蒋国强,丁富新.胰岛素脂质体的制备及在电致孔下的经皮渗透.中国医药工业杂志. 2005; 36( 12): 751-753.
    [208]吴正红,平其能,宋赟梅,等.壳聚糖-EDTA轭合物对胰岛素口服纳米脂质体的影响.中国药科大学学报. 2004; 35(5): 417-423.
    [209]任俊,沈健,卢寿慈.颗粒分散科学与技术.北京:化学工业出版社; 2005.
    [210] Chakraborty H., Sarkar M. Optical spectroscopic and TEM studies of catanionic micelles of CTAB/SDS and their interaction with a NSAID. Langmuir. 2004; 20(9): 3551-3558.
    [211] de la Maza A., Coderch L., Lopez O., et al. Transmission electron microscopy and light scattering studies on the interaction of a nonionic/anionic surfactant mixture with phosphatidylcholine liposomes. Microscopy research and technique. 1998; 40(1): 63-71.
    [212] Khosravi-Darani K., Pardakhty A., Honarpisheh H., et al. The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy. Micron. 2007; 38(8): 804-818.
    [213] Luccardini C., Tribet C., Vial F., et al. Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic. Macromolecules. 2006(5): 2304-2310.
    [214] Guo G. N., Liu W., Liang J. G., et al. Preparation and characterization of novel CdSe quantum dots modified with poly (D, L-lactide) nanoparticles. Mater. Lett. 2006; 60(21-22): 2565-2568.
    [215] Liu W., Liang J. G., Zhu Y. L., et al. CdSe/ZnS quantum dots loaded solid lipid nanoparticles: novel luminescent nanocomposite particles. Eco-Materials Processing & Design Vii. 2006; 510/511: 170-173.
    [216] Yusuf H., Kim W. G., Lee D. H., et al. Size control of mesoscale aqueous assemblies of quantum dots and block copolymers. Langmuir. 2007; 23(2): 868-878.
    [217] Chan W. C. W., Maxwell D. J., Gao X., et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002; 13(1): 40-46.
    [218] Cabane B., Blanchon S., Neves C. Recombination of nanometric vesicles during freeze-Drying. Langmuir. 2006; (5): 1982-1990.
    [219] Gorelikov I., Matsuura N. Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett. 2008; 8(1): 369-373.
    [220] Yang X., Zhang Y. Encapsulation of quantum nanodots in polystyrene and silica micro-/nanoparticles. Langmuir. 2004; 20(14): 6071-6073.
    [221] Tangirala R., Revanur R., Russell T. P., et al. Sizing nanoparticle-covered droplets by extrusion through track-etch membranes. Langmuir. 2007; 23(3): 965-969.
    [222] Chen L. J., Lai J. B., Lee C. S. High-resolution transmission electron microscopy of phase formation and growth in metal-Si-Ge systems. Micron. 2002; 33(6): 535-541.
    [223] Chinthaka Silva G. W., Ma L., Hemmers O., et al. Micro-structural characterization ofprecipitation-synthesized fluorapatite nano-material by transmission electron microscopy using different sample preparation techniques. Micron. 2008; 39(3): 269-274.
    [224] Li B., Zhao Y., Xu X., et al. A simple method for the preparation of containing Sb nano- and microcrystallines via an ultrasound agitation. Ultrason. Sonochem. 2007; 14(5): 557-562.
    [225] Oleshko V. P., Howe J. M., Shukla S., et al. High-resolution and analytical TEM investigation of metastable-tetragonal phase stabilization in undoped nanocrystalline zirconia. J. Nanosci. Nanotechnol. 2004; 4(7): 867-875.
    [226] Dathe M., Gast K., Zirwer D., et al. Insulin aggregation in solution. Int. J. Peptide Protein Res. 1990; 36(4): 344-349.
    [227] Yip C. M., DeFelippis M. R., Frank B. H., et al. Structural and morphological characterization of ultralente insulin crystals by atomic force microscopy: evidence of hydrophobically driven assembly. Biophys. J. 1998; 75(3): 1172-1179.
    [228] Murthy S. N., Zhao Y. L., Marlan K., et al. Lipid and electroosmosis enhanced transdermal delivery of insulin by electroporation. J. Pharm. Sci. 2006; 95(9): 2041-2050.
    [229]张娜,平其能,徐文方.麦胚凝集素修饰的胰岛素脂质体对小鼠口服吸收的促进作用.中国药学杂志. 2004; 39(4): 273-275.
    [230] Alvarez-Roman R., Naik A., Kalia Y. N., et al. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004; 99(1): 53-62.
    [231] Guo J., Ping Q., Zhang L. Transdermal delivery of insulin in mice by using lecithin vesicles as a carrier. Drug Deliv. 2000; (2): 113-116.
    [232] Prausnitz M. R. Overcoming skin's barrier: the search for effective and user-friendly drug delivery. Diabetes Technol. Ther. 2001; 3(2): 233-236.
    [233] Park E. J., Werner J., Smith N. B. Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer. Pharm. Res. 2007; 24(7): 1396-1401.
    [234] Narasimha Murthy S., Zhao Y. L., Hui S. W., et al. Synergistic effect of anionic lipid enhancer and electroosmosis for transcutaneous delivery of insulin. Int. J. Pharm. 2006; 326(1-2): 1-6.
    [235] Sintov A. C., Wormser U. Topical iodine facilitates transdermal delivery of insulin. J. Control. Release.2007; 118(2): 185-188.
    [236] Higaki M., Kameyama M., Udagawa M., et al. Transdermal delivery of CaCO3-nanoparticles containing insulin. Diabetes Technol. Ther. 2006; 8(3): 369-374.
    [237] Nordquist L., Roxhed N., Griss P., et al. Novel microneedle patches for active insulin delivery are efficient in maintaining glycaemic control: an initial comparison with subcutaneous administration. Pharm. Res. 2007; 24(7): 1381-1388.
    [238] Wang P. M., Cornwell M., Hill J., et al. Precise microinjection into skin using hollow microneedles. The J. Invest. Dermatol. 2006; 126(5): 1080-1087.
    [239] Wu X. M., Todo H., Sugibayashi K. Enhancement of skin permeation of high molecular compounds by a combination of microneedle pretreatment and iontophoresis. J. Control. Release. 2007; 118(2): 189-195.
    [240]郑静南,陈华兵,张俊勇,等.不锈钢微针经皮给药的研究.中国新药杂志. 2007; 16(11): 877-880.
    [241] Gelfuso G. M., Figueiredo F. V., Gratieri T., et al. The effects of pH and ionic strength on topical delivery of a negatively charged porphyrin (TPPS4). J Pharm Sci. 2008; In press.
    [242] Vemulapalli V., Yang Y., Friden P. M., et al. Synergistic effect of iontophoresis and soluble microneedles for transdermal delivery of methotrexate. J. Pharm. Pharmacol. 2008; 60(1): 27-33.
    [243] Asbill C. S., El-Kattan A. F., Michniak B. Enhancement of transdermal drug delivery: chemical and physical approaches. Crit. Rev. Ther. Drug Carrier Syst. 2000; 17(6): 621-658.
    [244] Barry B. W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001; 14(2): 101-114.
    [245] Wang Y., Thakur R., Fan Q., et al. Transdermal iontophoresis: combination strategies to improve transdermal iontophoretic drug delivery. Eur. J. Pharm. Biopharm. 2005; 60(2): 179-191.
    [246]张骏勇,赵英俊,杨祥良.经皮给药用微针阵列的设计与加工.中国医疗器械杂志. 2006; 30(1): 33-38.
    [247] Mikszta J. A., Alarcon J. B., Brittingham J. M., et al. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 2002; 8(4): 415-419.
    [248] Kolli C. S., Banga A. K. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm. Res. 2008; 25(1): 104-113.
    [249] Smart W. H., Subramanian K. The use of silicon microfabrication technology in painless blood glucose monitoring. Diabetes Technol. Ther. 2000; 2(4): 549-559.
    [250] Martanto W., Moore J. S., Couse T., et al. Mechanism of fluid infusion during microneedle insertion and retraction. J. Control. Release. 2006; 112(3): 357-361.
    [251] Davis S. P., Landis B. J., Adams Z. H., et al. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J. biomech. 2004; 37(8): 1155-1163.
    [252] Oh J. H., Park H. H., Do K. Y., et al. Influence of the delivery systems using a microneedle array on the permeation of a hydrophilic molecule, calcein. Eur. J. Pharm. Biopharm. 2008; In press.
    [253] Bath B. D., White H. S., Scott E. R. Visualization and analysis of electroosmotic flow in hairless mouse skin. Pharm. Res. 2000; 17(4): 471-475.
    [254] Coulman S., Allender C., Birchall J. Microneedles and other physical methods for overcoming the stratum corneum barrier for cutaneous gene therapy. Crit. Rev. Ther. Drug Carrier Syst. 2006; 23(3): 205-258.
    [255] Liu J., Gong T., Wang C., et al. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int. J. Pharm. 2007; 340(1-2): 153-162.
    [256] Panchagnula R., Bindra P., Kumar N., et al. Stability of insulin under iontophoretic conditions. Die Pharmazie. 2006; 61(12): 1014-1018.
    [257] Pillai O., Panchagnula R. Transdermal iontophoresis of insulin. VI. Influence of pretreatment with fatty acids on permeation across rat skin. Skin pharmacology and physiology. 2004; 17(6): 289-297.
    [258] Pillai O., Borkute S. D., Sivaprasad N., et al. Transdermal iontophoresis of insulin. II. Physicochemical considerations. Int. J. Pharm. 2003; 254(2): 271-280.
    [259] Pillai O., Kumar N., Dey C. S., et al. Transdermal iontophoresis of insulin. Part 1: A study on the issues associated with the use of platinum electrodes on rat skin. The Journal of pharmacy and pharmacology. 2003; 55(11): 1505-1513.
    [260] Rastogi S. K., Singh J. Passive and iontophoretic transport enhancement of insulin through porcine epidermis by depilatories: permeability and fourier transform infrared spectroscopy studies. AAPS PharmSciTech. 2003; 4(3): E29.
    [261] Pillai O., Kumar N., Dey C. S., et al. Transdermal iontophoresis of insulin: III. Influence of electronic parameters. Methods Find. Exp. Clin. Pharmacol. 2004; 26(6): 399-408.
    [262] Pillai O., Panchagnula R. Transdermal delivery of insulin from poloxamer gel: ex vivo and in vivo skin permeation studies in rat using iontophoresis and chemical enhancers. J. Control. Release. 2003; 89(1): 127-140.
    [263] Rastogi S. K., Singh J. Effect of chemical penetration enhancer and iontophoresis on the in vitro percutaneous absorption enhancement of insulin through porcine epidermis. Pharm. Dev. Technol. 2005; 10(1): 97-104.
    [264] Cevc G., Sch?tzleina A., Richardsen H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim. Biophys. Acta (BBA) - Biomembranes. 2002; 1564(1): 21-30.
    [265] Kirjavainena M., Urttia A., J??skel?inena I., et al. Interaction of liposomes with human skin in vitro -- the influence of lipid composition and structure. Biochim. Biophys. Acta. 1996; 1304(3): 179-189.
    [266] Kuijk-Meuwissen M. E. M. J. v., Mougin L., Junginger H. E., et al. Application of vesicles to rat skin in vivo: a confocal laser scanning microscopy study. J. Control. Release. 1998; 56: 189-196.
    [267] Beutner K. R., Wiley D. J., Douglas J. M., et al. Genital warts and their treatment. Clin. Infect. Dis.. 1999; 28(S1): S37-S56.
    [268] Tzathas C., Amperiadis P., Screpetou K., et al. Condylomata acuminata of the anal canal treated by endoscopic topical application of podophyllotoxin 0.5% solution. A 3-year follow up study. Gastroenterology. 1998; 114(4): A1102-A1102.
    [269] Jenning V., Gohla S. H. Encapsulation of retinoids in solid lipid nanoparticles (SLN). J. microencapsul. 2001; 18(2): 149-158.
    [270] Venkateswarlu V., Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control. Release. 2004; 95(3): 627-638.
    [271] Yang S. C., Zhu J. B. Preparation and characterization of camptothecin solid lipid nanoparticles. Drug Dev. Ind. Pharm. 2002; 28(3): 265-274.
    [272] Bunjes H., Koch M. H. Saturated phospholipids promote crystallization but slow down polymorphic transitions in triglyceride nanoparticles. J. Control. Release. 2005; 107(2): 229-243.
    [273] Bunjes H., Koch M. H. J., Westesen K. Effect of particle size on colloidal solid triglycerides. Langmuir. 2000; 16(12): 5234-5241.
    [274] Freitas C., Müller R. H. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur. J. Pharm. Biopharm. 1999; 47(2): 125-132.
    [275] Ceschel G. C., Maffei P., Moretti M. D., et al. In vitro permeation through porcine buccal mucosa of Salvia desoleana Atzei & Picci essential oil from topical formulations. Int. J. Pharm. 2000; 195(1-2): 171-177.
    [276] Higuchi T. Physical chemical analysis of percutaneous absorption process from creams and ointments. J. Soc. Cosmet. Mater. 1960; 11: 85-97.
    [277] Priano L., Esposti D., Esposti R., et al. Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. J. Nanosci. Nanotechnol. 2007; 7(10): 3596-3601.
    [278] Pople P. V., Singh K. K. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech. 2006; 7(4): 91.
    [279] Xiao C. H., Moore D. J., Flach C. R., et al. Permeation of dimyristoylphosphatidylcholine into skin - Structural and spatial information from IR and Raman microscopic imaging. Vib. Spectrosc. 2005; 38(1-2): 151-158.
    [280] Braem C., Blaschke T., Panek-Minkin G., et al. Interaction of drug molecules with carrier systems as studied by parelectric spectroscopy and electron spin resonance. J. Control. Release. 2007; 119(1): 128-135.
    [281] Mao S. R., Wang Y. Z., Ji H. Y., et al. Preparation of solid lipid nanoparticles by microemulsion technique. Yao Xue Xue Bao. 2003; 38(8): 624-626.
    [282] Moulik S. P., Paul B. K. Structure, dynamics and transport properties of microemulsions. Adv. Colloid Interface Sci. 1998; 78(2): 99-195.
    [283] Cavalli R., Gasco M. R., Barresi A. A., et al. Evaporative drying of aqueous dispersions of solid lipidnanoparticles. Drug Dev. Ind. Pharm. 2001; 27(9): 919-924.
    [284] Xiong F. L., Chen H. B., Chang X. L., et al. Research progress of triptolide-loaded nanoparticles delivery systems. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005; 5: 4966-4969.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700