用户名: 密码: 验证码:
大深度气压沉箱技术的力学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于气压沉箱工法在深基础建设中有着诸多的优点而被越来越多的用于摩天大楼、大跨度桥梁、大深度地铁站、地下油库、大型水电站等设施的深基础建设中。但因该工法所需设备昂贵,技术要求高,因此,在当今世界上,气压沉箱技术仅为极少数发达国家所掌握。新时期,特别是上世纪九十年代以后,我国还没有应用该工法进行深基础建设的工程先例。因此,本文将以上海市轨道交通7号线南浦站至耀华站区间中央风井样本工程为背景,从室内试验、理论研究、数值模拟和现场实测分析四个方面入手,对气压沉箱下沉过程的力学机理进行系统研究。主要包括以下几个方面:
     1.对气压沉箱施工现场具有代表性的砂质粉土进行室内试验研究。利用高级静力三轴系统,对砂质粉土进行等向压缩不排水三轴试验、K0固结条件下不排水三轴试验和气压存在条件下非饱和土的三轴剪切试验,分析了在不同条件下砂质粉土的剪切强度、应力应变关系、土体的有效应力路径等关键物理力学参数的不同特性及其变化规律,得出了施工现场的砂质粉土的静止土压力系数K0值,为环形刃脚基础的极限承载力理论研究和气压沉箱下沉施工过程的动态数值模拟提供参数。
     2.沉箱的环形刃脚基础下土体的极限承载力问题是气压沉箱设计与施工的关键问题。只有准确确定了环形刃脚基础下土体的极限承载力,才能合理选择刃脚的结构和宽度设计,从而保证沉箱能够顺利下沉。本文分别采用滑移线法和有限差分法,对环形刃脚基础的极限承载力进行了研究。研究了环形基础的内外径之比和内摩擦角对环形基础的极限承载力的影响,得出了工程中不同工况条件下沉箱环形刃脚基础的极限承载力及其分布形式,为沉箱的结构设计和施工提供理论依据。
     3.对气压沉箱施工下沉过程进行了数值模拟。利用有限元法,采用试验室试验所获得土体物理力学参数,对沉箱施工下沉过程进行数值模拟计算,分析了在各种不同工况条件下沉箱下沉过程中其周边土体的土压力及其对周边环境的影响,并在后续章节中对数值计算结果和实测结果进行了比较,可为今后同样或类似工程提供借鉴。
     4.对气压沉箱的结构内力与变形以及沉箱下沉时对周围环境的影响进行了全面系统地监测。对不同工况条件下实测所得沉箱刃脚土压力、沉箱侧壁土压力和侧壁摩阻力以及周围土体的侧移和沉降进行了整理分析,揭示了新型气压沉箱的变形特性,评价了沉箱下沉对周边环境的影响,从而确保结构本身的安全并保证周边的环境的变形在可控范围内,并指导沉箱施工。也为今后同类工程的设计和施工提供了借鉴,为学科的发展积累了宝贵的原始资料。
Because of having many advantages, more and more pneumatic caisson method is used in the deep foundation construction of the high-rise skyscrapers, the huge trans-sea bridge, the deep underground station, the large underground oil depository, the huge hydropower station, and so on. However, the equipment used in this method is very expensive and the high technology is necessary. The techniques of this method are mastered only by few developed countries in the world. So far, based on the central wind well construction between the Nanpu station and Yaohua station in line 7, we study this technique from three aspects: experimental testing, theory study and in-situ measurement analyzing. The mechanism of pneumatic caisson sinking is systematically studied. The main contents are following below:
     1. The physical and mechanical characteristics of the representative silty clay in the in-situ spot of pneumatic caisson construction are experimentally tested. By using the advanced triaxial system, the silty clay in the in-situ spot of pneumatic caisson construction is used to be experimentally tested. The experimental test includes three kinds of types, namely triaxial testing under isotropic pressure condition, triaxial testing under K0 consolidation condition and triaxial testing under air pressure condition. The different physical and mechanical characteristics can be studied by using the different experimental conditions. The conclusion about the shear strength, the relationship between the stress and strain, the effective stress path and the peak value of strength are drawn, which can provide the physical and mechanical parameter and warrant for the dynamic numerical simulating of pneumatic caisson.
     2. The problem of ultimate bearing capacity of ring footings is the pivotal problem on the foundation design and construction of the pneumatic caisson. Only when the ultimate bearing capacity of ring footings is exactly determined, the reasonable structure and width of the ring footing can be properly selected and the prosperous sinking is guaranteed and the pneumatic caisson construction is achieved. In this study, by using the slip line method and the finite differencing method, the ultimate vertical bearing capacity of ring footing is systematically studied, including the influence of the ratio of the inner radius to the outer radius of the ring footing and the inner frictional angle on the ultimate bearing capacity of ring footing. The ultimate bearing capacity of ring footing under different working state and its distribution form are obtained, which provides the theoretical foundation for the structure design and construction of pneumatic caisson.
     3. The course of pneumatic caisson sinking is numerical simulated. The course of pneumatic caisson construction and sinking is numerical simulated with physical and mechanical parameters of soil obtained in experiments by using finite element method. The soil pressure near around the pneumatic caisson and the effect on the surroundings are analyzed for several kinds of construction conditons and the numerical simulating results are compared with the measured results in-situ, which can be referred in the same and similar coming projects.
     4. Systematical monitoring on the structural inner stress and deformation of pneumatic caisson and the effect of pneumatic caisson sinking on the surrounding environment are proceeded. The datum about the footing soil pressure, the soil pressure and the lateral frictional resistance on the lateral wall and the lateral displacement and settlement are cleared up and systematically analyzed. Based on this, the deformation characteristics of pneumatic caisson are opened out and the influence of pneumatic caisson sinking on the surrounding environment is estimated. Accordingly, the structure safe is warranted and the deformation of surrounding environment can be controlled in the permission and the pneumatic caisson construction is instructed. In addition, it provides the reference for design and construction of the following this kind of project and accumulates precious original datum for subject development.
引文
[1] 王文卿,城市地下空间规划与设计,东南大学出版社,南京,2000.
    [2] 张凤祥,傅德明,张冠军,沉井与沉箱,中国铁道出版社,北京,2002.
    [3] 大内正敏,彭芳乐,孙德新,压气沉箱工法,岩土工程师,2003,15 (1): 19-22.
    [4] 孙德新,彭芳乐,大内正敏,压气沉箱工法的几种现代技术及其应用,岩土工程师,2003,15 (2): 23-26.
    [5] 彭芳乐,孙徳新,大内正敏,日本压气沉箱工法的历史与现状,岩土工程师,2003,15 (2): 20-24.
    [6] 张凤祥,傅德明,张冠军,沉井沉箱工法最新进展,上海隧道,1999,36 (2): 42-62.
    [7] 彭芳乐,孙德新,大内正敏,白云,超大深度气压沉箱工法的施工技术,地下空间,2004,24 (5): 699-703.
    [8] 万卷,崔步红,陆内沉箱的初步探讨,水道港口,1991,12 (1): 16-22.
    [9] 白石俊多,北涤一郎,沉箱工法,鹿岛出版社,东京,1983.
    [10] 邹大庆,沉箱工法,佳木斯大学学报,2003,21 (2): 201-203.
    [11] 杨运泽,黄淑珍,明石海峡大桥大直径钢沉箱基础的施工,港口工程,1991,12 (3): 15-51.
    [12] Yoshiyuki I. Toshihiko S. Makoto K. Shimoma M. Asaka T. Construction of a highway tunnel using pneumatic caissons. Tunnelling and Underground Space Technology, 2004, 19 (5): 494-516.
    [13] Vera AV. Gonzalez GM. Gonzalez LBR. Gomez AS. Vara JMM. Twenty-five years of subway construction in Mexico City. Tunnelling and Underground Space Technology, 1995, 10 (1): 65-77.
    [14] Katsumi K. Masanori N. Satoshi M. Development of the automatic system for pneumatic caisson. Automation in Construction, 1997, 6 (3): 241-255.
    [15] 彭芳乐,孙德新,大内正敏,压气沉箱工法的信息化施工,岩土工程师,2003,15 (4): 23-27.
    [16] 王爱良,浅析日本沉箱结构设计的特点,水运工程,2003,23 (2): 22-24.
    [17] 段良策,殷奇,沉井设计与施工,同济大学出版社,上海,2006.
    [18] 葛春辉,钢筋混凝土沉井结构设计施工手册,中国建筑工业出版社,北京,2004.
    [19] 张曦伟,张英伟,浅谈沉井施工法,水利科技与经济,2000,6 (2):107-108.
    [20] 陈闽,王学海,沉井下沉施工工艺探讨,中国给水排水,2002,18 (7):86-87.
    [21] 房延懋,沉井施工方案的优化,水运工程,2000,11 (2):38-39.
    [22] 陈勇,姚秋明,浅谈不排水下沉法在沉井施工中的应用,非开挖技术,2005,22 (5):50-52.
    [23] 吴红兵, 软土地层中短刃脚深沉井施工技术处理,上海隧道,1997,27 (2): 81-84.
    [24] 刘加峰,特大超深沉井的下沉施工技术,建筑施工,1998,20 (3): 38-43.
    [25] 陈光福,王海平,超型深水沉井施工技术,中国港湾建设,2007,12 (6): 47-51.
    [26] 吴红兵,软土地层中沉井工程及其施工技术的发展,岩土工程师,2000,12 (1):40-45.
    [27] 李程远,软弱基础沉井下沉地基加固技术,铁道建筑技术,2005,12 (5):50-52.
    [28] 房桢,沉井倾斜纠偏,水运工程,2000,11 (6):39-41.
    [29] 吴为民,建筑物纠倾与加固工程实践,施工技术,2002, 31 (10):27-28.
    [30] 胡军,冲淤纠偏加固施工技术,建筑技术,2002,33 (6): 417-719.
    [31] 温晓贵,魏纲,谷丰,沉井冲水纠偏与锚杆静压桩加固技术,2004,35 (6): 431-432.
    [32] 邹进贵,邹双朝,江文萍,向东,许建雄,陈志兰,施工沉井自动化监测系统的研究,测绘信息与工程,2007,32 (6):41-42.
    [33] 魏岩峰,潘多助,沉井下沉系数的计算与分析,黑龙江水专学报,2001,28 (2): 20-21.
    [34] 陈晓平,茜平一,张志勇,沉井基础下沉阻力分布特征研究, 岩土工程学报,2005,27 (2): 148-152.
    [35] 张志勇,陈晓平,茜平一,大型沉井基础下沉阻力的现场监测及分布结果分析,岩土力学与工程学报,2001,20 (S1): 1000-1005.
    [36] 陈仲颐,周景星,土力学,清华大学出版社,北京,1994.
    [37] 松岗元,土力学,中国水利水电出版社,南京,2001.
    [38] 杨熙章,土工试验与原理,同济大学出版社,上海,1993.
    [39] 朱思哲,刘虔,包承纲,郭熙灵,常亚屏,三轴试验原理与应用技术,中国电力出版社,北京,2003.
    [40] Lo SCR. Chu J. The measurement of K0 by triaxial strain path testing. Soils and Foundation, 1991, 31 (2): 181-187.
    [41] Cu J. Gan CL. Effect of void ration on K0 of loose sand. Geotechnique, 2004, 54 (4): 285-288.
    [42] Wanatowski D. Chu J. Strain softening of K0 consolidation Changi sand under plain strain conditions. Acta Geotechnica, 2006, 2 (1): 29-42.
    [43] 三木五三朗, 陈世杰,日本土工试验法,中国铁道出版社,北京,1985.
    [44] 陈仲颐译,非饱和土土力学,中国建筑工业出版社,北京,1997.
    [45] Wulfsohn D. Adams B. Fredlund DG. Triaxial testing of unsaturated agricultural soils. Journal of Agriculture Engineering Research, 1998, 69 (4): 317-330.
    [46] Wulfsohn D. Adams B. Fredlund DG. Application of unsaturated soil mechanics for agricultural engineering, Canadian Agricultural Engineering, 1996, 38 (3): 173-181.
    [47] Drescher A. Vardoulakis I. Geometric softening in triaxial testing on granular material. Geotechnique, 1982, 32 (4): 291-303.
    [48] Fredlund DG. Rahardjo H. Soil mechanics for unsaturated soils. John Wiley & Sons, New York, 1993.
    [49] Terzaghi K. The shear resistance of unsaturated soil. Proceeding of the 1st International Conference on Soil Mechanics and Foundation Engineering, Harvard Printing Office, Cambridge, Massachusetts, Volume 1, 1936, 54–56.
    [50] Coleman JD. Stress/strain relations for partly saturated soils. Geotechnique, 1962, 12 (4): 348-350.
    [51] Wheeler SJ. A conceptual model for soils containing large gas bubbles. Geotechnique, 1988, 38 (1): 389-397.
    [52] Wheeler SJ. The undrained shear strength of soils containing large gas bubbles. Geotechnique, 1988, 38 (1): 399-413.
    [53] Chang CS. Duncan JM. Consolidation analysis for partly saturated clay by using elastic-plastic effective stress-strain model. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 7 (1): 39-55.
    [54] Okusa S. Wave-included stresses in unsaturated submarine sediments. Geotechnique, 1985, 35 (4): 517-532.
    [55] Sparks ADW. Theoretical considerations of stress equations for partly saturated soils. Proceeding of the 3rd Regional Conference for Africa on Soil Mechanics, Salisbury, Rhodesia, Volume 1, 1963, pp. 215-218.
    [56] Wheeler SJ. Gardner TN. Elastic moduli of soils containing large bubbles. Geotechnique, 1989, 39 (2): 333-342.
    [57] 沈珠江,理论土力学,中国水利水电出版社,南京,2000.
    [58] Jennings JE. Burland JB. Limitation to the use of effective stresses in partly saturated soils. Geotechnique, 1962, 12 (2): 432-448.
    [59] Burland JB. Effective stresses in partly saturated soils. Discussion of ‘Some aspects of effective stress in saturated and partly saturated soils’ by Blight GE Bishop AW. Geotechnique, 1964, 14 (2): 65-68.
    [60] Burland JB. The stiffness of soils at small strains. Canadian Geotechnical Journal 1989, 26 (1): 499-516.
    [61] Schuurman IRE. The compressibility of an air/water mixture and a theoretical relation between the air and water pressures. Geotechnique 1966; 16 (4): 269-281.
    [62] Fredlund DG. Appropriate concepts and technology for unsaturated soil. Canadian Geotechnical Journal, 1979, 16 (1): 121-139.
    [63] Fredlund DG. Soil mechanics principles that embrace unsaturated soils. Proceeding of the 11th Conference on Soil Mechanics and Foundation Engineering, San Francisco, California. Volume 2, 1985, pp: 465-472.
    [64] Fredlund DG. Morgenstern NR. Stress state variable for unsaturated soils. Journal of Geotechnical Engineering Division, 1997, 103 (5): 447-466.
    [65] Hansan JU. Fredlund DG. Pore pressure parameter for unsaturated soils. Canadian Geotechnical Journal, 1980, 17 (3): 395-404.
    [66] Grozic JL. Robertson PK. Morgenstern NR. The behavior of loose gassy sand, Canadian Geotechnical Journal, 1999, 36 (3): 482-492.
    [67] Gardner TN. Goringe MJ. The measurement of gas bubble size distributions in a three phase laboratory gassy soil. Geotechnical Testing Journal, 1988, 11 (1): 49-55.
    [68] Mitachi T. Kitago S. Change in undrained shear strength characteristics of unsaturated remolded clay due to swelling. Soils and Foundations, 1976, 16 (1): 45-58.
    [69] 沈珠江,非饱和土简化固结理论及其应用,水利水运工程学报,2003,29 (4): 1-6.
    [70] Matyas EL. Radhakrishna HS. Volume change characteristics of partially saturated soils. Geotechnique, 1968, 18 (4): 432-448.
    [71] Bishop AW. Donald IB. The experimental study of partly saturated soils in the triaxial apparatus. Proceeding of the 5th International Conference on Soil Mechanics and Foundation Engineering, Dunod, Paris, Volume 1, 1961, pp: 13-21.
    [72] Bishop AW. Green GE. The influence of end restraints on the compressive strengths of cohesionless soil. Geotechnique, 1965, 15 (3): 243-266.
    [73] Bishop AW. Wesley LD. A hydraulic triaxial apparatus for controlled stress path testing. Geotechnique, 1975, 25 (4): 657-670.
    [74] Prandtl L. über die H?rte plastischer K?rper. Mathematics and Physics, Ges. Wissensch, G?ttingen, Klasse, Volume 1, 1920, pp: 74-85.
    [75] Reissner H. Zum Erddruckproblem. Proceeding of the 1st International Congress on Applied Mechanics, C.B. Biezeno and J.M. Burgers editors, Delft, Volume 1, 1924, pp: 295-311.
    [76] Terzaghi K. Theoretical soil mechanics. John Wiley & Sons, New York, 1943.
    [77] Meyerhof GG. The ultimate bearing capacity of footings. Geotechnique, 1951, 2 (4): 301-332.
    [78] Hansen BJ. A general formula for bearing capacity. Geotechnique, 1961, 11 (5): 38-46.
    [79] Vesic AS. Analysis of ultimate loads of shallow foundations. Journal of Soil Mechanics and Foundations Division, ASCE, 1973, 99 (1): 45-73.
    [80] Sokolovskii VV. Statics of soil media. Butterworths Publicacions, London, U.K., 1960.
    [81] Berezantzev VG. Axially symmetric problems of the theory of limiting equilibrium of granular material. Government Publishing House for Technical theoretical lieralure, Moscow, 1952.
    [82] Shield RT. Plastic potential theory and the Prandtl bearing capacity factors of shallow strip footings. Journal of Application Mechanics, 1954a, 21 (3): 193-194.
    [83] Shield RT. Stress and velocity fields in soil mechanics. Journal of Mathematics and Physics, 1954b, 33 (2): 144-156.
    [84] Eason G. Shield RT. The plastic indentation of a semi-infinite solid by a perfectly rough circular punch. Computational Mathematics and Mathematical Physics, 1960, 11 (1): 33-43.
    [85] Cox AD. Axially symmetry plastic deformation in soils-II-indentation of ponderable soils. International Journal of Mechanical Science, 1962, 4 (3): 371-380.
    [86] Cox AD. Eason G. Hopkins HG. Axially symmetry plastic deformation in soils. Philosophical Transactions of the Royal Society of London, 1961, Series A (254): 1-45.
    [87] Lysmer J. Limit analysis of plane problem in soil mechanics. Journal of the soil mechanics and foundation Division, ASCE, 1970, 96 (4): 1311-1334.
    [88] Bolton MD. Lau CK. Vertical bearing capacity factors for circular and strip footings on Mohr-Coulomb soil. Canadian Geotechnical Journal, 1993, 30 (4): 1024-1033.
    [89] Manoharan N. Drasgupta SP. Bearing capacity of surface footings by finite elements. Computers & Structures, 1995, 54 (4), 563-586.
    [90] Hansen B. Christensen NH. Discussion of theoretical bearing capacity of very shallow footings by Larkin L.A. Journal of Soil Mechanics and Foundations Division, ASCE, 1969, 95 (4): 1568-1572.
    [91] Chen W F. Limit analysis and soil plasticity. Elsevier, Amsterdam, 1975.
    [92] Chen WF. Davidson HL Beaing capacity determination by limit analysis. Journal of Soil Mechanics and Foundations Division, ASCE, 1973, 99 (SM6): 433-449.
    [93] Sarma K. Stability analysis of embankments and slope. Journal of the Geotechnical Engineering Division, 1979, 105 (12): 1511-1524.
    [94] Sloan SW. Lower bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12 (3): 61-67.
    [95] Sloan SW. Upper bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, 13 (6): 263-82.
    [96] Michalowski RL. An estimate of the influence of soil weight on bearing capacity using limit analysis. Soils and Foundations, 1997, 37 (4): 57-64.
    [97] Boonchai U. Andrew J. Klangvijit C. Calculation of bearing capacity factor Nγ using numerical limit analysis. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003, 129 (6): 468-474.
    [98] Jun O. Hidetoshi O. Kentaro Y. Bearing capacity analysis of reinforced foundations on cohesive soil. Geotextiles and Geomembranes, 1998, 16 (2): 195-206.
    [99] Soubra AH. Upper bound solutions for bearing capacity of foundations. Journal of the Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125 (1):59-68.
    [100] Lyamin AV. Sloan SW. Upper bound limit analysis using linear finite elements and nonlinear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26 (2): 181-216.
    [101] Zhu D. The least upper bound solution for the bearing capacity factor Nγ. Solids and foundations. 2000, 40 (1):123-129.
    [102] Wang YJ. Yin JH. Chen ZY. Calculation of bearing capacity of a strip footing using an upper bound method. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25 (5): 841-851.
    [103] Kumar J. Nγ for rough strip footing using the method of characteristics. Canadian Geotechnical Journal, 2003, 40 (3): 669-674.
    [104] Kumar J. Ghosh P. Determination of Nγ for rough circular footing using the method of characteristics. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 40 (2): 874-889.
    [105] Kumar J. Effect of footing soil interface friction on bearing capacity factor Nγ. Geotechnique, 2004, 54 (10): 677-680.
    [106] Zhu FY. Clark IP. Scale effect of strip and circular footings resting on dense sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127 (7): 613-621.
    [107] Michalowski RL. Shi L. Bearing capacity of footings over two-layer foundation soils. Journal of the Geotechnical Engineering Division, ASCE, 1995, 121 (5): 421-428.
    [108] Wang CX. Carter JP. Deep penetration of strip and circular footings into layered clays. The International Journal of Geotechanics, 2002, 2 (2): 205-232.
    [109] 张凤祥,傅德明,张冠军,Nγ 值与土质参数的关系,上海隧道,1996,26 (2): 88-97.
    [110] Drescher A. Detournay E. Limit load in translational failure mechanisms for associative and non-associative materials. Geotechnique, 1993, 43 (3): 443-56.
    [111] Zhu DY. Lee. CF. Jiang HD. A Numarical study of the bearing capacity factor Nγ. Canadian Geotechnical Journal, 2001, 38 (1): 1090-1096.
    [112] Griffiths DV. Computation of bearing capacity factors using finite elements. Geotechnique, 1982, 32 (3): 195-202.
    [113] Griffiths DV. Computation of collapse loads in geomechanics by finite elements. Ingenieur-archiv, 1989, 59 (7): 237-244.
    [114] Woodward PK. Grifiths DV. Observations on the computation of the bearing capacity factor Nγ by finite elements. Geotechnique, 1998, 48 (1): 137-141.
    [115] Sloan SW. Randolph MF. Numerical prediction of collapse loads using finite elements method. International Journal for Numerical and Analytical Methods inGeomechanics, 1982, 6 (3): 47-76.
    [116] Burd HJ. Yu HS. Houlsby GT. Finite element implementation of friction plasticity models with dilation. Proceeding of International Conference on Constitutive Laws for Engineering Mathematics, International Academic Publishers, Chongqing, China, Volume 2, 1989, pp: 783-788.
    [117] Kumbhojkar AS. Numerical evaluation of Terzaghi’s Nγ. Journal of Geotechnical Engineering, ASCE, 1993, 119 (5): 598-607.
    [118] Kentaro Y. Jun O. Bearing capacity and failure mechanism of reinforced foundations based on rigid plastic finite element formulation. Geotextiles and Geomembranes, 2002, 20 (5): 367-393.
    [119] Frydman S. Burd HJ. Numerical studies of bearing capacity factor Nγ. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123 (1): 20-29.
    [120] Erickson HL Drescher A. Bearing capacity of circular footings. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128 (1): 38-43.
    [121] Boushehrian JH. Hataf N. Experimental and numerical investigation of the bearing capacity of model circular and ring footings on reinforced sand. Geotextiles and Geomembrances, 2003, 21 (4): 241-256.
    [122] Kumar J. Ghosh P. Bearing capacity factor Nγ for ring footings using the method of characteristics. Canadian Geotechnical Journal, 2005, 40 (3):1474-1484.
    [123] Hataf N. Razavi MR. Behavior of ring footing on sand. Iranian Journal of Science and Technology, 2003, 27 (1): 47-56.
    [124] Tassoulas JL. Eduardo K. The dynamic stiffness of circular ring footings on an elastic stratum. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 8 (5): 411-426.
    [125] Karaulov A.M. Static solution of the limiting-pressure problem for ring foundations on soil beds. Soil Mechanics and Foundation Engineering, 2006, 42 (6): 189-194.
    [126] Egorov KE. Calculation of bed for foundation with ring footing. Proceeding of the 6th International Conference on Soil Mechanics and Foundation Engineering, John Wiley & Sons, New York, Volume 2, 1965, pp: 41-45.
    [127] Milovic DM. Stresses and displacements produced by a ring foundation. Proceeding of the 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow. A.A. Balkema, Rotterdam, The Netherlands. Volume 3, 1973, pp: 167-171.
    [128] Bowles JE. Foundation analysis and design. MeGraw-Hill, New York, 1997.
    [129] Saha MC. Ultimate bearing capacity of ring footings on sand. M.Eng. thesis, University of Roorkee, Roorkee, U.P., India, 1978.
    [130] Nabil F. Loading tests on circular and ring plates in very dense cemented sands. Journal of Geotechnical Engineering, 1996, 122 (4): 281-287.
    [131] Saran S. Bhandari NM. Al-Smadi MMA. Analysis of eccentrically obliquely loaded ring footings on sand. Indian Geotechnical Journal, 2003, 33 (4): 422-446.
    [132] Head KH. Manual of soil laboratory testing, Wiley, New York, Volume 3, 1986, pp: 942-945.
    [133] 赵成刚,白冰等,土力学原理,北京交通大学出版社,北京,2004.
    [134] Lambe TW. Whitman RV. Soil mechanics. John Wiley. & Sons, New York, 1979.
    [135] Aitchison GD. Soil properties, shear strength, and consolidation. Proceeding of the 6th International Conference on Soil Mechanics and Foundation Engineering, University of Toronto Press, Toronto, Volume 2, 1965, pp: 318-321.
    [136] Chang CS. Duncan JM. Consolidation analysis for partly saturated clay by using an elastic-plastic effective stress-stating model. International Journal for Numerical and Analytical Methods in Geomechanics, 1983, 20 (7): 39-55.
    [137] Shibuya S. Mitachi T. Fukuda F. Degoshi T. Strain rate effectes on shear modulus and damping of normally consolidation clay. Geotechnical Testing Journal, 1995, 18 (3): 365-375.
    [138] 徐永福,刘松玉,非饱和土强度理论及其工程应用,东南大学出版社,南京,2000.
    [139] 魏海云,詹良通,陈云敏,高饱和度土的压缩和固结特性及其应用,岩土工程学报,2006,28 (2): 264-269.
    [140] Cassidy MJ. Houlsby G T. Vertical Bearing Capacity Factors for Conical Footings on Sand, Geotechnique, 2002; 52 (9): 687-692.
    [141] Youssef MA. Ground movement prediction for deep excavations in soft clay. Journal of Geotechnical Engineering, 1996, 122 (6): 474-486.
    [142] Charles WW. Effects of modeling soil nonlinearity and wall installation on back-analysis of deep excavation in soft clay. Journal of Geotechnical Engineering, 1995, 110 (10): 687-695.
    [143] 王勖成,邵 敏,有限单元法基本原理与数值方法,清华大学出版社,北京,1988.
    [144] 蒋孝煜,有限元法基础,清华大学出版社,北京,1992.
    [145] 孙钧,汪炳,地下结构有限元法解析, 同济大学出版社,上海,1988.
    [146] 刘建航,候学渊,基坑工程手册,中国建筑工业出版社,北京,1997.
    [147] 高俊合,赵维炳,周成,考虑固结土-结构相互作用的基坑开挖有限元分析,岩土工程学报,1999,21 (5):628-630.
    [148] 赵海燕,黄金枝,深基坑支护结构变形的有限元分析与模拟,上海交通大学学报,2001,35 (4):610-613.
    [149] Ou CY. Chiou DC. Wu TS. Three dimensional finite element analysis of deep excavations in soft clay. Journal of Geotechnical Engineering, 1996, 122 (5): 337-345.
    [150] 庄茁,ABAQUS/Standard 有限元软件入门,清华大学出版社,北京,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700