用户名: 密码: 验证码:
低变质煤热解—气化耦合工艺模拟优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国的主要一次能源,其中低变质的褐煤、长焰煤、不粘煤、弱粘煤等资源丰富且质量较好,近年来开采比重日益增大。针对低变质煤挥发份含量高的特点而提出的煤炭分级转化技术,根据煤在不同阶段反应特性不同的特点,实施煤热解、气化和燃烧分级转化,可提高煤炭利用率,简化煤炭气化技术,减小投资降低成本,并能有效解决煤中污染物的脱除问题。
     本文借鉴“联合热转化技术”思想,在对国内外主要热解和部分气化工艺研究分析的基础上,提出低变质煤热解-部分气化耦合工艺,并对该工艺进行了模拟研究与分析,为进一步的具体技术开发和操作控制提供了参考和指导。
     通过对煤热解反应动力学分析,并基于分布活化能模型DAEM,建立了集总反应动力学模型来表示煤炭热解过程,确定了可以预测热解产物组成、分布与热解终温和升温速率关系的动力学方程。研究表明,随热解温度升高,各种挥发份产物析出率越接近最大产率,半焦C含量增加,但产率下降,H、O、N和S等元素降低。因此,升温有利于提高半焦脱硫、脱氮率。600℃左右,除H2外的大部分挥发份基本析出,半焦元素变化幅度减小。热解终温较低且一定时,较慢的升温速率有利于各热解挥发份最大限度的析出。分析结果显示,将热解终温控制在550℃,升温速率10℃/min左右有利于热解挥发份完全析出。
     运用Aspen Plus化工流程模拟软件,建立了将煤干馏热解和半焦部分气化相结合的两段气化模拟模型。结果表明,建立的气化炉模型能对本文提出的两段工艺进行较准确地模拟。热解段得焦油12.23%,半焦收率为65.11%,基本符合煤炭热解结果。调节分割器分割率为0.53:0.47时,可使热解段湿煤预热至指定温度110℃。通过对气化段做灵敏度分析可得,当氧气煤比(O2/C)为0.33,蒸汽煤比(H2O/C)为0.20,或者氧气煤比0.356,蒸汽煤比0.25时,气化炉温度可维持在900℃左右,且冷煤气效率最高。
Coal is the primary energy source of China, in which low metamorphic coal includinglignite, long flame coal, non-caking coal and light sticky coal are abundant and have highquality, and the proportion of mining are increaseing improved. Coal staged conversion whichwas proposed considering that low metamorphic coal had the character of high volatile matter,according to the different reaction features of different coal in different conversion period,implement classification conversion about pyrolysis, gasification and combustion. Thistechnology can raise coal utilization, simplify gasification, reduce the investment and cost,and effectively solve the problem of removal of contaminants of coal.
     Reference to the“combined thermal-conversion technologies”, based on the analysis andstudy on pyrolysis and partial gasification technology of domestic and oversea, the thesis putforward the low metamorphic coal pyroglysis-partial gasification coupling technology, andthis process was simulated and analyzed to provide reference and guidance for the furtherdevelopment of specific method and operational control.
     Through the analysis of coal pyrolysis reaction dynamics, based on distribution activationenergy model (DAEM), the lumped reaction kinetics model was established to represent thepyrolysis process, and kinetics equations which can estimate the relation among thecomposition and distribution of pyrolytic products and final pyrolysis temperature and heatingrate were determined. The research showed that the emission rate of volatile matterapproached the ultimate production rate with the rising of final pyrolysis temperature, whilesemi-coke yield reduced, of which C content increased and the others including H, N, O and Scontent decreased. Therefore, the rising of final temperature favored the desulfurization anddenitrification of semi-coke. The most volatile except H2 basically released and elementschange range of semi-coke decreased at 600℃. When pyrolysis temperature remained constant, slow heating was beneficial to the full emission of volatile matter. Analysis resultsshowed that controlling the temperature at 550℃and heating rate of 10℃/min volatile mattercan wholly release.
     Based on ASPEN PLUS, the simulation method of the two-stage gasification technologyintegrated with pyrolysis model of coal and partial gasification of semi-coke was presented.The results showed that the established gasifier model can accurately simulate the two-stagetechnology which the thesis put forward. Tar yield of the pyrolysis-stage was 12.23%, andsemi-coke yield was 65.11%. By regulating the segmentation rate of splitter at 0.53:0.47, thewet coal can be preheated to the specified temperature at 110℃. Finally, the gasification-stagewas optimized based on performance parameters adjustment and sensitivity analysis. Whenratio of oxygen to coal (O2/C) was 0.33 and ratio of steam to coal (H2O/C) was 0.2, or O2/Cand H2O/C were 0.356 and 0.25 respectively, the temperature of gasifier can maintain at 900℃and the cold gas efficiency was highest.
引文
[1]宋玉春.峰回路转涨势依然-世界石油市场回顾玉展望[J].中国石油和化工,2008,l:26~3
    [2]许祥静,刘军.煤炭气化工艺[M].北京:化学工业出版社,2005:59~83
    [3]沈骥如.解决能源问题更需要哲学思维[J].世界经济与政治,2006,7:1~5
    [4]杜志军.煤炭资源的可持续发展与洁净煤技术[J].中国科技信息,2006,3:159
    [5]谢克昌.新一代煤化工和洁净煤技术利用现状分析与对策建议[A]. 2004中国煤炭加工与综合利用技术战略研讨会论文集[C]:1~7
    [6]郭树才.煤化工工艺学[M].北京:化学工程出版社,2006:35~41
    [7]马中学,杨军,陈金城.煤化工技术的发展与新型煤化工技术[J].甘肃石油和化工,2007,12(4):l~5
    [8]罗吉春.浅谈洁净煤技术的发展[J].工程技术,2007,13:1~12
    [9]刘鸿亮,曹凤中.煤化工产业的发展与环境资源约束[J].中国地质大学学报(社会科学版),2008,8(l):1~4
    [10]魏力.世界煤化工发展趋势[J].辽宁化工,2007,36(1):32~37
    [11]徐虎.洁净煤技术的展望[J].洁净煤技术,2007,13(l):89~92
    [12]王俊琪.煤的部分气化及半焦燃烧系统集成研究[D].浙江:浙江大学,2008
    [13] Roberston A. Development of Foster Wheeler’s Vision 21 Partial GasificationModule[A]. The Vision 21Program Review Meeting[C]. Morgantown:West Virginia:2001,November 6~7
    [14] Roberston, Froehlich R,Fan Z,et al. Partial Gasification Test with Pittsburgh No.8Coal[A]. In: Sakkested B A, ed. The 28th International Technical Conference on CoalUtilization and Fuel Systems[C]. Florida, USA: Clearwater, March 10-13.2003
    [15] Roberston A. Foster Wheeler Development Corporation, USA. Vision 21 PartialGasification Module pilot PlantTests[A]. In: Sakkested B A, ed. The 27th InternationalTechnical Conference on Coal Utilization and Fuel Systems.Sheraton Sand Key[C].Florida, USA: Clearwater, March ,2003
    [16]梁鹏,巩志坚,田原宇,等.固体热载体煤热解工艺的开发与进展[J].山东科技大学学报,2007,26(3):32~40
    [17]刘光启,邓署平,钱欣荣.我国煤炭热解技术研究进展[J].现代化工,2007,27(2):37~43
    [18]赵丽红.煤热解与气化反应性的研究[D].太原:太原理工大学,2007
    [19]刘全润.煤的热解转化和脱硫研究[D].大连:大连理工大学,2005
    [20]廖洪强,李文,孙成功,等.提高煤加氢热解焦油产量的途径[J].化工进展,1996,6:19~23
    [21] Q. Zhou, H. Hu, Q. Liu, et al. Investigation on effete of atmospheres on sulfur formduring coal pyrolysis by AP-TPR[A]. In: Proeeedings of 21th Annual InternationalPittsburgh Coal Conference[C]. Japan: Osaka,Grand Cube Osaka,2004(9):13~17
    [22]崔洪.煤液化残渣的物化性质及其反应性研究[D].山西:中科院山西煤化所,2001
    [23]熊方勋.煤拔头工艺中烟煤快速热解产物分布的实验研究[D].哈尔滨:哈尔滨工业大学,2006
    [24]虞继舜.煤化学[M].北京:冶金工业出版社,2000:23~30
    [25]张晓方.基于反应解耦的煤气化热解研究[D].北京:北京化工大学,2008
    [26]孙庆雷,李文,李保庆.神木煤热解的挥发分收率与岩相组成的关系[J].化工学报,2003,54(2):269~272
    [27]朱廷饪,肖云汉,王洋.煤热解过程气体停留时间的影响[J].燃烧科学与技术,2001,7(3):308~310
    [28] MegaritisA. Pyrolysis of coal maceral concertrates under pf-combustion condtion(I):changes in volatile release and char combustibility as a function of rank[J].Fuel,1998,77(12):1273~1282
    [29]王鹏,文芳,步学朋,等.煤热解特性研究[J].煤炭转化,2005,1.28(1):8~14
    [30]王俊琪,方梦祥,骆仲泱,等.煤的快速热解动力学研究[J].中国电机工程学报,2007,6.27(17):18~23
    [31] E. Donskoi, D.L.S.McElwain. Approximate modeling of coal pyrolysis[J]. Fuel 78,1999:825~835
    [32] C.A.Heidenreich,H.M.Yan,D.K.Zhang. Mathematical modeling of pyrolysis of large coalparticles-estimation of kinetic parameters for methane evolution[J]. Fuel 78,1999:557~566
    [33] Heinrich Reidelbach. Kinetic Model For Coal Pyrolysis Optimization[J]. 161~203
    [34]韩永霞,姚昭章.升温速度对煤热解动力学的影响[J].华东冶金学院学报,1999,10.16(4):318~323
    [35]金会心,王华,郭森魁.褐煤热解煤气的性质[J].金属学报,2004,4.36(4):441~445
    [36] Griffin T P, Howard J B, Peters W A. Pressure and Temperature Effects in BituminousCoal Pyrolysis: Experimental Observations and a Transient lumped-parameter Model [J].Fuel,1994, 73 (4): 591~601
    [37]廖洪强,孙成功,李保庆.富氢气氛下煤热解特性的研究[J].燃料化学学报,1998,4.26(2):114~119
    [38]廖洪强,李保庆,张碧江.富氢气氛下煤热解脱硫脱氮的研究[J].燃料化学学报,1999,6.27(3):268~273
    [39]廖洪强,孙成功,李保庆.煤-焦炉气共热解特性的研究I.固定床热解反应特性[J].燃料化学学报,1994,4.25(2):104~109
    [40]戴秋菊,唐武道,常万林.采用多段回转炉热解工艺综合利用年青煤[J].煤炭加工与综合利用,1993.3:22~23
    [41]郭树才,罗长齐,张代佳.褐煤固体热载体干馏新技术工业性试验[J].大连理工大学学报,1995,2.53(1):46~51
    [42]王杰广,吕松雪,姚建中,等.下行床煤拔头工艺的产品产率分布和液体组成[J].过程工程学报,2005,5 (3):241~245
    [43]岑可法,方梦祥,骆仲泱,等.循环流化床热电气三联产装置研究[J].工程热物理学报,1995.11 (6):499~502
    [44]周安宁.煤炭低温干馏技术. 2009
    [45]许世森,张东亮,任永强,等.大规模煤气化技术[M].北京:化学工程出版社,2006:1~14
    [46] Oetave L. Chemical Reaction Engineering[M]. NewYork:John Wiley&Sons, 1974
    [47] Milton R.Beychok. Coal Gasification and The Phenosolvan Process[J]. ConsultingEngineer, Irvine, California
    [48]黄南,刘典福,盛宏至.煤部分气化技术及半焦燃烧的研究现状与展望[J].江西能源,2002(2):1~7
    [49]温九真.煤部分气化技术的研究[J].中州煤炭,2003,6:8~12
    [50] Archie Robertson, Dave Kulcsar, James Van Hook, Chongqing Lu,Frank Burkhard,et al.Pilot plant becomes demonstration plant desigh[A]. DOE/MC/ 21023 -96/C0501,Advanced Coal-Fired Power Systems’95 Review Meeting[C], Morgantown, WestVirginia, June27-29,1995
    [51] A.Robertson, H.Goldstein,D. Horazka,et al. Second-generation PFB plant performanceWith W510G gas turbine[A]. Proceedings of 16th International Conference on FluidizedBed Combustion[C], Reno, Nevada May13 -16,2001,FBC01-0010
    [52] Rizeq R.G., Lyon R. K.,Zamansky V.M. Fuel-Flexible AGC technology of H2,power,and sequestration-Ready CO2[A]. In: The proceedings or the 26th, international technicalconference on coal utilization & fuel systems[C],Ed. B. A. Sakkestad. Clear water, USA,2001:359~368
    [53]黄军军.煤的流化床部分气化利用技术的实验研究[D].浙江:浙江大学,2005
    [54]煤焦油生产新工艺新技术与操作安全及质量检验标准规范实用手册.北方工业出版社
    [55] Despina Vamvuka,Edward T. Woodburn and Peter R.Senior. Modelling of an entrainedflow coal gasifier 1.Development of the model and general predections[J]. Fuel74,1995:1452~1460
    [56] Jason Norman,Mohammed Pourkashanian,Alan Williams. Modelling the formation andemission of environmentally unfriendly coal species in some gasification processed [J].Fuel 76,1997:1201~1216
    [57]屈一新.化工过程数值模拟及软件[M].北京:化学工业出版社,2006
    [58]化工流程模拟系统ASPEN PLUS入门手册[M].天津:化工部第一设计院,1987
    [59] Ong'iro, A., et al. Thermodynamic simulation and evaluation of a steam CHP plant usingASPEN Plus[J]. Applied Thermal Engineering,1996.16(3): 263~271
    [60] Sotudeh-Gharebaagh R,Legros R,Chaouki J,et al. Simulation of circulating fluidizedbed reactors using ASPEN PLUS[J]. Fuel,1998,77(4):327~337
    [61] Mathieu P,Dubuisson R. Performance analysis of a biomass gasifier[J]. EnergyConversion and Management,2002,43(9-12):1291~1299
    [62] Heinrich Reidelbach,Martin Summerfield. Kinetic Model For Coal Pyrolysis Optim-ization[D]. Princeton University, Princeton,New Jersey
    [63]宋绍勇.煤热解动力学及其机理的实验研究[D].太原:太原理工大学,2002
    [64] David Merrick. Mathematical models of the thermal decomposition of coal[J].Fuel,1983,62(5):534~539
    [65]徐越,吴一宁,危师让.二段式干煤粉气流床气化技术的模拟研究与分析[J].中国电机工程学报,2003,10.23(10):186~191
    [66] British Coke Research Association, Coke Research Report 24,1963
    [67]朱学栋,朱子彬.煤热失重动力学的研究[J].高校化学工程学报,1999,6.13(3):223~229
    [68] SUUBERG E M,PETERS W A,HOWARD J B. Product compositions and formationkinetics in rapid pyrolysis of pulverized coal implications for combustion[J]. Fuels,1980,59 (6):405~4121
    [69] SOLOMON P R,HAMBLEN D G,CARANGELO R M. General model of coaldevolatilization [J] . Energy and Fuels,1988,2:405~4121
    [70]陈彩霞,孙学信,马毓义.煤粉热解的挥发份组分析出模型[J].自然科学进展—国家重点实验室通讯,1995,1.5(1):83~91
    [71] Jefferson Shau-tung Jih, B.S. in Chem.eng. Determination Of Pyrolysis KineticParameters Of San Miguel (Texas) Lignite[D]. Tecas Tech University,1982,8
    [72]张彦文,杨景标,蔡宁生.煤粉热解组分析出特性的实验研究和DAEM模拟[J].热能动力工程,2008,11.23(6):661~667
    [73] James L, Johnson. Kinetics Of Initlal Coal Hydrogasification Stages. Institute of GasTechnology 3424 South State Street Chicago,Illinois 60616
    [74]邱宽嵘.煤的热解动力学特性研究[J].中国矿业大学学报,1994,9.23(3):42~48
    [75] Coats A W, Redfem J F. Nature. 1964,201:68
    [76]廖洪强,李宝庆,孙碧江.煤-合成气共热解特性的研究[J].煤化工,1999,8(3):22~27
    [77]降文萍.煤热解动力学及其挥发份析出规律的研究[D].太原:太原理工大学,2004
    [78]张妮,曾凡桂.中国典型动力煤种热解动力学分析[J].太原理工大学学报,2005,9.36(5): 549~552
    [79] Qizhi Ni and Alan Williams. A simulation study on the performance of an entraine-dflow coal gasifier[J]. Fuel 1995,Volume 74, Number 1, 102~110
    [80]徐越.燃煤联合循环系统设计集成与干煤粉加压气化过程模拟[D].西安:西安交通大学,2003
    [81]徐越,吴一宁,危师让.基于ASPEN PLUS平台的干煤粉加压气流床气化性能模拟[J].西安交通大学学报,2003,7.37(7):692~696
    [82] Aspen Techno logy. Aspen Plus User Guide[M]. USA:Aspen Technology, 2000
    [83] Aspen Techno logy. Aspen Plus Getting Started Solids[M]. USA: Aspen Techno logy,2000
    [84] Aspen Techno logy. Aspen Plus Physical Property Methods and Models[M]. USA:Aspen Technology, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700