用户名: 密码: 验证码:
船用间冷循环燃气轮机性能仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研发大功率船用燃气轮机是当今船舶主动力发展的主流,要发展我国大功率船用燃气轮机,在一个合适的母型简单循环燃气轮机的基础上进行中间冷却循环改造,是一种快捷、合理的选择,而且具有重要的实际意义。本文针对中间冷却循环燃气轮机进行仿真研究,可以为大功率船用燃气轮机的研制工作提供一定的参考。
     本文对中间冷却器进行了结构设计,采用分体(5个间冷器)沿燃气轮机圆周布置的方式,利用MATLAB遗传算法优化工具箱对其结构尺寸进行优化设计,使其体积(重量)在换热性能不降低的情况下最小。中间冷却改造去掉了低压压气机的末尾2级,需要重新计算压气机的特性,文中分别阐述了基于叶栅法、逐级叠加法和统计规律法,由于缺少详细数据,在比较各种方法的优缺点之后,采用统计规律法对低压压气机特性进行计算。
     建立中间冷却循环燃气轮机系统及各个部件的非线性数学模型,在Matlab/simulink平台上应用模块化建模的方法建立了通用性的各部件仿真模块,进而建立该系统的稳态和动态仿真模型。对间冷循环燃气轮机的不同工况进行了稳态仿真,并与简单循环的进行了比较,而且分析了间冷度对机组性能的影响;对间冷循环燃气轮机进行了动态性能仿真,研究间冷循环机组驱动发动机和螺旋桨两种不同负载的变工况性能(加速、减速),得到了间冷循环燃气轮机用于机械推进系统和电力推进系统的加、减速运行规律。
     对间冷循环和简单循环进行了动态仿真的对比研究,分析两种循环在变工况下的动态特性,结果表明中间冷却循环机组的机动性与简单循环的基本相同,但是机组的输出功率有大幅度增加,热效率也略有增加。结果表明中冷循环燃气轮机的性能可以满足未来船舶主推进系统的需要。
The R&D of marine gas turbine has been the mainstream of marine power plant in the navy of every country now. In view of the difficulty, we should transform the home-made simple cycle gas turbine into inter-cooled cycle gas turbine in order to develop China's high-power marine gas turbine. This is a reasonable and convenient option, which also has important practical significance.
     As a result, the inter-cooled cycle gas turbine is researched in the paper so as to support some reference to the program.
     The intercooler distributed along the circumference of gas turbine is designed in the paper, and the size is optimized using GA Optimization Toolbox in order to minimize the weight of it. Because of cutting the last 2 states of the low pressure compressor, three methods are described to calculate compressor characteristics. Due to the lack of detailed data, the Statistical Method is chosen to estimate the characteristics of new compressor.
     The non-linear mathematical models of inter cooled cycle gas turbine system and the various components have been established in this article. And their simulation module including the steady-state and dynamic simulation model has been established based on Matlab/simulink simulation platform using modular modeling methodology. The steady-state simulation is carried out in order to get the characteristic parameters of each cross-section, which are compared with the characteristic parameters of simple cycle gas turbine. And then, the influence of different cooling efficiency to the inter-cooled cycle is analyzed exhaustively. The non-steady state simulation is also carried out. The different situations ,such as driving Marine Generator、driving fixed pitch propeller, are researched comprehensive so as to get the operation law(acceleration、deceleration) of the inter cooled cycle gas turbine.
     At last, the contrast simulation research between the steady-state and non-steady state is implemented in the main areas. The results show that the mobility of inter cooled cycle gas turbine is the same as simple cycle gas turbine, but the output power of the plan has a substantial increase . And the outlet temperature of chamber is a little lower than it of the simple cycle, reducing of about 30K or so; the thermal efficiency has a slight increase. In a word, the marine inter cooled cycle gas turbine can satisfy the need of marine power plant in high-power gas turbine.
引文
[1]刘光宇.船舶燃气轮机装置原理与设计.哈尔滨:哈尔滨船舶工程学院出版社,1992:7-9页.
    [2]张忠树.新世纪船舶动力装置图集.海军装备部船艇部,海军装备研究院船舶所,2004:30-36页.
    [3]闻学友,肖东明.IC循环船用燃气轮机的可行性研究.热能与动力工程.2009,24(1):60-61页.
    [4]陈国钧,曾凡明.现代舰船轮机工程.长沙:国防科技大学出版社,2001:107-108.
    [5]魏琳键,吉桂明,付先平等.复杂循环燃气轮机装置在舰船中的应用.热能动力工程,1999,81(14):164-168页.
    [6]刘德钟.中冷回热燃气轮机在舰船上的应用.热能动力工程,1990,5:5-9页.
    [7]强国芳.舰船燃气动力的新技术.舰船科学技术,1994 ,5:5页.
    [8] A. Willockx, E. Dick, M. De Paepe. Raising cycle efficiency by intercooling in air-cooled gas turbines. Applied Thermal Engineering,2006,26:1780–1787P.
    [9] J.B.Young,R.C.Wilcock. Modeling the air-cooled gas turbine:Part1– general thermodynamics. ASME J,Turbo machinery .2002,124:207–213P.
    [10] J.B.Young, R.C.Wilcock. Modeling the air-cooled gas turbine:Part2– coolant flows and losses. ASME J,Turbo machinery .2002,124:214–221P.
    [11] J.H. Horlock, D.T. Watson, T.V. Jones. Limitations on gas turbine performance imposed by large turbine cooling flows. ASME J,Gas Turbine Power , 200(123):487–494P.
    [12] M. De Paepe,E. Dick. Technological and economical analysis of water recovery in steam injected gas turbines. Thermal Eng,2001,21:135–156P.
    [13]骆凤标.舰用燃气轮机研制新动向.热能动力工程,1989,4(1):7-13页.
    [14]刘永葆.ICR关键技术及进展,热能动力工程,1999,1:12-14页.
    [15]张方伟.中冷回热燃气轮机动态仿真研究.上海交通大学硕士论文,2004,6:4-5页.
    [16]郑群,刘顺隆.间冷回热燃气轮机特性计算.哈尔滨工程大学学报,1995,16(3):42-48页.
    [17]肖东明,闻雪友,曾喜等.简单循环舰用燃气轮机间冷回热改造方案探讨[J].热能动力工程,2004,9(1):89-92页.
    [18]刘永文.基于通用平台的系统建模和半物理仿真及其在舰船动力装置中的应用.上海交通大学博士论文.2002:36-38页.
    [19]黄向华,张天宏.舰用燃气轮机建模方法研究.中国造船,2005(4):32-35页.
    [20]林汝谋,金红光.燃气轮机发电动力装置及应用.中国电力出版社,2004:6-8页.
    [21]倪维斗等著.热动力系统建模与控制的若干问题.北京:科学出版社,1996:92-103页,221-235页.
    [22]郭正榘编著.燃气轮机自动控制系统设计.北京:机械工业出版社,1981:123-147页.
    [23]朱行健,王雪瑜.燃气轮机工作原理及性能.北京:科学出版社,1992.12:415-418页.
    [24]王德慧,李政,麻林巍.大型燃气轮机冷却空气量分配及透平膨胀功计算方法研究.中国电机工程学报.2004,24(1):180-185页.
    [25] Schobeiri M T, Attia M, Lippke C, GETRAN: a generic modularlystructured computer code for simulation of dynamic behavior of aero and power generation gas turbine engines, ASME Journal of Engineering for Power, 1994, 116: 483-494P.
    [26] Takao Akiyama,Hiroshi Matsumoto and Kazuyasu Asakura,Dynamic simulation and its applications to optimum operation support for advanced combined cycle plants, Energy Convers,1997,8,709-71P.
    [27]稽顺达.我国板翅式换热器技术进展.低温与制冷,1998,8(1):22-27页.
    [28]王汉松.板翅式换热器.北京:化学工业出版社,1984:76-78页.
    [29]关欣,罗行,李美玲等.板翅式热换热器动态特性分析.工程热物理学报,2003,24(4):680—690页.
    [30]钱颂文.换热器设计手册[M].北京:化学工业出版社,2008,8:388-401页.
    [31]谢公南,王秋旺.遗传算法在板翅式换热器尺寸优化中的应用.中国电机工程学报, 2006 ,26 (7) :53 -57.
    [32]崔永正,任禾盛,郝桂梅.应用遗传算法优化设计紧凑式换热器.动力工程,2008,28(5):740-745.
    [33]张丽娜,杨春信,王安良.应用遗传算法优化设计板翅式换热器.航空动力学报,2004 , 19 (4) :530 - 535.
    [34]敖铁强,余建祖,高红霞.基于遗传算法的板翅式换热器优化设计.低温工程,2007,4:32-34.
    [35] (美)W.M.凯斯,(美)A. L.伦敦.紧凑式热交换器.北京:科学出版社,1997,386-382.
    [36] Genetic algorithm and direct search toolbox for use with MATLAB, User’s Guide . The Math Works,2006.
    [37] G. Heyen, K. Murphy, D. Marchio, et al. Dynamic simulation and control of gas turbine and compressor systems. Computers Chemical. Engineering,1994, 18(11):1071-1082P.
    [38] AGRAWAL R K,YUNIS M A .Generalized mathematical model to estimate gas turbine starting characteristics .ASME, 1982,10:194-201P.
    [39]李景银,刘立军,李超俊.轴流压气机特性计算模型的研究.机械工程学报,1997,33(2):66-71页.
    [40]王廷兴,孟光,王瑜等.基于压气机级的压气机系统的建模与仿真方法.计算机仿真,2004,21(9):43-47,23页.
    [41]张那,林汝谋,蔡睿贤.压气机特性通用数学表达式.工程热物理学报,1996,17(1):21-24页.
    [42]刘前智.多级轴流压气机非设计性能的数值预估.航空动力学报,2004,19(1):108-112页.
    [43]苏欣荣,袁新.多级轴流压气机全工况特性预测.热力透平,2005,34(4):203-206页.
    [44]丁毅,黄向华.基于逐级叠加法的航空发动机起动模型研究.航空学报,2005,26(5):541-546页.
    [45]王松岭,张学镭,陈海平,周兰欣.基于相似定律外推压气机通用特性曲线的方法.动力工程,2007,27(2):169-176页.
    [46] Vassilios P. Lambropoulos, Nicolaos P. Kyrtatos. Modular Simulation of Marine Propulsion Systems Using an Engineering Building Block Approach. Sixth International Symposium on Marine Engineering(ISME), Tokyo 2000-October 23~27, 2000.
    [47]徐志梅.热机系统仿真中一种通用容积介质模型的建立.燃气轮机技术.2003(4):35-36页.
    [48]翁史烈.燃气轮机性能分析.上海:上海交通大学出版社.1987:267-285页.
    [49]韦思亮,刘尚明,倪维斗.有差调节系统燃气轮机在Matlab/Simulink中的实现.动力工程,2001.12:35-39页.
    [50]任兰学.舰用间冷循环燃气轮机气动设计研究.哈尔滨船舶锅炉涡轮机研究所,2008.4:8-19.
    [51]翁史烈.船舶动力装置仿真技术.上海:上海交通大学出版社,1990,44-49页.
    [52]闻学友,肖东明.对发展大功率燃气轮机船用燃气轮机的新思考.舰船科学技术.2007,29(4):17-18页.
    [53]王敏,李杨,李淑英,孙聿峰,谢春玲.基于Matlab/Simulink的单轴燃气轮机动态仿真.燃气轮机技术,2006(4):47-50页.
    [54]宋少雷.回注蒸汽燃气轮机总体性能仿真.哈尔滨工程大学硕士学位论文,2008.3:20-26页.
    [55]杨涛.船用燃气轮机发电机组仿真技术研究.哈尔滨工程大学硕士学位论文,2008.3:22-31页.
    [56]金晓航.间冷回热燃气轮机的系统仿真研究.上海交通大学硕士学位论文,2006. 2:45-46页.
    [57]黄育先.中冷回热燃气轮机仿真及控制策略初步探讨.上海交通大学硕士学位论文,2007,2:62-64页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700