用户名: 密码: 验证码:
基于RS、GIS技术的现代黄河三角洲植物群落演替数量分析及近30年植被动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代黄河三角洲位于山东北部,黄河入海口处,面积约2200km~2。该区是由海洋向陆地的过渡地带,同样也是水陆交错带,多种生态系统在此交替。受黄河尾闾摆动、海岸侵蚀、河口淤积、植被演替、土壤发育、人为垦殖等多种因素影响,生态环境脆弱,生态系统呈现明显的湿地生态系统特点,是中国暖温带最年轻、保存最完整、面积最大的河口新生湿地生态系统。
     黄河三角洲是我国乃至世界大河中海陆变迁最活跃的地区,而现代黄河三角洲又是该地区造陆最年轻、河道迁徙最频繁、植被演替最快的区域,这一地区是研究植被动态变化最理想的区域,其研究成果具有典型性和独特性。
     现代黄河三角洲植物群落演替数量特征分析和动态变化研究,是黄河三角洲植被研究的基础工作,这项研究对黄河三角洲植被的动态特征、分类与分区研究,对该区的植被恢复与重建、植被开发与利用研究都具有重要意义。
     利用“3S”技术研究现代黄河三角洲植被动态变化研究,是系统研究黄河三角洲动态变化的重要组成部分,对今后数字黄河三角洲建设和该区资源开发与保护具有应用价值。
     现代黄河三角洲植物群落自然演替属于原生演替,在无人为干扰情况下,植物群落演替序列为裸地→盐地碱蓬(Suaeda salsa)群落→柽柳(Tamarix chinensis)群落→草甸。这种演替系列的形成与土壤水盐动态有密切关系。靠近海岸线土壤含盐量较高地段是盐碱裸地,裸地以上分布着耐盐、湿的碱蓬、柽柳,这两种植物形成单优群落,或由两种植物共同组成群落。随着距海岸线距离增大和海拔的升高,土壤含盐量降低,碱蓬、柽柳的重要性降低,多年生草本成分逐渐开始占优,在合适的区域形成以芦苇(Phragmites australis)、白茅(Imperatacylindrica)、獐茅(Aeluropus littoralis)为优势种的群落类型。这些类型为现代黄河三角洲自然演替的较高阶段。
     采用一次性同时采样方法获取了现代黄河三角洲不同演替阶段的植物群落演替数据,并利用数量分类方法(TWINSPAN)对调查数据进行了分析。此方法将研究区植物群落分为3大类12个小类,用以代表3个演替阶段12个演替群落。3大类为:以碱蓬为优势种的群落;以柽柳为优势种的群落;以芦苇、稗(Echinochloa littoralis)、白茅为优势种组成的草本群落。12个演替群落分别为:盐地碱蓬群落;盐地碱蓬+芦苇群落;柽柳群落;柽柳+碱蓬群落;柽柳+碱蓬+芦苇群落;柽柳+碱蓬+中华补血草(Limonium sinesis)群落;芦苇+碱莲+罗布麻(Apocynum venetum)群落;芦苇+鹅绒藤(Cynanchum chinensis)+茵陈蒿(Artemisia capillaries)群落:稗+苦菜(Ixeris chinensis)+芦苇群落:芦苇+野大豆(Glycine soja)群落:白茅+野大豆群落;獐茅(AeluropusLittoraffs)+芦苇+碱蓬群落。
     计算了12个演替群落的演替度。大多数群落处于较低的演替阶段,演替度在30~184.3之间;而芦苇+野大豆群落,獐茅+芦苇群落已接近顶极演替阶段,演替度分别为286.9和230.7。
     群落在演替过程中,物种多样性指数和丰富度随演替进程逐渐增加,而物种均匀度指数呈减少趋势。
     利用排序(DCA)技术研究了演替与环境之间的关系,结果表明,土壤盐份是现代黄河三角洲植物演替的主导因子,它影响群落的结构、物种组成和演替进程。
     以配准后的1977年5月10日(MSS)、1987年5月7日(TM)、1996年5月31日(TM)、2004年5月5日(TM)四时相遥感影像数据为基础,应用归一化植被指数(NDVI),研究了现代黄河三角洲近30年植被覆盖变化,并对植被盖度进行了分级。结果表明,在过去27年间,植被覆盖面积呈增加趋势,植被累计增加面积91089.43hm~2,平均每年增加3373.68hm~2。覆盖率增加了34.71%,平均每年增加1.29%。植被以低盖度植被为主,高盖度植被所占面积较小,但高盖度植被逐年增加,平均每年增加412.83hm~2。
     对研究区植被类型进行了解译,结果表明,芦苇植被面积从总体上是增加的,面积增加了314.19hm~2;柽柳、碱蓬群落和农田植被的分布面积呈逐年增加的趋势,分别增加了1066.14hm~2、1128.87hm~2和5811.71hm~2;刺槐林面积有增有减。1987~1996年,刺槐面积增加了1674.18hm~2,平均每年增加186.02hm~2;1996~2004年间,面积呈减少趋势,刺槐林面积减少了709.65hm~2。
     在20世纪70年代,湿地有河流、沼泽和滩涂三种自然湿地类型。80年代以后,又增加水库、水田、虾池和池塘等人工湿地类型。受黄河来水和人类工农业活动的影响,河流、沼泽湿地面积呈减少趋势,27年间,河流湿地面积减少了15085hm~2,沼泽湿地面积减少了27679hm~2;而水库、水田、虾池、滩涂湿地面积增加明显,面积分别增加了1790hm~2、1225hm~2、7713hm~2和25970hm~2。
     从空间上分析,现代黄河三角洲植被演替活跃区主要集中在北部和东部近海岸区和东南部黄河新淤进区域。1977~1996年间,北部植被分布边界线向内陆缩退最大距离为6.3km,植被蚀退面积总计29309.06hm~2。1996年后,由于海岸工程的建设,三角洲北部和东部海岸线相对稳度,北部植被蚀退现象得到遏止。东南部黄河新淤出区域,由于淡水充足,土壤条件相对较好,植物很快迁入。此区域植被分布区总体是以黄河为轴心向两侧扩展,1977~1987年,东南部区域植被增加面积为40592.34hm~2;1987~1996年,植被增加面积为26027.14hm~2;1996~2004年,植被增加面积为31310.31hm~2。
     研究表明,土壤盐分是影响现代黄河三角洲植被分布的主导因子。碱蓬、柽柳在土壤含盐量较高区域分布;芦苇在黄河两岸、黄河故道、水库和河流周围淡水充足区域分布;刺槐(Robinia pseudoacacia)主要集中在黄河故道两侧、黄河北岸地势较高,土壤充分脱盐区域。
The modern Yellow River Delta is located at the mouth of the Yellow River flowing to the sea, north of Shandong Province, China. Its area is about 2200km~2 . This region is also a transition zone from sea to terrestrial land, and is land-and-water interlock zone too. Affected by several factors such as tail channel fluctuation , seacoast erosion, river mouth deposit, plant succession, soil development, human reclamation and activities, its ecological environment is very fragile. It shows distinct characters of wetland ecosystem, and is the youngest, largest, most integrated reserve new-born wetland ecosystem of river mouth in the warm and temperate zone of China.
     It is the most frequent change region from sea to land in our country or the large river in the world. The modern Yellow River Delta is the youngest land created by the yellow river, the most frequent change for its flow path to the sea, and the most dynamic area for vegetation succession. It is the ideal region for studying plant succession, and its research achievements are of typicality and uniqueness.
     This study is basic work for vegetation research of Yellow River Delta, therefore, the study is of an important significance for future study of dynamical characteristics, vegetation classification and regionalization, ecological restoration and reconstruction in delta area.
     Using "3S"(RS, GIS and GPS) techniques, dynamics of vegetation in modern Yellow River Delta were studied, which is important part for systematic studies on dynamics of vegetation in the region. It is of applied value for digital construction , resource exploitation and protection of Yellow River Delta.
     The natural succession of plant community in modern Yellow River Delta belonged to primary succession without human disturbance. The succession series of plant community in the study area was as follows: saline bare land→community Suaeda salsa→community Tamarix chinensis→Grassland. The formation of this succession series was closely related to soil water and salt dynamics. Soil near coastline, which has higher salt content, was bare land, going up from bare land, salt-enduring species Suaeda salsa and Tamarix chinensis occurred. These two species formed monodominant community or community consisting of both of them. With distance from coastline increasing, rising of altitude and decreasing of soil salt content, the importance of Suaeda salsa and Tamarix chinensis became lower, the component of perennial grass dominated gradually. The community types dominated by Phragmites australis, Imperata cylindrica and Aeluropus littoralis were developed in suitable area. These community types were the higher stage of natural succession in modern Yellow River Delta.
     Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The three succession stages were as follows. Saline bare land→Community Suaeda salsa→Community Tamarix chinensis→Grassland. 12 succession communities were respectively: community Suaeda salsa, Community Suaeda salsa + Phragmites australis, Community Tamarix chinensis, Community Tamarix chinensis + Suaeda salsa, Community Tamarix chinensis + Suaeda salsa + Phragmites australis ,Community Tamarix chinensis + Suaeda salsa + Limonium sinesis, Community Phragmites australis + Suaeda salsa + Apocynum venetum, Community Phragmites australis+Cynanchum chinensis + Artemisia capillaries, Community Echinochloa littoralis + Ixeris chinensis + Phragmites australis, Community Phragmites australis + Glycine soja, Community Imperata cylindrica + Glycine soja, Community Aeluropus Littoralis + Phragmites australis + Suaeda salsa.
     Succession degree of 12 communities were calculated. Most of these communities were in the lower succession stage, their succession degree were between 30 and 184.3. However, Community Phragmites australis + Glycine soja and community Imperata cylindrica + Phragmites australis were close to the succession stage of grassland climax, their succession degree were 286.9 and 230.7 respectively. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development.
     The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of modern Yellow River Delta. It affected community structure, species composition and succession process.
     Based on landsat TM image in 1987,1996,2004 and MSS image in 1977,vegetation cover changes about 30 years in modern Yellow River Delta were studied by using the normalized difference vegetation index (NDVI), and vegetation coverage was classified. The results are as follows: During 27 years, vegetation cover area was tend to increase, and total increased area of vegetation was 91089.43 hm~2, with an average increase of 3373.68 hm~2 per year. 34.71% has increased to vegetation cover rate, with an average increase of 1.29% per year. Vegetation in study area was main in lower coverage, vegetation in higher coverage was minor, but area of vegetation in higher coverage was increased yearly, with an average increase of 412.83 hm per year.
     Three kinds of wetland, including river, marsh and seabeach, existed in early years during the study, and reservoir, paddy field, prawn pool and pond were added to the wetland in late years. Affected by the flow of Yellow River and the activities of human, the area of river and marsh tended to decrease, the area of river and marsh had respectively decreased 15085hm~2 andl5085hm~2, however, the area of reservoir, paddy field, prawn pool and seabeach increased obviously, its area had respectively decreased 1790hm~2,1225hm~2,7713hm~2 and 25970hm~2.
     Interpretation of vegetation in the studied region was conducted, the results are as follows: the area of vegetation for Phragmites australis was increased in general, its area had increased 314.09 hm~2. Vegetation area of Tamarix chinesis, Suaeda salsa and cropland appeared increasing tendency, their area had increased 1066.14 ,1128.87 and 5811.71 hm~2 respectively. Area of woodland Robinia pseudoacacia was fluctuated. its area had increased 1674.81 hm~2 from 1987 to 1996, and appeared decreasing tendency from 1996 to 2004, its area had decreased 709.65 hm~2 .
     Dynamic zone of vegetation succession concentrated mainly in north, east region near seacoast and new region deposited by the Yellow River in southeast. Vegetation distribution line in north shortened 6.3 km in largest, total vegetation area eroded by sea was 29309.06 hm~2 from 1977 to 1996. After 1996, due to construction of coast engineering, coast line in north and east was relative stable, vegetation erosion was checked. New deposited region in southeast, due to plentiful fresh water and better soil condition, plant invaded soon into the region. Vegetation in the area distributed around the Yellow River shore, increased area of vegetation in southeast was 40592.34 hm~2 from 1977 to 1987, 26027.14 hm~2 from 1987 to 1996, 31310.31 hm~2 from 1996 to 2004.
     The soil salt content was the main factor that affected vegetation distribution of the Yellow River Delta. The species of Tamarix chinesis and Suaeda salsa distributed in the area that contained higher soil salt content. The species of Phragmites australis distributed in the area with plentiful fresh water around the Yellow River shore, the old course of the Yellow River and reservoir. However, woodland Robinia pseudoacacia was concentrated in area with high ground level and desalted fully soil around the old course of the Yellow River and north shore of the Yellow River.
引文
1 Baret F., Guyot G., Major D. J. TSAVI : A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. Proceeings of the 12th Canadian Symposium on Remote Sensing. Vancouver , Canada , 1989, 3: 1355-1358.
    2 Carpenter G. A. ART neural networks for remote sensing vegetation from Landsat TM and terrain data. Transaction on Geoscience and Remote Classification Sensing, 1997,35(2):308-325.
    3 Daubenmire R. Forest vegetation of northern Idaho and adjacent Washington, and its bearing on concepts of vegetation classification. Ecological Monographs, 1952, 22(4):301-330.
    5 Demetriades-Shah T. H., Steven M. D., Clark J.A. High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 1990, 33: 55-64.
    6 Escadafal R. Remote sensing of arid soil surface color with Landsat Thematic Mapper. Adv Space Res, 1989,9(1): 1159 ~ 1163.
    7 Gamon J.A. Anarrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote sensing of Environment, 1992,41:35-44.
    8 Glenn-Lewin D., Peet R., Veblen T. Succession: Theory and Prediction. Chapman & Hall, London, 1992,p. 180-190.
    9 Heshmatti G., Squires V.R. Geobotany and range ecology: a convergence of thought? Journal of Arid Environments, 1997, 35:395-405.
    10 Huete A. R. A soil - adjusted vegetaion index (SAVI). Remote Sensing of Environment ,1988 ,25 : 295 — 309.
    11 Jackson R.D. Spectral indices in n - space. Remote Sensing of Environment , 1983 ,13 :409~421.
    12 Jackson R. D., Slater P. N. , Pinter P.J. Discrimination of growth and water stress in wheat by various vegetation indices through clear and turbid atmospheres. Remote Sensing of Environment, 1983, 13:187-208.
    13 Kauth R. J.,Thomas G.S. The tasselled cap - a graphic description of the spectra-temporal development of agriculture crops as seen by Landsat . Pros Symposium on Machine Processing of Remotely Sensed Data. Purdue University , West Lafayette ,Indiana , 1976,41 ~ 51.
    14 Kaufman Y.J. Atmospherically resistant vegetation index (ARVI) for EOS -MODIS. IEEE Transactions on Geoscience and Remote Sensing, 1992,30 (2) :261~270.
    15 Liu, J.G. Advance in modern ecology. China Science and Technology Press, Beijing, 1992,p.69-76.
    16 Major D. J. A ratio vegetation index adjusted for soil brightness. International Journal of Remote Sensing , 1990 , 11 (5) :727-740.
    17 Miller J. R. Quantitative characterizition of the vegetation red edge reflectance : 1. An inverted - Gaussian reflectance model.International Journal of Remote Sensing , 1990 , 11 (10) :1 755- 773.
    18 Margalef R. Perspective in ecological theory. University of Chicago Press, Chicago, 1968.
    19 Nemani R. Land cover characterization using multitemporal red, near-IR, and teermal Irdata from NOAA/AVHRR. Ecological Application, Temper AZ,1977, 7(1):79-80.
    20 Pearson R.L., Miller D.L. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie.Proceedings of the Eighth International Symposium on Remote Sensing of Environment. 1972,2. 1357-1381.
    21 Pinty B., Verstraete M.M. GEMI: A Non-Linear index to monitor global vegetation from satellites.Vegetation, 1992, 101: 15-20.
    22 Plummer S.E., North P.R.,Briggs S.A. The angular vegetation index: an atmospherically resistance index for the second along track scanning radiometer(ATSR-2).Proceedings of the Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing. Val d'Isere, France, 1994.
    23 Qi J., Huete A.R. Interpretaion of vegetation indices derived from multi -temporal SPOT images. Remote Sensing of Environment , 1993 , 44 : 89~101.
    24 Richardson A.J.,Wiegand C.L. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing , 1977 , 43(12):1 541-1 552.
    25 Rouse J.W.,Haas R.H.,Schell J.A.,Deering D.W.,Harlan J.C.Monitoring the vernal advancement of retrogradation of natural vegetation.NASA/GSFC,Type Ⅲ,Final Report,Greenbelt,MD,USA,1974.
    26 Running S.,Loveland W.,Tomas R.A remote sensing based vegetation classification logic for global land cover analysis.Remote Sensing of Environment,1995,51(1):39-48.
    27 Zhang J.T.Succession analysis of plant communities in abandoned cropland in the eastern loess plateau of China.Journal of Arid Environments,2005,63:458-474.
    28 宝音陶格涛,刘美玲,李晓兰.退化羊草草原在浅耕翻处理后植物群落演替动态研究.植物生态学报,2003,27(2):270-277.
    29 崔保山,李英华,杨志峰.基于管理目标的黄河三角洲湿地生态需水量.生态学报,2005,25(3):606-614.
    30 陈灵芝.暖温带山地针叶林排序和数量分类.植物生态学与地植物学学报,1992,16(4):301-310.
    31 陈沈良,谷国传,吴桑云.黄河三角洲风暴潮灾害及其防御对策.地理与地理信息科学,2007,23(3):100-112.
    32 陈唯真.山东省北部滨海草场类型的划分及其培育利用.山东农学院学报,1980,(4):23-35.
    33 陈仲新,张新时.毛乌素沙化草地景观生态学分类与排序的研究.植物生态学报,1996,20(5):423-437.
    34 丁建丽,塔西甫拉提·特依拜,刘传胜.策勒绿洲植被覆盖动态变化遥感研究.中国沙漠,2003,23(1):79-83.
    35 党承林,王崇云,王宝荣,李彦玲,黄其明.植物群落的演替与稳定性.生态学杂志,2002,21(2):30-35.
    36 邓贤兰,刘玉成.井冈山自然保护区栲属群落的数量分类,西南师范大学学报(自然科学版).2003,28(2):279-282.
    37 符宗斌,温刚.我国大陆植被变化的气象卫星遥感.科学通报,1992,(16):1486-1488.
    38 高琼,郑慧莹.模糊ISODATA在草地植物群落分类上的应用.植物生态 学与地植物学学报,1991,15(4):312-317.
    39 谷奉天.黄河口地区柽柳群落及其利用.中国草地,1991,(3):44-48.
    40 谷奉天.黄河口区海岸带植被的发生与动态观察.滨州教育学院学报,1995,创刊号:4-8.
    41 黄海军,李凡,庞家珍,乐肯堂,李士国等.黄河三角洲与渤海、黄海陆海相互作用研究.北京:科学出版社,2005.
    42 黄净,韩进轩,阳含熙.长白山北坡阔叶红松林的DCA排序分析.植物生态学与地植物学学报,1993,17(3):193-206.
    43 贾小容,苏志尧,陈北光,周毅.广东省自然保护区DCA排序与UPGMA聚类研究.华南农业大学学报(自然科学版),2004,25(2):75-79.
    44 江洪.川西北甘南云冷杉林的数量分类.植物生态学报,1994,18(3):271-282.
    45 江振蓝,沙晋明.利用多时相TM影像分析福州市地表植被的变化.水土保持研究,2003,4:69-71.
    46 鲁开宏.鲁北滨海盐生草甸獐茅群落生长季动态.植物生态学与地植物学学报,1987,11(3):193-201.
    47 李兴东.黄河三角洲的草地退化的研究.生态学杂志,1989,8(5):47-49.
    48 李兴东.黄河三角洲芦苇种群高度和地上净生产量生长季动态.生态学杂志,1991,10(2):16-19.
    49 李兴东.黄河三角洲植物群落与环境因子的典范分析和主分量分析.植物学报,1993,35(增刊):139-143.
    50 李晓兵,史培军.基于NOAA/AVHRR数据的中国主要植被类型NDVI变化规律研究.植物学报,1999,41(3):314-324.
    51 李文龙,李自珍,周忠学.沙坡头地区人工植物群落演替动态的定量研究.兰州大学学报(自然科学版),2001,37(5):98-104.
    52 李永宁,游志胜.遥感图象地面植被的分类识别.四川大学学报(自然科学版),1989,(3):283-290.
    53 娄安如,刘文华.燕山山脉植物群落的间接梯度分析与数量分类.北京师范大学学报(自然科学版),2001,37(3):391-395.
    54 罗学生.河田侵蚀区植物群落演替的探讨.水土保持通报,1994,14(3):48-51.
    55 米湘成,张金屯,张峰,上官铁梁.山西蟒河自然保护区栓皮栎林的聚类和排序.植物研究,1995,15(3):397-402.
    56 聂呈荣,李明辉,崔志新等.3S技术及其在生态学上的应用.佛山科学技术学院学报(自然科学版),2003,21(1):70-74.
    57 彭鸿嘉,傅伯杰,陈利顶,杨自辉.甘肃民勤荒漠区植被演替特征及驱动力研究.中国沙漠,2004,24(5):628-633.
    58 卜耀军、温仲明、焦峰、焦菊英.模糊聚类和排序在植被演替研究中的综合应用.水土保持研究,2005,12(1):7-9.
    59 任海,蔡锡安,饶兴,张倩媚,刘世忠.植物群落的演替理论.生态科学,2001,20(4):59-67.
    60 盛永伟,陈维英,肖乾广等.利用气象卫星植被指数进行我国植被的宏观分类.科学通报,1995,(1):68-71.
    61 师庆东,陈利军等.利用20年遥感影像分析西部干旱区植被演变特征.资源科学,2003,25(5):84-88.
    62 田家怡,王民等.黄河断流对三角洲环境的影响与缓解对策的研究.生态学杂志,1997,16(3):39-44.
    63 田庆文,闵祥军.植被指数研究进展.地球科学进展,1998,13(4):327-333.
    64 仝川,雍伟义,乌云娜,赵利清,姜超,雍世鹏.锡林河流域近15年植被空间结构变化遥感分析.内蒙古大学学报(自然科学版),2001,32(5):562-566.
    65 吴春林.广西热带石灰岩季节雨林分类与排序.植物生态学与地植物学学报,1991,15(1):17-26.
    66 王红,宫鹏,刘高焕.黄河三角洲多尺度土壤盐分的空间分异.地理研究,2006,25(4):649-659.
    67 王清,王仁卿,张治国,汤丽.黄河三角洲的植物区系.山东大学学报(自然科学版),1993.28:15-22.
    68 王仁卿,张治国,王清.黄河三角洲植被的分类.山东大学学报(自然科学版),1993,28:23-28.
    69 王仁卿,张治国.黄河三角洲植被概论.山东大学学报(自然科学版).1993,28:1-7.
    70 王仁卿,张治国.黄河三角洲的生态条件特征及其与植被的关系.山东大学学报(自然科学版),1993,28:8-14.
    71 王仁卿,周光裕.山东植被.济南:山东科学技术出版社,2000.
    72 王仁忠.采用系统聚类分析方法对羊草草地放牧演替阶段的划分.生态学报,1991,11(4):367-371.
    73 王跃,王建平.苏州市西南部低山丘陵植被覆盖变化及研究.铁道师院学报,2001,18(4):33-37.
    74 邬建国,JOHN L.V.,高纬.生态演替理论与模型.当代生态学博论,北京:中国科学技术出版社,1992.19-64.
    75 吴志芬,赵善伦,张学雷.黄河三角洲盐生植被与土壤盐分的相关性研究.植物生态学报,1994,18(2):184-193.
    76 王献溥,蒋高明.广西马尾松林分类、分布和演替的研究.植物研究,2002,22(2):151-155.
    77 徐彩琳,李自珍.干旱荒漠区人工植物群落演替模式及其生态学机制研究.应用生态学报,2003,14(9):1451-1456.
    78 徐函秋,陈本清.厦门市植被变化的遥感动态分析.地球信息科学,2003,2:105-109.
    79 徐兴奎,林朝晖,李建平,曾庆存.利用卫星遥感资料对中国地表植被及荒漠化时空演变和分布的研究.自然科学进展,2001,11(7):699-703.
    80 席跃翔,张金屯,李军玲.关帝山亚高山灌丛草甸群落的数量分类与排序研究.草业学报,2004,13(1):15-20.
    81 杨胜天,刘昌明,孙睿.近20年来黄河流域植被覆盖变化分析.地理学报,2002,57(6):679-684.
    82 张峰,张金屯.我国植被数量分类和排序研究进展.山西大学学报(自然科学版),2000,23(3):278-282.
    83 张峰,上官铁梁.模糊图论在山西植被区划中的应用.植物生态学与地植物学学报,1991,15(1):94-100.
    84 张金屯.植物数量生态学方法.北京:中国科学技术出版社,1995.
    85 张金屯.典范主分量分析及其在山西高原植被与气候关系分析中的应用.地理学报,1998,56(3):256-263.
    86 周光裕等.山东沾化县徒骇河东岸荒地植物群落的初步调查.植物生态学与地植物学资料丛刊,1956,第13号.
    87 张新时.西藏阿里植物群落的间接梯度分析、数量分类与环境解释.植物 生态学与地植物学学报,1991,15(2):101-113.
    88 张治国,王仁卿,王清,汤丽,李力.黄河三角洲植被的主要类型及其群落学特征.山东大学学报(自然科学版),1993,28:29-42.
    89 张治国等.改良黄河三角洲盐生草甸几种优良牧草及其栽培管理技术.北方植物研究,1993,1(1):377-380.
    90 张治国,王仁卿.黄河三角洲草地植被的利用与改造.山东大学学报(自然科学版),1993,28:70-72.
    91 张治国,王仁卿,陆化梅.黄河三角洲植被的发生及其演替规律.山东大学学报(自然科学版),1993,28:51-55.
    92 赵延茂,宋朝枢.黄河三角洲自然保护区科学考察集.北京:中国林业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700