用户名: 密码: 验证码:
芒硝力学性质及其水溶开采溶腔稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,水溶开采方法已广泛应用于盐类矿床开采,与常规的开采方法相比,水溶开采有增大开采深度、扩大可采储量;改善劳动条件、提高劳动生产率;减轻环境污染等许多优点。全球能源危机日益严重,水溶开采后的溶腔还越来越多的用于国家战略能源的地下储存。本文以江苏洪泽赵集芒硝矿项目为依托,分别通过物理力学性质试验、数值模拟等方法研究芒硝水溶开采溶腔的稳定性,具体研究工作如下:
     ①综合国内外研究成果,对水溶采矿的基本原理进行分析。总结影响盐类水溶开采溶腔稳定性的原因,选取溶腔几何尺寸、内水压、地应力和溶腔间距等几个影响稳定性的因素进行数值模拟研究。
     ②从江苏洪泽赵集芒硝矿区取得矿层及其顶底板的原状岩样,进行抗拉、单轴压缩和三轴压缩试验,获得芒硝矿及其顶底板岩石的物理力学性质参数。为后文数值模拟分析中岩体本构模型及其计算参数的选取提供依据。
     ③根据矿区实际地质条件,结合试验所得物理力学参数,采用ANSYS程序建立芒硝单溶腔数值计算模型,对芒硝水溶开采过程中溶腔的稳定性进行三维数值模拟研究。分别对不同跨高比、不同内水压、不同侧压系数下芒硝水溶开采溶腔稳定性进行模拟,通过对比分析各种不同条件下溶腔周边围岩的位移、应力和塑性区的变化情况,总结各种影响因素对芒硝溶腔整体稳定性的影响规律。
     ④在单溶腔研究的基础上,建立双溶腔模型,进行芒硝水溶开采双溶腔合理间距的研究。对不同间距下芒硝溶腔开采后影响围岩及矿柱稳定的各个因素性进行对比分析,得出依托工程比较合理的溶腔间距。同时结合内水压的变化,得出内水压的增大有利于芒硝双溶腔的整体稳定。这为实际工程中减小溶腔间距、提高芒硝矿采收率,同时确保溶腔的安全,提供了参考。
Water-soluble mining method has been widely used for salt deposits mining in recent years. Compared with conventional mining methods, water-soluble mining has many advantages, such as increasing the mining depth, expanding the recoverable reserves, improving the working conditions, increasing our labor productivity, reducing the environmental pollution and so on. As the growing global energy crisis, water-soluble mining in cavity is also more and more used for the underground storage of national strategies energy. This set of views, which relies on Jiangsu Hongze Zhao Ji Glauber's salt mining project, is studying the stability of Glauber's water-soluble mining in cavity by making the physical and mechanical properties experiments and the numerical simulation. The specific researching is as follows:
     ①Describe the basic principle of water-soluble mining on the synthesis of domestic and foreign research. Summary the reasons which affect the stability of underground caverns and salt cavern and select a few specific factors that affect the stability to conduct the numerical simulation.
     ②Get the original rock samples, which are located at the seam and the concave roof and floor, for tensile, uniaxial compression and triaxial compression tests to obtain Glauber's salt and its roof and floor parameters of physical and mechanical properties of rocks from Jiangsu Hongze Zhao Glauber's salt mining area. And this provides the basis for selection of the following the numerical analysis and calculation parameters of the rock constitutive model.
     ③According to the actual geological mining conditions, combined with tests of the physical and mechanical parameters ,we make use of the ANSYS program to establish a single Glauber's salt cavern numerical model ,which is for the purpose of the three-dimensional numerical simulation of the stability of cavity while the Glauber's water-soluble mining.We simulate Glauber's salt caverns which use the Water-soluble mining method under different Cross-height ratio, different water pressure, different lateral pressure coefficients. We sum up the law of factors which affect the overall stability of caverns by coMParing the changes in various conditions, the displacement, stress and the plastic zone changes of surrounding rock caverns.
     ④Also we established two-cavern model for the research of the reasonable distance of the double Glauber's salt solution mining caverns. We obtain the reasonable cavern spacing relying engineering by coMParing all factors which affect the stability of surrounding rock and pillar under different spacings caverns after excavation. Combined with the changes of inside pressure, what we get in the meanwhile is that increasing the water pressure is good for the overall stability of double dissolved cavity. This provides a way to try, which could not only increase the recovery ratio of greater Glauber's salt but also reduce the cavern spacing while ensuring the safety of caverns.
引文
[1]王清明著.盐类矿床水溶开采[M].北京:化学工业出版社,2003.
    [2]林元雄著.盐类水溶采矿技术[M].成都:四川人民出版社,1990.
    [3] Ph.Cosenza,M.Ghoreychi,B.Bazargan-Sabet,G.de Marsily . In situ rock salt Permeability measurement for long term safety assessment of storage[J]. Int. J .Rock Mech.&Min. Sci, 1999,36:509-526.
    [4] Ph.Cosenza,M.Ghoreychi.Effects of very low permeability on the operation period evolution of a storage cavern in rock salt[J]. Int. J .Rock Mech&Min. Sci,1999,36:527-533.
    [5] K.Staudtmeister; R.B.Rokahr. Rock Mechanical Design of Storage Caverns For Natural Gas in Rock Salt Mass[J]. Int. J .Rock Mech&Min. Sci, 1997,34:3-4.
    [6]梁卫国,赵阳升.盐类矿床水溶开采机理分析[J].太原理工大学学报,2002,33(3):234-237
    [7] T.W.Pfeifle, N.S.Brodsky, D.E.Munson. Experimental Determination of the Relationship Between Permeability and Microfracture-Induced Damage in Bedded Salt [J]. Int. J .rock Mech&Min.Sci, 1998,35:4-5.
    [8] Dusseault.M, Davidson.B, Santamarina.J.C.Potential for Salt Solution Cavern Placement of Engineered Radioactive Wastes[A]. Proceedings of International Conference on Deep Geological Disposal of Radioactive Waste[C],Winnipeg,Canada:631-639.
    [9] J.C.Stormont.Conduct and Interpretation of Gas Permeability Measurements in Rock Salt [J]. Int. J .Rock Mech&Min.Sci, 1997,34:3-4.
    [10] Borns D.J,Stormont J.C.The Delineation of the Disturbed Rock Zone Surrounding Excavations in Salt[C]. Proceeding of the 32nd US Symposium on Rock Mechanics,West Virginia University,1989:353-360.
    [11] Stormont J.C, Howard C.L., Daemen J.J.K.Changes in Rock Salt Permeability Due to Nearby Excavation[C]. Proceedings of the 32nd US Symposium on Rock Mechanics,University of the Oklahoma,1991:899-907.
    [12] Miclen PC.A brief history of Salt mining in Romania[C]. 8th world Salt symposium,Vol 1&2 2000.
    [13]杨进.盐岩溶腔—极有前途的特殊固体废物最终处置场所[J].武汉化工学院学报,1994,16(3):40-43.
    [14]徐素国.岩盐矿床油气储库建造的基础研究[D].太原理工大学,2001.
    [15]刘保县,姜德义,刘新荣.岩盐溶腔顶板稳定性分析及其控制[J].重庆大学学报,2007,30(3):133-135.
    [16]重庆大学.提高复杂条件下盐类矿床水溶开采采收率及溶腔后续利用关键技术研究[R].
    [17]姜德义.岩盐溶腔稳定性及失稳控制研究[D].重庆大学,2001.
    [18]张永康,范广勤.充分发挥资源优势,大力开发岩盐矿产[J].江苏地质, 1996,20(4):193-198.
    [19] Luxkh.Some New aspects on the Safety proof for waste disposal in salt mines[C]. Ninth international congress on ROEK Mechanics,Vol.1&2 1999.
    [20] Hunsche U&Albrecht. H.Results of true tri-axial strength tests on rock salt[J]. Engineering Fracture mechanics,1990,35(4/5):867-877.
    [21] Werner Skrotzki.An estimate of the brittle to ductile transition in salt [A].Langer, The mechanical behavior of salt proceedings of the first conference [C]. Clausthal, trans tech publications,1984:381-388.
    [22] Hunsche U.Determination of the dilatancy boundary and damage up to failure for four types of rock salt at different stress geometries[A].Langer,The mechanical behavior of salt proceedings of the second conference[C]. Clausthal,trans tech publications,1996:163-174.
    [23] Hunsche U.Fracture experiments on cubic rock salt samples[A].Langer,The mechanical Behavior of salt proceedings of the first conference[C]. Clausthal, Trans Tech publications,1984:169-179.
    [24] L.W Farmer and M. J. Gilbert. Dependent strength reduction of rock salt [C]. The first Conference on the Mechanical Behavior of Salt Trans Tech publications,1984:4-18.
    [25]周永胜,何荣昌.地壳岩石变形行为及温压条件[J].地震地质,2000,22(2):167-178.
    [26]桑祖南,周永胜等.辉长岩脆–塑性转化及其影响因素的高温高压实验研究[J].地质力学学报,2001,7(2):131-139.
    [27] Hunsche, U. Determination of the dilatancy boundary and damage up to failure for four types of rock salt at different stress geometries[C]. The Mechanical Behavior of Salt Proc. 4th Conf. Eds. P. Hardy, B. Ladanyi, and M. Langer. Trans Tech Publ., Clausthal- Zellerfeld 1996:163-174.
    [28] T.Popp, O.Schulze & H.Kern.Permeation and development of dilatancy and permeability in rock salt[C]. 5th conference on the mechanical behavior of salt, Mecasalt V; Bucharest, August, 1999:9-11,.
    [29] U. Hunsche & O. Schulze. Measurement and Calculation of the Evolution of Dilatancy and Permeability in rock salt, Proc.3[J]. Workshop fiber Kluftaquifere, Gekoppelte Prozesse. Hannover, Nov.2000.
    [30] Cristescu, N. Evolutive damage in rock salt. Mechanical Behavior of salt[C]. Proc.of the 4th Conf. Eds.P. Habib, H.R. Hardy, B. Ladanyi,and M. Langer. Trans Tech Publ., Clausthal-Zellerfeld (in press). 1996:131-142.
    [31] Cristescu, N. and Paraschiv, I. Creep and creep damage around large rectangular-likecaverns[J]. Mechanics of Cohesive-FrictionalMaterials.,1996,(1):165-197.
    [32]于学馥.轴变论[M].北京:冶金工业出版社,1960.
    [33]钱鸣高.采场围岩控制理论与实践[J].矿山压力顶板管理, 1999,3(4):12-15.
    [34]剑万禧.巷道围岩稳定性的判据及岩石分类[J].工程地质学报, 1999,7(1):20-24.
    [35]白明洲,王家鼎.地下洞室中裂隙岩体围岩稳定法研究—模糊信息化处理[J].成都理工学报, 1999,26(3):291-294.
    [36]吴洪阎.采场围岩稳定性的神经网络控制[J].东北煤技术, 1999,(4):17-21.
    [37]平瑞芳.论隧道围岩稳定性及其可控制性[J].铁道学报, 1996,18(4):82-88.
    [38]杨朝辉,刘浩君.地下工程围岩稳定性分类的人工神经网络模型[J].四川联合大学学报, 1999,3(4):66-72.
    [39]李庶林,毛建华.基于岩体声发射参数的竖井围岩稳定性分析[J].中国有色金属学报, 1998,8(S2):753-757.
    [40]冯玉国.灰色优化理论模型在地下工程围岩稳定性分析中的应用[J].岩土工程学报, 1996,18(3):62-66.
    [41]宋振骐等.用矿山压力控制[M].徐州:中国矿业大学出版社,1988.
    [42]蒋金泉等.采场围岩应力与运动[M].北京:煤炭工业出版社,1999.
    [43]杨更社.我国岩石力学的研究现状及其进展[J].西安矿业学院学报, 1999,19(S):5-11.
    [44]任德惠.井工开采矿山压力与控制[M].重庆:重庆大学出版社,1990.
    [45]于学馥等.地下工程围岩稳定性分析[M].北京:煤炭工业出版社,1983.
    [46]李通林等.矿山岩石力学[M].重庆:重庆大学出版社,1990.
    [47] K.Staudtmeister;R.B.Rokahr.Rock Mechanical Design of Storage Caverns For Natural Gas in Rock Salt Mass[J]. Int. J .Rock Mech&Min.Sci, 1997,34:3-4.
    [48] B.Lemieux,B.Davidson,M.B.Dusseault.Mechanical Behavior of WasteBlends for Salt Cavern Disposal[J]. Int. J .Rock Mech&Min.Sci, 1998,35:4-5.
    [49] H.-J.Alheid,M.Knecht,R.Lüdeling. Investigation of the long-term Development of Damaged Zones Around underground Openings in Rock Salt[J]. Int. J .Rock Mech&Min.Sci,1998,35:4-5.
    [50]杨春和,梁卫国,魏东吼等.中国盐岩能源地下储存可行性研究[J].岩盐力学与工程学报,2005,24(24):4409-4417.
    [51]余海龙.岩盐溶腔稳定性基础理论及其工程应用研究[D].重庆大学博士论文,1996.
    [52]姜德义.岩盐溶腔稳定性及失稳控制研究[D].博士学位论文,重庆大学,2001.
    [53]刘新荣,姜德义,谭晓慧.岩盐溶腔覆岩沉降和变形规律的研究[J].化工矿物与加工, 1999,(7):21-25.
    [54]任松.岩盐水溶开采沉陷机理及预测模型研究[D].博士学位论文,重庆大学,2005.
    [55]国际岩石力学学会实验和现场试验标准化委员会.岩石力学实验建议方法(上集)[M].郑雨天,傅冰骏,卢世宗,等译校.北京:煤炭工业出版社,1982.
    [56] E.Tuncay, R.Ulusay. Relation between Kaiser effect levels and pre-stresses applied in the laboratory[J]. Int. J .Rock Mech&Min.Sci, 2008,45:524-537
    [57] D.J.Holcomb, L.S.Costin. Damage in brittle materials: experimental methods. In: Lamb JP, editor[C]. Proceedings of the 10th U.S. National Congress of Applied Mechanics, 1987.
    [58] W.F.Brace, B.Paulding, C.Scholz. Dilatancy in the fracture of crystalline crocks [J]. J Geophys Res,1966,71(16):39-53.
    [59]陈惠发,A.F.萨里普著.弹性与塑性力学[M].北京:中国建筑工业出版社,2004.
    [60]于学馥等.岩石力学新概念与开挖结构优化设计[M].北京:科学出版社,1995.
    [61]王瑁成,劭敏.有限元基本理论和数值方法[M].北京:清华大学出版社,2003.
    [62]刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社.2002.
    [63]李围等.隧道及地下工程ANSYS实例分析[M].北京:中国水利水电出版社.2008.
    [64]工程地质勘察规范[M].重庆市建设委员会.2005.
    [65]杨春和,李银平,陈锋.层状岩盐力学理论与工程[M].北京:科学出版社.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700