用户名: 密码: 验证码:
不同水稻材料对光强、干旱和氮素的适应性筛选及品种差异生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上最重要的作物之一。随着水稻育种研究的两次绿色革命,水稻的群体光能利用率和光合效率都得到了提高,使水稻产量有了显著提高。但是在水稻育种中仍然存在着很多问题,如:抗性差、适应性不强等,这就极大地限制了水稻良种的推广。目前水稻对于单一环境胁迫的响应和适应的研究已经有很多的报道,并且一些研究结果在水稻适应性育种中起到了重要的指导作用,但是对多种环境适应性的联合筛选研究尚不多,而且已报道研究都是对于单一环境条件的离体条件下的研究结果,与可直接应用于大田条件下大量水稻材料的适应性筛选还有相当的距离。本文通过不同水稻材料对高、低光强、干旱、以及不同氮素水平的批量筛选,发现水稻材料在不同的环境条件下叶绿素、叶色以及根茎比等生长及生理指标对于其环境适应能力以及抗性有着很好的指示作用,具体表现如下:
     1、高、低光强筛选及可靠指标的确定:叶绿素含量下降程度与光氧化程度呈现负相关性,光氧化级别与叶绿素含量下降程度的相关系数为-0.609(p=0.000),Fv/Fm的下降程度与光氧化级别的相关系数为-0.282,均呈极显著负相关;大田叶绿素含量与人工遮阴处理前后干物质下降量的相关系数为-0.329,也存在着显著的正相关
     2、干旱筛选:按照不同萎蔫程度将水稻材料耐受干旱能力分为四级:1级为全株萎蔫,2级为叶片萎蔫,3级为叶片1/2萎蔫,4级为生长良好。同时按照复水后恢复情况将水稻的生长状况也分成4级:1级为全株死亡,2级为只有茎存活,3级为小于1/2叶面枯萎,4为生长良好。通过对大田条件下开花后生长的水稻材料叶片的SOD、POD、CAT活性以及MDA含量的测定发现大田条件下其各相关生理指标分型不明显。可见,水稻对干旱的响应是个复杂的过程,特别对于耐旱能力中等的材料,不同生育期的生长和生理指标有交叉,需要进一步的生理研究加以阐明。
     3、不同氮素浓度的筛选:通过对大量水稻材料的不同氮浓度处理(57.2mg/L114.3mg/L、228.6mg/L, NH4NO3),通过对根茎比、干物质重进行相关性和聚类分析将水稻材料分为6类。在6类中每个选取5个材料进行N-free处理,并在处理前后分别测定了SPAD、NRA.可溶蛋白含量及Rubisco含量等生理指标,结果显示不同环境氮浓度前期处理影响水稻在N-free处理下的响应,同时水稻的SPAD值与Rubisco含量和可溶蛋白含量有显著的相关性。
     总体而言,虽然不同的环境条件对水稻的影响是不同的,但是其对水稻生长和生理的影响有类似的表现,虽然没有筛选出对各种逆境都有明显广适性的水稻材料,但其中叶片的叶绿素含量、Fv/Fm以及Rubisco含量等指标可作为水稻对高低光强、干旱以及不同氮素适应性筛选的重要指标。本研究对不同水稻组合对不同逆境适应性的筛选有一定的参考意义。
With the twice green revolution of rice breeding which is the most important crop of the world, the production of rice has been improved notability by the enhancement of group utility rate of luminous energy and photosynthetic efficiency. But there are still many problems in rice breeding, such as:lack of resistance, weakness of adaptability, etc. It's a restriction for the extending of improved variety of rice seed. In one hand, there are lots of reports about researches of the tolerance and adaptability to different environment and some of the reports have been used in rice breeding, but the researches aren't useful in wild condition because they were taken in vitro. In another hand, there are less of the researches about tolerance and adaptability to total environment and the index about these researches. We found that the content of chlorophyll, leaf color(SPAD) and the ratio of root/shoot had a good prescription to tolerance and adaptability to total environment of rice by the selection of different of rice materials under different light, water and nitrogen condition in this research. The main results as follow:
     1. The index of selection of high and low light:there was a significant positive correlation with the degrees of photoinhibition between the decreases content of chlorophyll, Fv/Fm and the degrees of photoinhibition, the correlation coefficient of the decreases content of chlorophyll and the degrees of photoinhibition is-0.609(=0.000), the correlation coefficient of the decreases Fv/Fm and the degrees of photoinhibition is-0.282; there was a correlation(-0.329) between either the content of chlorophyll in the field condition or the changes of them and the decrease of dry weight after shading treatment, so the content of chlorophyll can be used as a parameter of shading and high light sensitivity.
     2. The selection of drought stress:the germination rate of rice has evident differentiation when treated with drought stress. In comparison with the germination rate of dry rice, we can make certain that the rice which germination rate exceeded 50% and grow well in both drought and wet conditions were high-anti-drought rice. By relativity analysis, R/S ratio in germination period was also a good screening index that has some relativity with germination rate. By clustering analysis, we could classify the different rice into six degrees on anti-drought ability.
     3. The selection under different nitrogen concentration:by different nitrogen concentration (57.2mg/L、114.3mg/L、228.6mg/L, NH4NO3) and N-free treated to hybrid rice materials, R/S ratio, dry weight were measured at the end of different nitrogen concentration treatment, after correlation and cluster analysis, the rice materials were clustered to 6 series according the different adaptability to nitrogen, then 5 of each series were chosen treated with N-free(no N in the solution) in order to illustrate the different response to N starvation of rice which is grown under different N concentration. SPAD, NRA, the content of Rubisco and protein were measured before and after N-free treatment. The results showed NRA, the content of Rubisco and protein showed that different environment N concentration can change the response of rice to N-free treatment:lower N concentration can enhance the adaptability of rice to N starvation and there were a significant correlation ship between SPAD either the content of Rubisco or protein.
     In conclusion, rice is influenced by environment at different way, but there are something similar in response in its growth and physiological change. In this research, we did not find a metarial, but all the content of chlorophyll, SPAD, Fv/Fm and the content of Rubisco can be used as index to the response of rice to high/low light, dry stress and nitrogen stress in rice wild condition breeding.
引文
1.陈薇,张德颐.植物组织中硝酸还原酶的提取、测定和纯化[J].植物生理学通讯,1980,16(4):45-49.4[13]
    2.陈温福,徐正进,张龙步.水稻超高产育种:从理论到实践[J].沈阳农业大学学报,2003,34(5):324-3271.[12].
    3.丁同泉,等.水分胁迫小麦SOD、MDA动态变化与抗旱性的关系[J].北京农学院学报,1995(1).39
    4.董钻,谢甫娣.土壤水分胁迫对大豆体内酶活性和膜透性的影响[J].大豆科学,1995(14).3 10d
    5.冯志立,冯玉龙,曹坤芳.光强对砂仁叶片光合作用光抑制及热耗散的影响[J].植物生态学报,2002,26(1):77-82.f[24]
    6.焦德茂,季本华.光氧化条件下两个水稻品种光合电子传递和光合酶活性的变化[J].作物学报,1996.22(1):43-48.j[19].
    7.黄高宝,张恩和,胡恒觉.不同玉米品种氮素营养效率差异的生态生理机制[J].植物营养与肥料学报.2001.7(3):293-297.1-20
    8.咎林森,等.干旱及对策.世界农业,1991,7:42~44 3-2
    9.蒋明义,等.水分胁迫与植物膜脂过氧化[J].西北农业大学学报,1991(2)3-11
    10.江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径[J].Chin J中国水稻科学,2002,16(3):261-264.4-22
    11.廖伏明.中国超级稻单季稻第2期目标提前一年实现[J].杂交水稻,2004,19(6):50.1-2
    12.刘军,江奕君,高云,等.华南广适性超级常规稻株型特点初探.[J],湖南农业科学,2005,(5),23-25.1-4
    13.吕川根,宗寿余,赵凌,等.两系法杂交稻两优培九结实率稳定性及温度的影响分析[J].中国水稻科学,2003,17(4):339-342.1-9
    14.李霞,严建民,季本华,等.光氧化和遮荫条件下水稻的光合生理特性的品种差异[J].作物学报,1999,25(3):301~308.1-10
    15.刘家尧,衣艳君,张承德,等.活体叶绿素荧光诱导动力学及其在植物抗盐生理研究中的应用[J].曲阜师范大学学报,1997,23(4):80-83.1-13
    16.林振武,陈敬祥.硝酸还原酶作为作物育种的生理生化指标研究[J].河北农业大学学报.1981.10(3):104-110.1-21
    17.刘灵,何若天.水分胁迫对玉米苗期膜损伤及有关酶活性的影响[J].广西农业大学学报,1995(3)3-13
    18.林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧歧化酶及膜脂过氧化作用的关系[J].植物学 报,1984(4).3-16
    19.陆建飞,丁艳锋,黄丕生.持续土壤水分胁迫对水稻生育与产量构成的影响[J].江苏农学院学报,1998,19(2):43~48
    20.穆平,等.水、旱稻根系性状与抗旱性相关分析及其QTL定位.科学通报,2003,48(20):162~1693-4
    21.朴钟泽,韩龙植,高熙宗。水稻不同基因型氮素利用效率差异[J].中国水稻科学,2003,17(3):233-238 4-3
    22.朴钟泽 韩龙植 高熙宗 张建明 陆家安 李培德 水稻干物质量和氮素利用效率性状的配合力分析 中国水稻科学2005 19(6):527-532 4-21
    23.千茅雁,等.水分胁迫对玉米保护酶系活力及膜系统结构的影响[J].华北农学报,1995(2) 3-12
    24.任万军,杨文钰等.弱光对水稻籽粒生长和品质的影响[J],作物学报.2003,29(5),785-790.1-6 2-8
    25.邵红宁,傅春霞,曹显祖.水稻叶片光氧化敏感与活性氧清除系统的关系[J].作物学报,1998.24(5):577-582.1-14
    26.山仑.植物水分亏缺和半干旱地区农业生产中的植物水分问题.植物生理生化研究进展,1981,(3):114~119 3-2
    27.沈宿瑛,等.干旱对玉米叶中超氧化物歧化酶和过氧化氢酶活性的影响[J].沈阳农业大学学报,1992(4).3-13
    28.涂起红,石庆华,赵华春.水稻超高产育种研究概况[J].江西农业大学学报,2000,12(4):55-591.1-15
    29.屠曾平.水稻光合特性研究与高光效育种[J].中国农业科学.1997.30(3):28-35.
    30.田纪春等.氮素追肥后移对小麦子粒产量和旗叶光合特性的影响[J].中国农业科学.2001.34(1):1-4
    31.唐绍忠,新的农业科技革命与二十一世纪我国节水农业的发展.干旱地区农业研究,1998,16(1):11~17 3-3
    32.王文明.水稻超高产育种的现状与展望.[J]西南农业学报,1998,(育种和栽培专辑):7-121.1-11
    33.吴良欢,陶勤南.吴良欢,陶勤南.水稻叶绿素计诊断追氮法研究.浙江农业大学学报,1999,25(2):135-138。2-14
    34.王贺正,李艳.水稻苗期抗旱性筛选的指标.作物学报,2007,33(9),1523~1529.3-17
    35.谢华安.中国种植面积最大的水稻良种“汕优63”光合特性与光能利用率[J].福建省农科院学报,1997,12(2):1~5.1-7
    36.袁隆平.杂交水稻超高产育种[J].杂交水稻,1997,12(6):1-3.1-1
    37.徐富贤,熊洪,洪松,等.水稻本田分蘖期受旱对其生育影响的研究[J].四川农业大学学 报,2000,18(1):28~30 3-5
    38.易良俊,陈立云。水稻超高产育种研究[J].湖南农业科学,2006, (1),20-23.1-16
    39.张桂莲,陈立云,雷东阳等.水稻耐热性研究进展[J],杂交水稻,2005,20(1):1-5.1-3
    40.郑志广.光温条件对水稻结实及干物质生产的影响[J],北京农学院学报.2003,18(1),13-16.1-5
    41.张建新.水稻的光合特性与高产育种途径探讨[J].福建稻麦科技.1998。16(4):7-9.1-17
    42.张福锁,环境胁迫与植物营养[M].北京:北京农业大学出版社.1993:353-368.1-22
    43.张庆费,夏檑,钱又宇。城市绿化植物耐荫性的诊断指标体系及其应用[J]。中国园林,2000:16,6,93-95 2-12
    44.张玉屏,李金才,黄义德,等.水分胁迫对水稻根系生长部分和部分生理特性的影响[J].安徽农业大学,2001,29(1):58~59 3-7
    45.周利民,罗怀彬,古璇清.水稻水分生产函数模型试验研究[J],广东水利水电,2002(2):22~24 3-8
    46.张英昔,何武权,韩健.水分胁迫对玉米生理生态特性的影响[J].西北水资源与水工程,1999(3).3-14
    47.朱杭生,黄丕生.土壤水分胁迫与水稻活性氧代谢[J].南京农业大学学报,1994(2) 3-15
    48. Arnon DI. Copper enzymes in isolated chloroplast:polyphenoloxydase in beta vulgaris[J]. Plant Physiol.,1949,24:1~15.2-7
    49. Alboresi A, Gestin C. Nitrate, a signal relieving seed dormancy in Arabidopsis[J]. Plant Cell Environ,2005,28:500-512.4-17
    50. Chow WS, Adamson HY, Anderson JM. Photosynthetic acclimation of Tradescantia albiflora to growth irradiance:lack of adjustment of light harvesting components and its consequences[J]. Physiologia Planetarium,1991,81:175-182.2-9
    51. Brodbent F E, Detta S K. Measurement of nitrogen utilization efficiency in rice genotypes [J]. Argon J,1987,79:786-791.4-4
    52. Boardman N.K., Comparative of photosynthesis of sun and shade plants. Annual review of plant physiology.1997,28:355-377.1-28
    53. Bolhar HR, Long SP, Baker NR, et al. Chlorophyll fluorescence of as a probe of the photosynthetic competence of leaves in the field:a review of current instrumentation[J].Functional Ecology,1989, 3-497.1-34
    54. Blankenship R E. Molecular mechanisms of photosynthesis [M]. London:Blackwell Science Ltd, 2002.245~252 2-5
    55. Broadbent FE, EV Laureles. Measurement of nitrogen utilization efficiency in rice genotypes[J]. Agronomy J,1987,79:786-791.4-9
    56. De Datta S K, Broadbent F E. Nitrogen-use efficiency of 24 rice genotypes on N-deficient Soil[J]. Field Crops Research,1990,23:81-92.4-10
    57. Elena A, Vidal and Rodrigo A, Gutierrez. A systems view of nitrogen nutrient and metabolite responses in Arabidopsis[J]. Current Opinion in Plant Biology,2008,11:1-9.4-5
    58. He J., Chee C. W., Goh C. J. "Photo inhibition" of Heliconia under natural tropic condition:the importance of leaf orientation for light interception and leaf temperature[J].Plant cell and Environment.1996,19(11):1238-1248.1-29
    59. Inthapanya P, Sipaseuth S. Genotype differences in nutrient uptake and utilization for grain yield production of rain fed lowland rice under fertilized and non-fertilized conditions[J]. Field Crops Res,2000,65:57-68.4-1
    60. Kooten V.0. Snel F.H. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynthesis Res,1990,25:147—150.1-30
    61. Krause G.H. Weiss E. Chlorophyll fluorescence as a tool in plant physiology interpretation of fluorescence signals[J].Photosynthesis Res,1984,5:139—157.1-33
    62. Koutroubas S D, Ntanos D A. Genotypic differences for grain yield and nitrogen utilization in Indca and Japonica rice under Mediterranean conditions[J]. Field Crops Res,2003,83: 251-260 4-2
    63. JIANG D, XIAO W, DING P, et. A Study on the Adaptability of Fourteen Types of Shade-tolerance Plants in the Special Space in Lanzhou City [J]. Journal of Northwest Agricuhural and Forestry University,2007:2,28-32 2-13
    64. John Markwell, John C. Osterman, Jennifer L. Mitchell. Calibration of the Minolta SPAD-502 leaf chlorophyll meter[J]. Photosynthesis Research,1995,46:467-472.4-14
    65. Laroche J, Mortain BA, Bennett J, et al. Regulation of LHC Ⅱ mRNA levels during photoxidation in Dunaliela tertiolcta(Chlorohycea)[A]. Baltschefsky M. et. Current Research in Photosynthesis [M].Dordrecht-Boston—London:Kluwer Academic Publ,1990.357-360.2-10
    66. Lawlor DW. Carbon and nitrogen assimilation in relation to yield:mechanisms are the key to understanding production systems[J]. Journal of Experimental Botany,2002,53(370):773-787.4-6
    67. Li X and Jiao DM. Physiological basis of photosynthetic tolerance to photooxidation and shading in rice[J],2000, Acta Botanica Sinica.42(12):1271-1277 2-11
    68. Li X, Jiao DM,Liu YL, Huang XQ.2002, Chlorophyll fluorescence and membrane lipid peroxidation in the flag leaves of different high yield rice variety at later stage of development under natural condition[J]. Acta Botanica Sinica,44(4):413-421 2-15
    69. Manpp C. Crop scientist seek a new zevolunan [J] Science.1999,25(3):310-3141 1-26
    70. Michel B.E. and Kaufmann M.R.1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol.51-914,1973.2-19
    71. Makino A, Mae T. Ohira K (1986). Colorimetric measurement of protein stained with Coomassie Brilliant Blue R on sodium dodecylsulfate-polyacrylamide gel electrophoresis by eluting with form amide[J]. Agric Bio Chem,50(7):1911-1912 4-12
    72. Osaki M., Shinano T., Tadano T. Effect of nitrogen application on the accumulation of ribulose-1, 5-bisphophate carboxynase/oxygenase andchlorophyll in several field crops. Soil Soi. Plant Nutr, 1993,39(3):427-436.1-27
    73. Olgren E. Evaluation of chlorophyll fluorescence as a probe for drought stress in willow leaves[J].Plant Physiology,1990,93:1280-1285.1-32
    74. Paul E. Verslues, Manu Agarwal.2005 Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal, (2006) 45, 523-539.2-20
    75. Piao Z Z, Cho Y I, Koh H J. Inheritance of physiological nitrogen use efficiency and relationship among its associated characteristic rice[J]. Korean J Breeding,2001.33(4):332-337.4-8
    76. Samonte SOBP, LT Wilson, JS Lales. Nitrogen utilization efficiency:relationship with grain yield, grain protein, and yield-related traits in rice[J]. Agronomy J.2006,98:68-76.4-7
    77. Shallgguall ZP, Shao M.A., Dychnarls J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat [J].Plant Physiol,2000, 156:46-51.1-35
    78. Stitt M, Muller C. Steps towards an integrated view of nitrogen metabolism[J]. Exp Bot,2002, 53:959-970.4-18
    79. Scheible WR, Morcuende R. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen[J]. Plant Physiol,2004,136:2483-2499.2-23
    80. Tian Qiuying,Mi Guohui. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots [J]. Journal of Plant Physiology,2008,165,942-951.4-20
    81. Van der Mescht A., de Ronde J. A Chlorophyll fluorescence and chlorophyll content as a mea sure of drought tolerance in potato [J]. South African Journal of Science,1999,95(99):407-413.1-31
    82. Wu P, Tao Q N. Genotype response and selection pressure on nitrogen-use efficiency in rice under different nitrogen regions [J]. Plant Nutrition,1995,18 (3):450-487.4-11
    83. Walch-Liu P, Neumann G, Bangerth F, Engels C. Rapid effects of nitrogen form on leaf morphogenesis in tobacco [J]. Exp Bot,2000,51:227-237.4-16
    84. Yin J., Peng S. He Q., et.al. Comparison of high-yield rice in tropical and subtropical environments: Determments of grain and dry matter yields [J]. FuldCropsRes,1998,57:71-831 1-25
    85. Zhang H, Forde BG. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J]. Science 1998,279:407-409.4-15
    86. Zhang H, Rong H, Pilbeam D. Signaling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana[J]. Exp Bot,2007,58:2329-2338.4-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700