用户名: 密码: 验证码:
冲击式水轮机内部流动数值模拟及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击式水轮机试验表明:真机效率均低于模型效率,这种反常的趋势容易引起从模型试验结果预测真机性能的风险性。因此迄今为止,IEC 模型试验规范并不考虑冲击式水轮机中的比尺效应对模型和真机之间的性能换算的影响,其主要原因是对冲击式水轮机复杂的内部流动机理缺乏深入了解。而且,冲击式水轮机流动存在着复杂的比尺效应,尤其是由射流衰减和射流干涉带来的负比尺效应为流动研究带来了复杂性。因此,本文致力于在试验和数值计算方面对冲击式水轮机各种内部流动细节及其能量转化性能的研究,以探讨冲击式水轮机流动的比尺效应和性能换算特征。
    本文在首先介绍了冲击式水轮机内部流动中管内流、自由射流以及水斗绕流等方面的研究现状和进展。在分析转轮的基本性能、各效率与水轮机效率之间的关系基础上,探讨了冲击式水轮机内部流动比尺效应的产生根源、作用机理,尤其是负比尺效应与射流干涉和性能偏移之间的关系,并提出了新的性能换算法则思想。
    冲击式水轮机内部流动包括了定常、单相的管内流和3 维非定常气液二相流动。喷嘴管的水力形状和自由射流的能量质量直接关系到水轮机的整体性能,为了探明其中的流动特征和能量特性,本文通过对喷嘴管流场的数值解析,分析了支持筋板对管内流以及喷嘴出口流动的影响; 通过对自由射流的数值计算,详细分析了不同开度下喷嘴出口的流动特征、半自由射流的成因和能量特性,以及自由射流的缩流位置、直径和能量,并预测了自由射流膨胀率。
    随着冲击式转轮旋转,水斗不断切入从喷嘴射出的圆柱形断面射流,因此水斗的入射参数(流量、落点、入射角、切入速度等)也随着转轮的旋转发生变化。本文采用了动画解析法将非定常流动按照时间顺序,离散成动画单元,对每个单元通过拉格朗日法对流体质点的加速度积分,求得了各个动画单元水斗内非定常自由流动的流速等分布状态,并按照一定的速度将其连续成动态影像来模拟水斗非定常流动。本文在进一步完善非定常水斗内部流动数值计算动画解析法的基础上,对水斗内部流动进行了模拟,并对不同型式的水斗流动和性能进行预测和评价。
    由于冲击式水轮机的负比尺效应源于自自由射流本身的能量衰减以及水斗缺口出流流量的增加,本文从自由射流的能量衰减出发来探讨水轮机能量转化的特征和机理,首先引入描述射流衰减特征参数-自由射流膨胀率,并利用图像分析的方法对其进行了试验测量。通过数值计算分析分析射流膨胀率对水斗内部流动特征、能量转化
Many tests of Pelton turbine illustrated that the efficiency of prototype is lower than that of model turbine, especially under off-design heads and larger discharge. This characteristic of Pelton turbine is apt to take the risk to predict the hydraulic performance of prototype from model. So far, the current IEC codes for the method of model tests specify that Pelton turbines have no scale effect between the model and its prototype, because the complicated flow mechanism of Pelton turbine has not been fully understood. Moreover, the scale effects especially the negative scale effect also accentuate the complexity of the research for Pelton turbine. This paper is dedicated to the experimental and numerical research of detailed internal flow of Pelton turbine and it performance of energy conversion to specify the characters of the scale effect and the formulas of energy conversion.
    In the beginning of this paper, the current status and achievements in the research field of Pelton turbine are introduced respectively by means of pipe flow, free jet and bucket flow. Based on the discussion of basic performance and its relation with various efficiencies, the paper also clarifies the cause of the negative effect, its functional mechanism and the interaction between jet interference and hydraulic deviation in Pelton turbine. The new ideas for formula of energy conversion are also put forwards accordingly.
    The internal flow of Pelton turbine is consisted of the one phase steady pipe flow and unsteady free surface flow such as free jet and bucket flow. The hydraulic geometry of nozzle pipe has the direct influence to the energy consistency of free jet, consequently the whole performance of the turbine. In order to reveal its fluid and energy features, this paper numerically analyzes the flow in the nozzle pipe and the effect of rod-holder on the flow distribution at the nozzle throat. Besides, the free jet flow is also simulated by CFD method. The flow characters at nozzle exit and the cause of semi-free jet are discussed as well. According to the computed result, the position/diameter of contraction jet and the enlargement rate of jet diameter are predicted under different needle strokes.
    In Pelton turbine, the buckets periodically penetrate into the free jet with constant rotating speed. Therefore the inlet parameters such as discharge, location, direction and velocity are also changed with the rotating of bucket. In this paper, An animated cartoon
    method is applied to analyze unsteady internal flow of Pelton bucket. This method shows how to discretize the real unsteady free sheet flow by a sequence of gradual time shifting frames. In every frames, the distribution of the free water sheet flow in buckets is computed Lagrangially by integrating the various acceleration on the flow particles, and the internal flow is analyzed. This paper improves the algorithm of the animated cartoon method and implements the numerical simulation of bucket flow for different bucket type to predict the flow feature and their hydraulic performance. The negative scale effect in Pelton turbine results in the energy decay of free jet and the discharge increase of spilt flow from bucket cutout. Thus this paper also discusses the energy conversion characteristic in the aspect of the decay of free jet. Firstly the parameter to evaluate the decay of free jet, enlargement rate of jet diameters is introduced. The enlargement rates for various jet under different opening are also experimentally measured through photographic analysis. This paper also presents the comparative numerical analysis of the flow in buckets under the different enlarging rate of jet to clear the effect of enragement rate on the bucket flow. Furthermore, the relation between jet interference and enragement rate is also specified numerically. This paper also involves the model test of Pelton turbine. In the model test, the energy test, characteristic of runaway test and the flow pattern observation are carried out. The model tests are also studied to specify the effect configuration of runner on the variation of efficiency of the whole turbine. The results of model test indicate that the runner has advanced hydraulic performance. According to the experimental results, the runner performance is numerically predicted, and the flow pattern inside the bucket is simulated. The comparative result with model test proves the correction of the computational method.
引文
[1] K,希罗斯. 可持续发展的工具-水电. 水利水电快报EWRHI,2003,Vol.24 (9):15-19
    [2] 沙亦强. 水电大国的隐患-关于我国的水电开发与反思. 中国电力企业管理,2004(7)
    [3] 周金昭. 发展我国小水电问题的探讨. 福建能源开发与节约,2003(2):26-28
    [4] James Webster. 高比转速冲击式水轮机. 东方电机股份有限公司. 冲击式水轮机译文集,1999,(18):7-14
    [5] 马锐,宫游,窦纯玉. 冲击式水轮机设计的探讨和发展趋势. 大电机技术,2002(4):49-52
    [6] H. Keck. 冲击式水轮机的改进—增加效益与更换转轮的比较. 水利水电快报EWRHI,2001,Vol.22(11):1-3
    [7] 刘宇华,马锐. 高水头冲击式水轮机的设计与发展趋势的探讨. 西北水电,2003(2):27-29
    [8] H. Brekke A review on Turbine Design. Proceedings of the 22th IAHR Symposium, Lausanne, Switzerland, 2002
    [9] H. Brekke. 冲击式水轮机设计及布置的新动态. 东方电机股份有限公司. 冲击式水轮机译文集,1999,(18):37-41
    [10] 童建栋,冲击式水轮机. 杭州:河海大学出版社,1991
    [11] 张超,陈武. 关于我国2050 年水电能源发展战略的思考. 北京理工大学学报(社会科学版),2002,Vol.4(51):63-66
    [12] IEC 60193:Hydraulic turbines, storage pumps and pump-turbines—Model acceptance tests.1997
    [13] JIS B 8103 : Methods for Model Tests of Hydraulic Turbines and Reversible Pump-Turbine. Japanese Standards Association, 1989
    [14] Kurokawa. J, Kubota. T. Performance Conversion Method for Hydraulic Turbines and Pump-Turbines. JSME-S008, 1999
    [15] Raabe, J. The Negative Efficiency Scale Effect in Pelton Turbines and its Causes. IAHR-Tokyo 1980:689
    [16] H. Grein. Efficiency scale effects in Pelton turbines. IAHR-Montreal 1986:76
    [17] Kubota. T, Nakanish. Y. Classification of flow in pelton turbines for study of scale effect, Proceedings of 17th IAHR Symposium, Beijing, 1994
    [18] Kubota. T. Observation of Jet Interference in 6-nozzle Pelton Turbine. Journal of Hydraulic Research, Vol.27(6):753
    [19] Nakanish. Y,Kubota. T. Scale Effect of Jet Interference in Multinozzle Pelton Turbines. IAHR-Valencia 1996:333
    [20] Kubota. T, Han. FQ. Performance conversion considering scale effect for Pelton turbines. Proceedings of 19th IAHR Symposium, Singapore, 1998
    [21] Etienne Parkinson. Developments in numerical flow simulations applied to pelton turbines. CFX Update No.23
    [22] Etienne Parkinson. Hydraulic Pelton turbine developments. VA TECH Hydro SA. No.22
    [23] H. Grein,H. Keck. Advanced technology in layout, design and manufacturing of pelton turbines, Proc. of 14th IAHR Symposium, Trondheim, 1988.
    [24] M. GUILBAUD, Y. TILLET. Compte-rendus des essays de sondage de pression totale d’un jet d’injecteur sur l’une des branches d’une culotte a deux jets. Rapport interne C.E.A.T. Poitiers, contrat NEYRPIC, 1985
    [25] M. Sick, H. Keck, E. Parkinson et al. New challenge in Pelton research. Hydro 2000. Bern, Switzerland
    [26] H. Brekke. A review of turbine design, Proceedings of 21st IAHR Symposium, Lausanne, Sept. 2002.
    [27] Zh.Zhang, E.Parkinson, Str?mungsuntersuchungen am Freistrahl der Pelton-Turbine und Anpassen des LDA-Verfahrens. Proceedings of the GALA-Tagung. Winterthur, 2001
    [28] Zh.Zhang, E.Parkinson. LDA application and the dual measurement method in experimental investigations of the free surface jet at a model nozzle of a Pelton turbine. Proceedings of the 11th Int. Symposium on Applications of Laser techniques to Fluid Mechanics, Lisbon, 2002
    [29] M. GUILBAUD, J B. HOUDELINE, R. PHILIBERT. Study of the flow in the various sections of a Pelton turbine. Proceedings of 16th IAHR Symposium, Sao Paulo, 1992
    [30] E. Parkinson, R. Lestriez, L. Chapuis. Flow calculations in Pelton turbines, part 1: repartitors and injector numerical analysis. Proceedings of 19th IAHR Symposium, Singapore, 1998
    [31] Etienne PARKINSON, Hélène GARCIN, Gérald VULLIOUD. Experimental And Numerical Investigations Of The Free Jet Flow At A Model Nozzle Of A Pelton Turbine. Proceedings of Hydraulic Machinery and Systems 21st IAHR Symposium, Lausanne, 2002
    [32] P. Parkinson, H. Garcin, C. Bissel et al. Description of Pelton flow patterns with computational flow simulation. Hydro 2000: Development, Management, Performances. Kiris, 2002
    [33] Mirjam Sick, Marc Schindler, Peter Drtina et al. Numerical and Experimental analyses of Pelton turbine flow Part 1: Distributor and injector. Proceedings of 20th IAHR Symposium, Charlotte, 2000
    [34] Filip Sadlo, Ronald Peikert, Etienne Parkinson et al. Vorticity Based Flow Analysis and Visualization for Pelton Turbine Design Optimization. Physical Sciences and Engineering, J-2, 2004
    [35] D. SUJUDI, R.HAIMES. Identification of Swirling Flow in3D Vector Fields, Tech. Report, Dept. of Aeronautics and Astronautics, MIT, Cambridge, MA, 1995
    [36] H. MIURA, S.KIDA. Identification of Tubular Vortices in Turbulence. Journal of the Physical Society of Japan, 1997, Vol. 66(5): 1331-1334
    [37] G.H.COTTET, P.D.KOUMOUTSAKOS. Vortex Methods: Theory and Practice, Cambridge University Press, 2000
    [38] HAIMES, R. AND KENWRIGHT, D. On the Velocity Gradient Tensor and Fluid Feature Extraction. AIAA 14th Computational Fluid Dynamics Conference, Paper 99-3288,1999
    [39] Christopher K.W Tam, Nikolai N. Pastouchenko, K. Viswanathan. Fine scale turbulence noise from hot jets. 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004: 3347-3357
    [40] Yang Yongyin, Li Gensheng. Experiment on cutting with high-pressure water jet. Journal of the University of Petroleum China, Vol. 27(1): 36-37 + 48
    [41] H. Kumano, H. Soyama, M. Saka. Evaluation of the damage for gettering in silicon wafer introduced by a cavitating jet. Proceedings of the Fifth International Conference on Fracture and Strength of Solids (FEOFS2003): Second International Conference on Physics and Chemistry, 2004: 1403-1408
    [42] S. Taherzadeh, Li, K.M. The turbulent jet noise near an impedance surface. Journal of Sound and Vibration, 1997,Vol. 208 (3): 491-496
    [43] M. Hood, G.C. Knight, E.D. Thimons. Review of jet assisted rock cutting. Journal of Engineering for Industry, Transactions of the ASME, 1992,Vol. 114 (2): 196-206
    [44] Norton, Lord Kings. Beginnings of jet propulsion. Aeronautical Journal, 1999, Vol.103 (1022): 200-209
    [45] J.H. Friddell, M.E. Franke. Confined jet thrust vector control nozzle studies. Journal of Propulsion and Power, 1992, Vol.8 (6): 1239-1244
    [46] K. Yanaida, A. Ohashi. Flow characteristics of water jet in air. Proceedings of 4th Symposium on Jet Cutting Tech. U.K. 1978, A3: 39-42
    [47] R. Thomann. Tests with nozzles for Pelton turbines under natural operation heads. ESCHER WYSS NEWS. Sept. 1928:146-150
    [48] J.W. Hoyt, J.T. Taylor. Effect of nozzle boundary layer on water jets discharging in air. Symposium of ASME, FED, 1985,Vol. 31: 93-96
    [49] N. Rajaratnam. An experimental study of very high velocity circular water jet in air. Journal of Hydraulic Research, 1994, Vol. 23 (3): 461-467
    [50] Avellan, F., Dupont, PH., Kvicinsky, S.et al. Flow Calculations in Pelton Turbine. Part2: Free Surface Flows, Proceedings of 19th I.A.H.R. Symposium on Hydraulic Machinery and Cavitation, Singapore, 1998, vol.1: 294-304.
    [51] Berntsen G, Brekke H, Haugen J,. Analysis of the free surface non-stationary flow in a Pelton turbine. Hydro 2001, Opportunities and Challenges, Riva del Garda, Italy
    [52] Zh. Zhang, K. Eisele. On the overestimation of the flow turbulence due to fringe distortion in LDA measurement volumes. Experiments in Fluids 25 (1998): 371-374
    [53] Miles PC, Witze PO. Fringe field quantification in an LDA probe volume by use of a magnified image. Exp. Fluids 16(1994): 330-335
    [54] Zhang Zh, Eisele K. Off-axis alignment of an LDA-probe and the effect of astigmatism on the measurements. Exp. Fluids. 19(1995): 89-94
    [55] Zhang Zh, Eisele K. The effect of astigmatism due to beam refractions in the formation of the measurement volume in LDA measurements. Exp. Fluids 20(1996): 466-471
    [56] Zhang Zh, Eisele K. On the broadening of the flow turbulence due to fringe distortion in LDA measurement volumes. Laser Anemometry: Advances and Applications, Proc 7th Int Conf, Karlsruhe, Germany, 1997: 351-357
    [57] Zhang Zh, Muggli F, Parkinson E, Sch?rer C. Experimental investigation of a low head jet flow at a model nozzle of a Pelton turbine, 11. Int. Seminar on Hydro Power Plants, Vienna University of Technology
    [58] Boadway J, Karahan E. Correction of Laser Doppler Anemometer readings for refraction at cylindrical interfaces. DISA Information No. 26: 4-6
    [59] Nonoshita, T. Numerical analysis of Pelton jet, JSME International Conf. On Fluid Engineering, Tokyo, 1997
    [60] Nonoshita, T. Behaviour of jet from a Pelton turbine nozzle, Proc. 4th Asian Int. Conf. Fluid Machinery, 1993,Vol.2: 499-452
    [61] Y. Matsumoto. 水滴对冲击式水轮机喷嘴射流的影响. 东方电机股份有限公司. 冲击式水轮机译文集,1999,(18): 100-105
    [62] Felix A. Muggli, Zhengji Zhang, S. Christoph et al. Numerical and Experimental analyses of Pelton turbine flow Part 2: The free surface jet flow, Proceedings of 20th IAHR Symposium, Charlotte, 2000
    [63] E. Parkinson, H. Garcin. EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF THE FREE JET FLOW AT A MODEL NOZZLE OF A PELTON TURBINE. Proceedings of 21st IAHR Symposium, Lausanne, 2002
    [64] KAMIYAMA Takumi, HAN Fengqin, LIU Jie et al. VISCOUS FLOW IN FREE JET FOR PELTON TURBINE, Proceeding of Hydraulic Machinery and Systems 21st IAHR Symposium, Lausanne, 2002
    [65] Kubota, T., Nakanishi, T., Han, F.Q. et al. Deviation Angle of A Free Jet in Pelton Turbines. Proceedings of Hydraulic Machinery and Systems 20th IAHR Symposium, Charlotte, 2000
    [66] P. Bachmann, Ch. Sch?erer, T. Staubli et al. Experimental flow studies on a 1-jet model Pelton turbine. Proceedings of the Hydraulic Machinery and Systems 15th IAHR Symposium. Belgrade, 1990
    [67] Kvicinsky, S., Kueny, J., Avellan, F., et al. Experimental and numerical analysis of free surface flow in a rotating bucket. Proceedings of 21st IAHR Symposium, Lausanne, 2002
    [68] Kvicinsky S., Kueny J.L., Avellan, Numerical and experimental analysis of free surface flow in a 3D non-rotating Pelton bucket. Proceedings of the 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, 2002: FD18/FD-125
    [69] M. Reiner, A. Thomas, R. Wolfgang et al. Validation of bucket flow simulation using dynamic pressure measurements. Proceedings of 22nd IAHR Symposium, Stockholm, 2004
    [70] M. HANA. Numerical analysis of non-stationary free surface flow in a Pelton bucket. Dr. Ing. Thesis, 1999
    [71] Morten Hana. 冲击式水轮机水斗内流动计算图解法的改进. 东方电机股份有限公司. 冲击式水轮机译文集,1999 (18):77-81
    [72] 中濑敬之. 冲击式水轮机水斗内流态分析. 东方电机股份有限公司. 冲击式水轮机译文集,1999 (18):61-65
    [73] V.S. Obretenov, Analysis of the flow on a Pelton turbine bucket, Proc. of the Lenin Higher Inst of Mechanical and Electrical Engineering, Vol.41, Book 3,Sofia, 1987
    [74] Y. Nakanishi, T. Kubota and Xia, J. Numerical simulation of water sheet flow on Pelton bucket (1st report: Discretization of unsteady flow using animated cartoon method), Trans. JSME
    [75] Nakanishi, Y., Kubota, T., and Fukui, M., Jet Interference in multinozzle turbines (in Japanese), 1st and 2nd Reports: Trans. JSME, 61-591, (1995):3934-3944
    [76] Nakanishi, Y., Kubota, T. and Shin, T. Numerical simulation of flows on Pelton bucket by particle method (flow on a stationary/rotating flat plate). Proceedings of 21st IAHR Symposium, Lausanne, 2002
    [77] LIU Jie, HAN Fengqin, KUBOTA Takashi et al. EFFECT OF FREE JET ENLARGEMENT ON THE BUCKET FLOW IN PELTON TURBINE. Proceedings of Hydraulic Machinery and Systems 21st IAHR Symposium, Lausanne, 2002
    [78] S. Kvicinsky, F. Longatte, Fr. Avellan, et al Free surface flow: experimental validation of the Volume of Fluid (VOF) method in the plane wall case. Proceedings of 3rd ASME/JSME, 8-23 July 1999, San Francisco, CA
    [79] T. Monique, L. Pierre, B. Zoppe et al NUMERICAL STUDY OF PELTON BUCKET FLOW COMPARISON OF FLUENT AND CFX RESULTS. Proceedings of Hydraulic Machinery and Systems 21st IAHR Symposium, Lausanne, 2002
    [80] Alexander Perrig, Mohamed Farhat, Francois Avellan et al Numerical flow analysis in a Pelton turbine bucket. Proceedings of 22nd IAHR Symposium, Stockholm, 2004
    [81] 日本機械学会,機械工学便览A5,流体工学,東京,1986
    [82] IEC Publication 995. Determination of the Performance from model acceptance tests of hydraulic machines, 1991
    [83] 日本涡轮機械学会. タ-ボ機械. 東京:日本工業出版社, 1989
    [84] 大桥秀雄,黑川淳一. 流体機械手册. 東京:朝倉書店株式会社,1998
    [85] 日本機械学会基凖,水車及びポンプの性能換算法. JSME S008-009
    [86] 韩凤琴,久保田乔, 冲击式水轮机性能换算的新理论提案(I). 华中理工大学学报,2000,28 (3):105-107
    [87] 韩凤琴,刘洁,韦彩新等.冲击式水轮机性能换算的新理论提案(II). 华中理工大学学报,2000,28 (11):11-13
    [88] 妹尾泰利. 内部流れの力学. 東京:養賢堂株式会社,1995
    [89] Christoph PATARIN. Simulation numérique du détachement et de l’écoulement d’un jet en sortie d’un injecteur de turbine Pelton. TRAVAIL PRATIQUE DE DIPLOME ETE 2003
    [90] 刘言浩. 冲击式水轮机三叉管结构的数学模型简介. 东方电气评论,1996 Vol.10 (3):158-162
    [91] HELMAN, J.L. AND HESSELINK. Representation and Display of Vector Field Topology in Fluid Flow Data Sets. IEEE Computer, Aug. 1989:27-36
    [92] 生井武文,井上雅弘. 粘性流体力学. 九州:理工学社出版,1978
    [93] G.K. Batchelor. An Introduction to Fluid Dynamics, Cambridge University Press. 1967
    [94] 陈矛章粘性流体动力学基础. 北京:高等教育出版社,1993
    [95] 陈义良. 湍流计算模型. 合肥:中国科技技术大学出版社,1991
    [96] Hinze J O. Turbulence, second edition. New York: McGRAW-Hill Book Company, 1975
    [97] 陈景仁. 湍流模型及有限分析法. 上海:上海交通大学出版社
    [98] Durst F. Turbulent Shear Flow. New York: Spring-Verleg Berlin Heidelberg, 1979
    [99] Rodi W. Recent Development in Turbulence Modeling. Proceedings of the third international symposium on refined flow modeling and Turbulence measurements. Tokyo, Japan, 1988
    [100] 朱自强. 应用计算流体力学. 北京:北京航空航天出版社,1997
    [101] Nemoto, M. High speed water jet from the nozzle of a Pelton turbine. JSME International Conf. On Fluid Engineering, Tokyo, 1997
    [102] S.K. Bhunia, J.H. Lienhard V. Surface disturbance evolution and the splattering of turbulent liquid jets. Trans. ASME, J. Fluid Engineering, 1994, Vol.116: 721-727
    [103] FLUENT Theory Documentation, Version 2.10, 2002
    [104] STAR-CD Methodology Documentation, Version 3.10, 2000
    [105] CFX Theory Documentation, Version 3.10, 2000
    [106] Kubota, T., Nakanishi, Y. Output power generated by a rotating bucket in Pelton turbines, JSME International Conf. On Fluid Engineering, Tokyo, 1997
    [107] 韩凤琴,久保田乔,刘洁. 数值模拟冲击式水轮机内部非定常流动. 华中理工大学学报,Vol.28 (11):14-16
    [108] 久保田乔. 冲击式水轮机的性能换算. 涡轮机械协会志,1994(2):29-31
    [109] Nakanishi.Y, Kubota. T. Component Analysis of Acceleration Acting on Pelton Buckets. JSME ICFE-97-620 (1997): 1353-1358
    [110] S. Risberg, O. Rommetveit, J.O. Haugen et al. Competitive design of high performance Pelton turbines. Proceedings of 20th IAHR Symp. Charlotte, 2000
    [111] 韦彩新,韩凤琴,许萍等冲击式水轮机射流干涉研究. 华中科技大学学报,Vol.29 (4), 2001:82-84
    [112] 韦彩新, 刘篪兵,张双全等500m 水头段冲击式转轮开发研究. 华中电力,Vol.17 (2004):28-29
    [113] M. 牧野. 山区高比速冲击式水轮机的开发. 水利水电快报EWRHI,1996,Vol.17(14):12-14
    [114] F. 利内. 提高冲击式水轮机性能的新式加箍转轮. 水利水电快报EWRHI,2000,Vol.21(14):18-19
    [115] 田树棠. 冲击式水轮机及其选择方法. 西北水电,1997, Vol.15:49-54+40
    [116] L. 热佩尔. 优化卧轴三喷嘴冲击式水轮机的模型试验. 水利水电快报EWRHI,1996,Vol.25(3):15-16
    [117] Y. Nakanishi, T. Kubota, T. Saito. Spline Curve Fitting for 3-D Shape of Pelton Turbine. JSME ICFE-97-622 (1997): 1365-1369
    [118] 许萍, 韦彩新. 水斗数对转轮性能影响的试验研究. 华中科技大学学报,2003, Vol.31(3):89-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700