用户名: 密码: 验证码:
基于能量耗散的土的本构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统岩土本构模型包括两类,一类是拟合试验数据得到的经验模型,这种模型以提高拟合精度为目标,缺乏对岩土材料应力应变本质特性的把握。另一类是理论模型,以Drucker公设和塑性位势理论为基础,由经典塑性力学本构的几个要素(屈服条件、流动法则、硬化规律)组合而成。但这些要素一般都是单独确定,有时会相互矛盾,导致传统岩土理论模型在某些应力路径上,有可能违反热力学基本定律。针对这一问题,本文从热力学基本定律出发,讨论了基于能量耗散的土体本构关系模型及其应用。
     论文介绍了基于热力学原理建立本构模型的基本理论和一般过程;研究了能量耗散函数的合理表达形式,并以此为基础讨论了耗散应力空间的屈服函数;根据Ziegler正交假定,确定耗散应力空间的流动法则;根据自由能函数确定迁移应力和弹性关系;再通过迁移应力确定真实应力空间的屈服函数和流动法则;最后结合硬化规律,建立完整的本构关系。
     以Collins提出的各向同性模型(isotropic model)耗散函数为出发点,建立了各向同性本构模型。根据屈服面的几何形状,分析了模型参数的取值范围。通过拟合某筑坝土料三轴试验曲线,提供了确定模型参数的方法。将计算的应力应变曲线及体变曲线与试验结果比较,验证了各向同性模型的有效性。对比计算结果说明各向同性模型优于修正剑桥模型。
     在各向同性模型基础上,修改耗散函数,增加表征屈服面倾斜程度的变量,建立各向异性模型(anisotropic model)。引入旋转硬化规律,描述屈服面随着加载过程在应力空间旋转,模拟土的各向异性。类比各向同性模型,讨论了不同参数对屈服面的影响,参数之间的关系和参数的取值范围。利用试验数据确定模型参数,计算三轴曲线。与各向同性模型的计算结果对比表明,各向异性模型优于各向同性模型。
     在三轴试验中,排水条件下松砂体缩,密砂剪胀;不排水条件下松砂和密砂的有效应力路径不相同。考虑剪胀对材料状态的依赖,尝试了用两种统一模型描述松砂和密砂的变形特性。采用Li建议的e-p′平面的临界状态线,定义当前孔隙比与当前应力对应的临界孔隙比之差作为状态参量。
     一种方法是修正各向同性模型的耗散函数,将描述砂土松密的状态参量引入到屈服面函数中,并结合相应的硬化规律,建立基于能量耗散的修正各向同性统一本构模型,体现材料状态对应力应变关系的影响。给定模型参数,计算不同初始状态和加载条件下的三轴试验,验证了这种方法能够模拟松砂和密砂的不同应力路径。
     另一种方法是在各向同性、各向异性模型的基础上,引入初始状态参量,修正旋转硬化规律,建立基于能量耗散的联合统一本构模型。分析控制方程,可以定性说明并用
Traditional constitutive models of soils may be divided into two groups. One is experiential models obtained by fitting experimental data, which aim at improving fitting precision, and are short of holding the essential characters of strain-stress relations for geomatenals. The other is theoretic models, which comprise several elementary factors (yield condition, flow rule and hardening law) of classical plastic, and base on Drucker Postulate and the theory of plastic potential. Generally, these factors are determined independently and contradict each other sometimes, which results there is probability of violating thermomechanics laws under some stress paths. To avoid these differences, soils constitutive models based on energy dissipation and its applications are discussed in this paper, which starts from the thermomechanics laws directly.The elementary theories and general procedure of constituting models based on thermomechanics laws are introduced. A proper energy dissipation function is studied and the yield function in dissipation stress space is deduced. The flow rule in dissipation space is determined in terms of Ziegler orthogonality principle. Shift stress and elastic rule come from free energy function. Then the yield function and the flow rule in true stress space are deduced by the shift stress. Combined the hardening law, a complete constitutive model is built.Referring the isotropic dissipation function presented by Collins, an isotropic constitutive model is established. The spans of model parameter are analyzed in terms of reasonable shape of yield locus. The parameters can be determined by fitting the triaxial test data, and the genetic algorithm is adopted in the fitting process. According to the obtained parameters, a group of drained triaxial tests are computed, and then the relation curves of shear stress invariant, shear strain and volumetric strain are plotted and compared with the experimental results to verify the validity of the model. The results of the isotropic model are better than that of modified Cam-clay.The anisotropic model is set up by extending the isotropic model. Dissipation function of the isotropic model is modified and added a variable to denote the inclination of yield locus. The rotation of yield locus in true stress space is described via the rotational hardening law to embody the anisotropy. Similar to the isotropic model, the effects of variable model parameters on yield locus, the relations among parameters, and the spans of parameter are discussed. Employing the genetic algorithm, the model parameters are identified by fitting the data of triaxial drained test. Then the parameters obtained were used to calculate the drained
    test curves for other consolidated pressures conditions, and these curves were compared with observed data in corresponding cases. It shows that the results are satisfying and the anisotropic model is better than the isotropic model.In drained triaxial test, loose sands contract while dense sands dilate. In undrained triaxial test, the effective stress paths of loose sands and dense sands are different The different deformation curves of loose sands and dense sands can be simulated in unified ways by introducing the dependence of dilatancy on material state, and two feasible methods are presented. The critical state line in e-p' plane suggested by Li is used to define state parameter as the difference of current void ratio and corresponding critical void ratio.The first method is modifying the dissipation function of isotropic model, and the state parameter distinguishing loose sands and dense sands is introduced to yield equation to set up the modified isotropic unified constitutive model, which covers the effect of material state on stress-strain relations. The simulative capability is shown by computing different features under various initial densities and confining pressures in triaxial undrained shear test, using the modified isotropic unified constitutive model with a unified set of model parameters and the hardening law suggested.The second method is introducing the initial state parameter into the anisotropic rotational hardening law to build the combined unified constitutive model. Analyzed the constitutive relations and stress paths, it is proved qualitatively and validated by samples that the deformation characteristics of loose sands are described properly by the isotropic model, while the anisotropic model is suit for the deformation curves of dense sands. They are incorporated by the rotational hardening law involving initial state parameter to simulate the two types of deformations for the sands. The parameters can be determined by fitting a part of triaxial test data of Toyoura sand, and then the residual triaxial curves are computed. The results tally with the experimental data. The developments of shear friction angle and dilation with deformations accord with the common trend of loose sands and dense sands, and the relation between peak friction angle and initial state parameter consist with the test data reported by Been and Jefferies.Based on the isotropic model, an approach aiming at unloading and reloading response is discussed. The general curves of unloading and reloading can be computed by modified hardening laws in unloading and reloading stage.
引文
[1] 章根德.岩土材料本构模型的最新进展.力学进展,1994,24(3):374-385
    [2] 郑颖人.岩土塑性力学的新进展——广义塑性力学.岩土工程学报,2003,25(1):1-10
    [3] 杨林德,张向霞.岩土本构模型的回顾和讨论.河北建筑科技学院学报.2005,22(4):26-31
    [4] 张彬,王钊,彭亚明等.土本构模型研究的现状及展望.桂林工学院学报.2003,23(3):274-278
    [5] 李广信.土的清华弹塑性模型及其发展.岩土工程学报,2006,28(1):1-10
    [6] 王仁,殷有泉,工程岩石类介质的弹塑性本构关系.力学学报.1981,(4):3-11
    [7] 熊春宝,雷礼钢,葛有志.土的不同本构关系对三维有限元分析的影响.天津理工大学学报.2006,22(1):81-84
    [8] 张鲁渝.基于应变空间的岩土软化本构模型及其数值模拟.重庆:后勤工程学院,博士学位论文,2004
    [9] 张平,田红花.对土的性质及本构关系的研究.沈阳大学学报.2004,16(4):53-55
    [10] 沈珠江,刘恩龙,陈铁林.岩土二元介质模型德一般应力应变关系.岩土工程学报.2005,27(5):489-494
    [11] 迟世春,肖晓春,林皋.土的单屈服面模型及在桩土作用中的应用研究.哈尔滨工业大学学报.2005,37(11):1578-1582
    [12] 迟世春,贾宇峰.土颗粒破碎耗能对罗维剪胀模型的修正.岩土工程学报.2005,27(11):1266-1269
    [13] 师子刚,罗汀.土的三重屈服面应力.应变模型与SMP准则的结合.岩土力学.2006,27(1):127-131
    [14] 包承纲,周小文.20世纪土力学的回顾和未来发展趋势的预测.长江科学院院报,2000,17(2):29-33
    [15] Peck R B. Advantages and limitations of the observational method in applied soil mechanics. Geotechnique, 1969, 19(2): 171-187
    [16] 包承纲.土力学的发展和土工离心模拟试验的现状.岩土力学,1988(4):15-20
    [17] 杨光华.21世纪应建立岩土材料的本构理论.岩土工程学报,1996,18(4):116-117
    [18] 沈珠江.关于土力学发展前景的设想.岩土工程学报,1994,16(1):110-111
    [19] 龚晓南,叶黔元,徐日庆.工程材料本构方程.北京:中国建筑工业出版社,1995
    [20] 蒋彭年.土的本构关系.北京:科学出版社,1982
    [21] 伊颖锋.小应变条件下土体本构关系的研究及其在工程中的应用(博士学位论文).南京:河海大学,2003
    [22] 屈智炯.土的塑性力学.成都:成都科技大学出版社,1987
    [23] 殷建华.土的三模量非线性模型及其推广,岩土力学,2000,21(1):16-19
    [24] 陈正汉,周海清.非饱和土的非线性模型及其应用,岩土工程学报,1999,21(5):603-608
    [25] 王钊,王协群.三峡工程二期围堰低高防渗心墙方案的有限元分析.武汉水利电力大学学报,1997,30(3):1-6
    [26] 张学言.岩土塑性力学.北京:人民交通出版社,1993
    [27] 沈珠江.考虑剪胀性的土和石料的非线性应力应变模式.水利水运科学研究,1985,4:12-17
    [28] 任放,盛谦.岩土类材料的蛋形屈服函数,岩土工程学报,1993,15(4):33-37
    [29] 沈珠江.关于破坏准则和屈服函数的总结,岩土工程学报,1995,17(1):1-8
    [30] Drucker D C, Gibson R E, Henkel D J. Soil mechanics and work hardening theory of plasticity. Trans ASCE, 1957(122): 338-346
    [31] Roscoe K H, Schofield A, Wroth C P. On the yielding of soilso Geotechnique, 1958(8): 22-53
    [32] Schofield A N, Wroth C P. Critical State Soil Mechanics. London: McGraw-Hill, 1968
    [33] Slander I S, Baron M L. Recent developments in the constitutive model of geological materials. In: Anchen W, Wittke W eds. Proceeding of 3rd International Conference on Numerical Methods in Geomechanics. Rotterdam: Balkema Press, 1979, 1: 363-376
    [34] Nova R, Wood D M. A constitutive model for sand in triaxial compression. International Journal of Numerical and Analytical Methods in Geomechanics, 1979, 3: 255-278
    [35] Mroz Z, Norris V A. Elasto-plastic and visco-plastic constitutive models for soil with application to cyclic loading. In: Pande G N, Zienkiewicz O C eds. Soil Mechanics-Transient and Cyclic Loads, London: John Wiley & Sons Ltd, 1982, 173-218
    [36] Desai C S. A general basis for yield failure and potential function in plasticity. International Journal of Numerical and Analytical Methods in Geomechanics, 1980, 4: 361-375
    [37] 龚晓南.土塑性力学.杭州:浙江大学出版社,1999
    [38] 蒋彭年.土的本构关系.北京:科学出版社,1982
    [39] 章根德.土的本构关系及其工程应用.北京:科学出版社,1995
    [40] Iwan W D. On a class of models for the yielding behavior of continuous and composite systems. Transactions on ASME Journal of Applied Mechanics, 1967, 34(3): 612-617
    [41] Mroz Z. On the description of anisotropic work hardening. Journal of Mechanics and Physics of Solids, 1967, 15: 163-175
    [42] Prager W. A new method of analyzing stresses and strains in work-hardening plastic solids. Journal of Applied Mechanics, 1956, 78: 493-496
    [43] Provest J H. Mathematical modeling of monotonic and cyclic undrained clay behavior. International Journal of Numerical and Analytical Methods in Geomechanics. 1977, 1(2): 195-216
    [44] Mroz Z, Norris V A, Zienkiewicz O C. Application of an anisotropic hardening model in the analysis of elasto-plastic deformation of soils. Geotechnique. 1979, 29(1): 1-34
    [45] Mroz M, Norris V A, Zienkiewicz O C. An anisotropic critical state model for soils subjected to cyclic loading. Geotechnique. 1981, 31 (4): 451-469
    [46] Pender M J. A model for the behavior of over-consolidated soil. Geotechnique, 1978, 28(1): 1-25
    [47] Dafalias Y F, Popov E P. A model of non-linearly hardening materials for complex loadings. Acta Mechanica, 1975, 21(3): 173-192
    [48] Norris V A. Numerical modelling of soil response to cyclic loading "stress-reversal surfaces". International symposium numerical models in geomechanics. Zurich: 1982, 38-49
    [49] Lade P V, Nelson R B. Incrementalization procedure for elasto-plastic constitutive model with multiple intersecting yield surfaces. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8: 311-323
    [50] 孙吉主,周键.土的边界面本构模型研究进展.岩土力学,1997,18(2):91-95
    [51] 刘汉龙,余湘娟.土动力学与岩土地震工程研究进展.河海大学学报,1999,27(1):7-15
    [52] 沈珠江.土的弹塑性应力应变关系的合理形式..岩土工程学报,1980,2(2):11-19
    [53] 殷宗泽.一个土体的双屈服面应力应变模型.岩土工程学报,1988,10(1):64-71
    [54] 沈珠江.粘土的双硬化模型.岩土力学,1995,16(1):1-8
    [55] 李涛;Meissner H-循环荷载作用下饱和黏性土的弹塑性双面模型.土木工程学报,2006,39(1):97-102
    [56] Krieg R D. A practical two-surface plasticity theory. Journal of Applied Mechanics, 1975, 641-646
    [57] Mroz Z, Norris V A, Zienkiewicz O C. An anisotropic hardening model for soils and its application to cyclic loading. International Journal for Numerical and Analytical Methods in Geomechanics, 1978, 2: 203-221
    [58] Dafalias Y F, Popov E P. Cyclic Loading for Materials with a vanishing elastic region. Nuclear Engineering and Design. 1977, 41(2): 293-302
    [59] Dafalias Y F, Herrmann L R. A bounding surface soil plasticity model. Proceeding of International Symposium on Soils under Cyclic and Transient Loading. Swansea U K: 1980
    [60] Mroz Z. On hypoelasticity and plasticity approaches to constitutive modeling of inelastic behavior of soils. International Journal for Numerical and Analytical Methods in Geomechanics, 1980, 4: 45-55
    [61] Zienkiewicz O C.广义塑性力学和地力学的一些模型.应用数学和力学,1982,3(3):267-279
    [62] 杨光华,李广信.岩土本构模型的数学基础与广义位势理论.岩土力学.2002,23(5):531-535
    [63] 沈珠江.结构性粘土的弹塑性损伤模型.岩土工程学报,1993,15(3):21-28
    [64] 张嘎,张建民.与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析.工程力学.2006,23(2):80-85
    [65] 吴能森,侯伟生,赵尘.土的结构性损伤与损伤模型问题探讨.福建工程学院学报.2005,3(1):21-24
    [66] 杨强,陈新,周维垣.土材料弹塑性损伤模型及变形局部化分析.岩石力学与工程学报.2004,23(21):3577-3583
    [67] 刘庭金.混凝土及岩土材料破坏过程的弹塑性各向异性损伤数值模型及其应用.岩石力学与工程学报.2004,23(16):2843-2843
    [68] 杨林德,刘齐建.土-结构物接触面统计损伤本构模型.地下空间.2006,2(1):79-86
    [69] 沈珠江.结构性粘土的堆砌体模型.岩土力学,2000,21(1):1-4
    [70] 施斌.粘性土微观结构研究回顾与展望.工程地质学报,1996,4(1):39-43
    [71] 骆亚生,谢定义.复杂应力条件下土的结构性本构关系.四川大学学报(工程科学版).2005,37(5):14-18
    [72] 沈珠江.现代土力学的基本问题.力学与实践,1998,20(6):1-6
    [73] 沈珠江.土体结构性的数学模型——21世纪土力学的核心问题.岩土工程学报,1996,18(1):95-97
    [74] 谢定义,齐吉琳.土结构性及其定量化参数研究的新途径.岩土工程学报,1999,21(6):651-656
    [75] 吴恒,欧孝夺,周东.从科学试验方法探讨土力学发展的新途径.岩石力学与工程学报,2004,23(19):3348-3352
    [76] 胡瑞林,王思敬,李向全等.21世纪工程地质学生长点:土体微结构力学.水文地质工程地质,1999,4:5-8
    [77] 吴恒,张信贵,易念平等.水土作用与土体细观结构研究.岩石力学与工程学报,2000,19(2):199-204
    [78] 施斌.粘性土微观结构研究回顾与展望.工程地质学报,1996,4(1):39-43
    [79] 雷华阳.土的本构模型研究现状及发展趋势.世界地质,2002,19(3):271-276
    [80] 蒋明镜,沈珠江,邢素英等.结构性粘土研究综述.水利水电科技进展,1999,19(1):26-30
    [81] Valanis K C. Theory of Visco-plasticity without a yield surface. Archives of Mechanics, 1971, 23(4): 517-551
    [82] Desai C S, Wathugala G W. Development in hierarchical modeling for solids and discontinuities and applications. Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering, Chongqing, China, 1989, 8, (1): 3-53
    [83] 黄文熙.土的工程性质.北京:水利电力出版社,1988
    [84] 郑颖人,龚晓南.岩土塑性力学基础.北京:中国建筑工业出版社,1989
    [85] 钱家欢,殷宗泽.土工原理与计算,北京:中国水利水电出版社,1996
    [86] Yin J H, Graham J. Elastic Visco-plastic modelling of one-dimensional consolidation. Geotechnique, 1996, 46(3): 515-527
    [87] Morsy M M, Chan D H, Morgenstern N R. An effective sfress model for creep of clay. Canadian Geotechnical Journal, 1995, 32: 819-834
    [88] 廖红建,俞茂宏.粘性土的弹粘塑性本构方程及其应用.岩土工程学报.1998,2(2):41-44
    [89] 郑颖人.关于岩土塑性的几点认识.岩土工程界,2002,5(4):14-16
    [90] 曲圣年,殷有泉.塑性力学的Drucker公设和公设.力学学报.1981,(5):47-55
    [91] 殷有泉,曲圣年.弹塑性耦合和广义正交法则.力学学报.1982,(1):66-73
    [92] 殷有泉.奇异屈服面的弹塑性本构关系的应力空间表述和应变空间表述.力学学报,1986,(1):33-40
    [93] 郑颖人,孔亮.塑性力学中的分量理论—广义塑性力学.岩土工程学报,2000,22(3):269-274
    [94] 刘元雪.岩土本构理论的几个基本问题研究.岩土工程学报,2001,23(1):45-48
    [95] 刘元雪,郑颖人.岩土弹塑性理论的加卸载准则探讨.岩石力学与工程学报,2001,20(6):768-771
    [96] 张柔雷.关于塑性力学公设适用性的讨论.力学与实践,1990,6:72-73.
    [97] 黄文彬.关于塑性力学两公设适用性的分析.力学与实践,1992,2:66-67
    [98] 黄速建.塑性力学的稳定性公设的热力学原理.固体力学学报,1988,9(2):95-101
    [99] 胡亚元.关于率无关塑性力学和广义塑性力学的评述.岩土工程学报,2005,27(1):128-131
    [100] Itai E. Applications of thermodynamical approaches to mechanics of soils. [Ph.D. Thesis]. Haifa: Technion-Israel Institute of Technology, 2002
    [101] Ziegler H. An Introduction to Thermomechanics (2nd ed). Amsterdam: North-Holland, 1983.
    [102] Collins I F, Houlsby G T. Application of thermomechanical principles to the modelling of geotechnical materials[A]. Proceedings of the Royal Society of London A[C], 1997, 453: 1975-2001.
    [103] Biot M A. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 1956, 27: 240-253.
    [104] Fung Y C. Foundations of solid mechanics. New Jersey: Prentice-Hall, 1965.
    [105] Coleman B D, Gurtin M E. Thermodynamics with internal state variables. Journal of Chemical Physics, 1967, 47: 597-613.
    [106] Houlsby G T. A study of plasticity theories and their application to soils[D]. Cambridge: University of Cambridge, 1981.
    [107] Modaressi H, Laloui L, Aubry D. Thermodynamical approach for camclay-family models with Roscoe-type dilatancy rules. International Journal of Numerical and Analytical Methods in Geomechanics, 1994, 18 (2): 133-138.
    [108] Puzrin A M, Houlsby G T. Strain-based plasticity models for soils and the BRICK model as an example of the hyperplasticity approach. Geotechnique, 2001, 51 (2): 169-172.
    [109] Puzrin A M, Houlsby G T. Fundamentals of kinematic hardening hyperplasticity. International Journal of Solids and Structures, 2001, 38: 3771-3794.
    [110] Martin J B, Nappi. An internal variable formulation for perfectly plastic and linear hardening relations in plasticity. European Journal of Mechanics A/Solids, 1990, 9(2): 107-131.
    [111] Maugin G A. The Thermomechanics of Plasticity and Fracture. Cambridge: Cambridge University Press, 1992.
    [112] Reddy B D, Martin J B. Internal variable formulations of problems in elastoplasticity: constitutive and algorithmic aspects. Applied Mechanics Reviews, 1994, 47 (5): 429-456.
    [113] Coleman B D. On thermodynamics of materials with memory. Archive for Rational Mechanics and Analysis, 1964, 17: 1-46
    [114] Truesdell C. Rational Thermodynamics. New York: McGraw-Hill, 1969.
    [115] Truesdell C. A First Course in Rational Continuum Mechanics. London: Academic Press, 1977.
    [116] Houlsby G T, Puzrin A M. A thermomechanical framework for constitutive models for rate-independent dissipative materials. International Journal of Plasticity, 2000, 16 (9): 1017-1047
    [117] 严济慈.热力学第一和第二定律.北京:人民教育出版社,1966
    [118] 杨东华.不可逆过程热力学原理及工程应用.北京:科学出版社,1989
    [119] Atkins P W,李思一(译).从有序到混沌——介绍热力学第二定律.北京:科学技术文献出版社,1990
    [120] 杨本洛.经典热力学中若干基本概念的探讨.北京:科学出版社,1996
    [121] 廖耀发.温度与熵.北京:高等教育出版社,1989
    [122] 汤甦野.熵——一个世纪之谜的解析.合肥:中国科技大学出版社
    [123] 周筑宝.最小耗能原理及其应用:材料的破坏理论、本构关系理论及变分原理.北京:科学出版社,2001
    [124] Lubliner J. On the thermodynamic foundations of non-linear solid mechanics. International Journal of Non-linear Mechanics, 1972, 7: 237-254
    [125] Lubliner J. Plasticity Theory. New York: MacMillan, 1990
    [126] Maier G, Hueckel T. Non-associated and coupled flow rules of elastoplasticity for geotechnical media. Proceeding of 9th International Conference Soil Mechanics and Foundation Engineering, Tokyo: Speciality session 7, Constitutive relations for soils, 129-142. 1977
    [127] Houlsby G T. A derivation of the small-strain incremental theory of plasticity from thermodynamics. Proceedings of IUTAM Conference on Deformation and Failure of granular materials, Delft, 1982, 109-118
    [128] Rice J R. Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. Journal of Mechanics and Physics of Solids, 1971, 9: 433-456
    [129] Hunter S C. Mechanics of Continuous Media. Chichester U K: Elias Horwood, 1976
    [130] Vardoulakis I, Sulem J. Bifurcation Analysis in Geomechanics. London: Blackie, 1995
    [131] Desai C S, Siriwardane H J. A concept of correction functions to account for non-associative characteristics of geological media. International Journal for Numerical and Analytical Methods in Geomechanics, 1980, 4: 377-387
    [132] Collins I F, Hilder Tamsyn. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(11): 1313-1347
    [133] Collins I F, Kelly P A. A thermomechanical analysis of a family of soil models. Geotechnique, 2002, 52(7): 507-518
    [134] Germain P, Nguyen Q S, Suquet P. Continuum thermodynamics. Transactions on ASME Journal of Applied Mechanics, 1983, 105: 1010-1020
    [135] Collins I F. A systematic procedure for constructing critical state models in three dimensions. International Journal of Solids and Structures, 2003, 40(8): 4379-4397
    [136] Collins I F, Muhunthan B. On the relationship between stress-dilatancy, anisotropy, and plastic dissipation for granular materials. Geotechnique, 2003, 53(7): 611-618
    [137] 李广信.土体、土骨架、土中应力及其他——兼与陈津民先生讨论.岩土工程界,2005,8(6):13-17
    [138] 邓建辉,李焯芬,葛修润.BP网络和遗传算法在岩土边坡位移反分析中的应用.岩石力学与工程学报,2001,20(1):1-5
    [139] 高玮,郑颖人.一种新的岩土工程进化反分析算法.岩石力学与工程学报,2003,22(2):192-196
    [140] 赵同彬,谭云亮,刘传孝.基于遗传算法的巷道位移反分析研究.岩土力学,2004,25(增):107-109
    [141] 云庆夏.进化算法.北京:冶金工业出版社,2000
    [142] 玄光南,程润伟.遗传算法与工程设计.北京:科学出版社,2000
    [143] 陈国良.遗传算法及其应用.北京:人民邮电出版社,1996
    [144] 高彦斌,徐超,汤竞.一个考虑土的各向异性的孔压公式及其应用.岩土力学,2005,26(9):1349-1355
    [145] 张兴明,张映明.土的一种各向异性弹塑性模型.石家庄铁道学院学报.1999,12(1):53-57
    [146] 殷宗泽,张坤勇,朱俊高.面板堆石坝应力变形计算中考虑土的各向异性.水利学报.2004,11:22-27
    [147] 殷宗泽,徐志伟.土的各向异性及近似模拟.岩土工程学报.2002,24(5):546-550
    [148] 孙德安,姚仰平,殷宗泽.初始应力各向异性土的弹塑性模型.岩土力学.2000,21(3):222-226
    [149] Roscoe K H, Borland J B. On the generalized stress-strain behaviour of 'wet clay'. In: Heyman J, Leckie F A, eds. Engineering Plasticity. Cambridge: Cambridge University Press, 1968, 535-609
    [150] Wood D M. Soil Behaviour and Critical State Soil Mechanics. Cambridge: Cambridge University Press, 1990
    [151] Wood D M, Belkheir K, Liu D F. Strain softening and state parameter for sand modeling. Geotechnique, 1994, 44 (2): 335-339
    [152] Taylor D W. Fundamentals of Soil Mechanics. New York: Wiley, 1948
    [153] Rowe P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London A, 1962, 269: 500-527
    [154] Pastor M, Zienkiewicz O C, Chan H C. Generalized plasticity and the modeling of soil behavior. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14: 151-190
    [155] Jefferies M G. Nor-Sand: a simple critical state model for sand. Geotechnique, 1993, 43: 91-103
    [156] Gudehus G. A comprehensive constitute equation for granular materials. Soils and Foundations, 1996, 36 (1): 1-12
    [157] Manzari M T, Dafalias Y F. A critical state two-surface plasticity model for sands. Geotechnique, 1997, 47: 255-272
    [158] Gajo A, Wood D M. Severn-Trent sand: a kinematic-hardening constitutive model: the q-p formulation. Geotechnique, 1999, 49: 595-614
    [159] Wan R G, Guo RG.A pressure and density dependent dilatancy model for granular materials. Soils and Foundations, 1999,39(6): 1-12
    [160] Li X S, Dafalias Y F. Dilatancy for cohesionless soils. Geotechnique, 2000, 50 (4): 449-460.
    [161] Li X S. A sand model with state-dependent dilatancy. Geotechnique, 2002, 52 (3): 173-186
    [162] Kabilamany K, Ishihara K. Stress dilatancy and hardening laws for rigid granular model of sand. Soil Dynamics and Earthquake Engineering, 1990, 9 (2): 66-77
    [163] Li X S. Modeling of dilative shear failure. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123 (7): 609-616
    [164] Wan R G, Guo R G. A simple constitutive model for granular soils: modified stress-dilatancy approach. Computers and Geotechnics, 1998,22(2): 109-133
    [165] Cubrinovski M, Ishihara K. Modeling of sand behavior based on state concept. Soils Foundations, 1998,38(3): 115-127
    [166] Wang Z L, Dafalias Y F, Shen C K. Bounding surface hypoplasticity model for sand. ASCE Journal of Engineering mechanics, 1990, 116 (5): 983-1001
    [167] Li X S, Dafalias Y F, Wang Z L. State dependent dilatancy in critical state constitutive modeling of sand. Canadian Geotechnical Journal, 1999, 36 (4): 599-611
    [168] Been K, Jefferies M G. A state parameter for sands. Geotechnique, 1985, 35 (2): 99-112
    [169] Cornforth D H. Some experiments on the influence of strain conditions on the strength of sand. Geotechnique, 1964, 14: 143-167
    [170] Cornforth D H. Prediction of drained strength of sand from relative density measurements. Evaluation of relative density and its role in geotechnical projects involving cohesionless soils, American Society for Testing and Materials, Philadelphia: Philadelphia Special Technical Publication, 1973, 523: 281-303
    [171] Lee K L, Seed H B. Drained strength characteristics of sands. Soil Mechanics and Foundation Engineering, 1967,93: 117-141
    [172] Bishop A W. Shear strength parameters for undisturbed and remolded soil specimens. Proceeding of Roscoe Memorial Symposium, Cambridge Mass, 1971, 3-58
    [173] Stroud M A. The behavior of sand at low stress levels in the simple shear apparatus: [Ph.D. Thesis]. Cambridge: University of Cambridge, 1971
    [174]Vaid Y P, Sasitharan S. The strength and dilatancy of sand. Canadian Geotechnical Journal, 1992, 29: 552-526
    [175] Verdugo R, Ishihara K. The steady state of sandy soils. Soils and Foundatios, 1996, 36 (2): 81-91
    [176] Poorooshasb H B, Holubec I, Sherbourne A N. Yielding and flow of sand in triaxial compression, Part Ⅰ. Canadian Geotechnical Journal, 1966, 3 (5): 179-190
    [177] Poorooshasb H B, Holubec I, Sherbourne A N. Yielding and flow of sand in triaxial compression, Part Ⅱ. Canadian Geotechnical Journal, 1967, 4 (5): 376-397
    [178] Bolton M D. The strength and dilatancy of sand. Geotechnique, 1986, 36 (1): 65-78
    [179] Roscoe K H, Schofield A N. Mechanical behavior of an idealized 'wet clay'. Proceeding of European Conference on Soil Mechanics and Foundations Engineering, Wiesbaden, 1963, 1:47-54
    [180] Li X S, Dafalios Y F. Dilatancy for cohesionless soils. Geotechnique, 2000, 50: 449-460
    [181] Yang J, Li X S. State-dependent strength of sands from the perspective of unified modeling. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(2): 186-198
    [182] Ishihara K, Tatsuoka F, Yasuda S. Undrained deformation and liquefaction of sand under cyclic stresses. Soils Foundations, 1975, 15 (1): 29-44
    [183] Ishihara K. Liquefaction and flow failure during earthquakes. 33rd Rankine lecture, Geotechnique, 1993, 43 (3): 351-415
    [184] Li X S, Wang Y. Linear representation of steady-state line for sand. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (12): 1215-1217
    [185] Dafalias Y F. An anisotropic critical state soil plasticity model. Mechanics Research Communications, 1986, 13 (6): 341-347
    [186] Verdugo R, Ishihara K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36 (2): 81-91
    [187] De Beer E E. Influence of the mean normal stress on the sheafing strength of sand. Proceeding of 6th International Conference on Soil Mechanics Foundation Engineering, Montreal, 1965, 1: 165-169
    [188] Been K, Jefferies M G. A state parameter for sands: reply to discussion. Geotechnique, 1986, 36 (1): 123-132
    [189] Been K, Jefferies M G, Hachey J E. The critical state of sands: reply to discussion. Geotechnique, 1992, 42 (4): 655-663
    [190] 孙益振,邵龙潭.三轴循环加卸载条件下砂性土变形特性研究.岩土工程学报.2005,27(11):1353-1357
    [191] 章根德,韦昌富.循环载荷下砂质土的本构模型.固体力学学报.1998,19(4):299-304
    [192] 孙吉主,周健.土的边界面本构模型研究进展.岩土力学.1997,18(2):91-96
    [193] 张建民,谢定义.饱和砂土动本构理论研究进展.力学进展.1994,24(2):187-201
    [194] 孔亮,王燕昌,郑颖人.土体动本构模型研究评述.宁夏大学学报(自然科学版).2001,22(1):17-22
    [195] Provest J H. A simple plastic theory for frictional cohesionless soils. Soil Dynamics and Earthquake Engineering. 1985, 4(1): 9-34
    [196] Dafalias Y F, Herrmann L R. A boundary surface soil plasticity model. In: Pande G N, Zienkiewicz O C, eds. Proceeding of International Symposium on Solis under Cyclic Transient Load. Rotterdam: Balkema, 1980, 335-356
    [197] Carter J P, Booker J R, Wrothu C P. A critical state soil model for cyclic loading. In: Pande G N, Zienkiewicz O C, eds. Soil Mechanics Transient and Cyclic Loading. London: John Willey and Son, 1982. 35-62
    [198] 徐干成,郑颖人.饱和砂土动应力应变特性的试验研究.土木工程学报.1995,28(2):63-71
    [199] 徐干成,谢定义,郑颖人.饱和砂土循环动应力应变特性的弹塑性模拟研究.岩土工程学报.1995,17(2):1-12
    [200] 贾革续,孔宪京.粗粒土动残余变形特性的试验研究.岩土工程学报.2004,26(1):26-30
    [201] 蒋军,朱向荣,曾国熙.循环荷载作用下粘土及含砂芯复合土样特性分析.土木工程学报.2003,36(8):96-101
    [202] 蒋军.长期循环荷载作用下含砂芯复合土特性分析.中国公路学报.2002,15(2):40-44
    [203] 杨果林,王永和.土工合成材料在加—卸循环荷载作用下的应力—应变特性研究.铁道学报.2002,24(3):74-77
    [204] 孔亮,花丽坤,郑颖人.土体循环塑性模型研究进展.水利水运工程学报.2004,12:61-69
    [205] 潘志,贺祖琪.数学手册.徐州:中国矿业大学出版社,1993
    [206] Callen H B. Thermodynamics. New York: Wiley, 1960
    [207] Ziegler H, Wehrli C. The derivation of constitutive relations from the free energy and the dissipation function. Advances in Applied Mechanics, 1987, 25 (3): 183-238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700