用户名: 密码: 验证码:
微型飞行器机翼三维非定常流场的数值研究和气动优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型飞行器自20世纪90年代提出来以后,因为其尺寸小、不易被发现、便于携带等普通飞行器不具有的独特优势,在军用和民用等领域发挥重要作用。然而,由于微型飞行器在10~5量级的低雷诺数环境飞行,其气动力学特性和常规飞行器大不相同而成为国际上气动力学研究的热点和难点。本文以固定翼式微型飞行器的气动设计为研究背景,针对其小展弦比机翼低雷诺数流动的特点,数值研究了微型飞行器三维非定常流场的流动特征,以及机翼周围的层流/湍流分离现象。
     用三维不可压缩Navier-Stokes方程来描写薄翼附近的三维流动,数值模拟采用了人工压缩方法,湍流模型采用Baldwin-Barth一方程模型。考虑了微型飞行器机翼的展弦比、弯度、翼面形状、前缘形状等气动外形参数对流场的影响。研究结果表明:在-12°≤α≤12°的攻角范围内,使用齐默曼翼面、采用上斜的15°尖形前缘、或者翼型弯度在4%左右都能使微型飞行器机翼获得优良的升阻比。这些物理参数直接影响了沿薄翼的附面层发展,改变了薄翼表面附近的流场结构,改善了分离泡的形成与发展,从而使薄翼的升阻比提高了26%~68%。
     将遗传算法和Navier-Stokes方程数值模拟相结合,率先应用到微型飞行器机翼的三维气动布局优化分析中,编制了相关优化程序,得到了符合气动优化布局的三维机翼外形。遗传算法的小种群设计,大大减小了由反复求解三维Navier-Stokes方程带来的计算代价。多峰函数的测试结果表明,该优化模型能以较高的效率搜索到全局最优值。机翼的优化结果表明:8个设计点的升阻比均提高30%以上,尤其在2°攻角,升阻比提高2倍;优化翼型的前缘钝、尾缘弯,弯度增大,升力系数提高;优化机翼的展弦比为1.2左右;优化翼面为接近椭圆的齐默曼形状。
     成功实现了在低雷诺数下微型飞行器机翼附近三维非定常湍流流场的数值模拟,讨论了齐默曼薄翼的静态失速过程,揭示了翼面形状是影响小展弦比机翼三维非定常分离流动的重要因素。计算结果较准确地估算了失速附近的升阻力系数、捕捉到机翼的失速特征和升力系数的迟滞现象,发现翼面形状是影响升力系数迟滞类型的重要物理参数。其中,反齐默曼机翼具有较大的最大升力系数,没有明显的失速迟滞发生,失速攻角比椭圆机翼延迟约4°,可以作为微型飞行器机翼的理想翼面形状。
A great deal of interest has emerged since micro air vehicle was put forward in 1990s. Its advantages of small size, invisibility, and portability make micro air vehicle broad prospects in both military and civilian fields. However, micro air vehicle flies at Reynolds number of 10~5, so classical aerodynamic theory that can accurately predict large-scale aircrafts is generally not applicable for it. In this paper, fixed wing of micro air vehicle is numerically studied to investigate the complicated three-dimensional unsteady aerodynamic characteristics and the laminar/turbulent separation phenomena at boundary layer.
     Flow around micro air vehicle is simulated by numerically solving three-dimensional incompressible Navier-Stokes equations by artificial compressibility method. Baldwin-Barth turbulence model is employed for turbulent flow calculations. Aerodynamic parameters such as aspect ratio, camber, wing planform, and leading-edge shape are selected to investigate their effects on wing's aerodynamic performance. Results show that at small angles of attack between -12°to 12°, excellent parameters are Zimmerman wing planform, 4% camber, and sharp leading edge with 15°'up' angles. These parameters directly affect the development of boundary layer close to the wing surface and determine the flow structure. As a result, separated bubble on the wing surface is weakened and lift-drag ratio is increased from 26% to 68%.
     Genetic algorithm code is developed with combination of Navier-Stokes equation simulation to obtain reasonable three-dimensional aerodynamic layout of micro air vehicle wing. In order to decrease huge computational cost generated from the repetitious calling of three-dimensional Navier-Stokes code, a real coded genetic algorithm is developed with small population. An optimization of a multimodal function indicates that present genetic algorithm can converge to the global value with high efficiency. Wing optimization results show that: (1) lift-drag ratios at eight design point are all increased by more than 30%. Especially at 2°angles of attack, double lift-drag ratio is obtained. (2) Optimal airfoils have large leading-edge radius and are cusped near the trailing edge, and have aspect ratios 1.2 and Zimmerman wing planforms.
     Unsteady Navier-Stokes equations code is developed in order to study the three-dimensional unsteady field of micro air vehicle especially close to the wing surface. Numerically, static stall of thin Zimmerman wing is discussed and wing planform is found to be an important parameter to affect the maximal lift coefficient, stall angle of attack, and hysteresis of lift coefficient. Results show that present numerical method can capture wing's static stall and can comparatively accurately estimate lift coefficient near the stall. Inverse Zimmerman wing has higher maximal lift coefficient with no obvious hysteresis and stall delay of 4°angles of attack than elliptical wing, so it is a reasonable wing planform for micro air vehicle wing.
引文
1 James M.M.,Michael S.F.Micro air vehicles-toward a new dimension in flight JR].US DARPA/TTO Report,1997.
    2 Young,L.A.,Briggs,G.A.,Derby,M.R.,et al.Use of vertical lift planetary aerial vehicles for the exploration of Mars[EB/OL].http://www.lpi.usra.edu/meetings/robomars/pdf /6227.pdf,2003
    3 特种飞行器设计与工程中心[EB/OL].http://www.nwpu.edu.cn/academy/01/content/jxky-5.htm
    4 曾锐.仿鸟微型扑翼飞行器的气动特性研究.南航博士学位论文[D],2005.
    5 Zimmerman C.H.Characteristics of Clark Y airfoils of small aspect ratios[R].NACA TR-431,1932.
    6 Winter H.Flow phenomena on plates and airfoils of short span[R].NACA TM-798,1936.
    7 Barttlett G.E.,Vidal R.J.Experimental investigation of influence of edge shape on the aerodynamic characteristics of low aspect ratio wings at low speeds[J].Journal of the Aeronautical Sciences,1955,22(8):517-533.
    8 McGhee R.J.,Beasley W.D,Whitcomb R.T.NASA low-and medium-speed airfoil development[R].NASA TM-78709,1979.
    9 Broeren A.P.,Bragg M.B.Unsteady stalling characteristics of thin airfoils at low Reynolds number[A].Proceedings of the Conference on Fixed and Flapping and Rotary Vehicles at Very Low Reynolds Number[C],Notre Dame,USA,2000:396-420.
    10 Mueller T.J.,DeLaurier J.D.Aerodynamics of small vehicle[J].Annual Review of Fluid Mechanics.,2003,35:89-111.
    11 Kelloggj J.The NRL micro tactical expendable(MITE) air vehicle[J].Aeronautical Journal,2002,106(1062):431-441.
    12 Ramamurti R.,Sandberg W.Simulation of the dynamics of micro air vehicles[R].AIAA 20002-0896.
    13 Pelletier A.,Mueller T.J.Low Reynolds number aerodynamics of low aspect-ratio,thin, flat and cambered-plate wings[J].Journal of Aircraft,2000,37(5):825-832.
    14 Mueller,T.J.Aerodynamic measurements at low Reynolds numbers for fixed wing micro-air vehicles[EB/OL].http://www.nd.edu/~mav/belgiurn.pdf,2000.
    15 Pelletier A.,Mueller T.J.Aerodynamic force/moment measurements at very low Reynolds numbers[A].Proceedings of 46th Annual Conference on the Canadian Aeronautics and Space Institute[C],Montreal,Quebec,Canada,1999:59-68.
    16 Tones G.E.,Mueller T.J.Aerodynamic characteristics of low aspect ratio wings at low Reynolds numbers[A].Proceedings of Conference on Fixed,Flapping,and Rotary Wing Vehicles at Very Low Reynolds Numbers[C],Notre Dame,USA,2000.
    17 Tones G.,Mueller T.J.Micro aerial vehicle development:design,components,fabrication,and flight testing[R],AUVSI Unmanned Systems 2000 Symposium and Exhibition,Orlando,Florida,2000.
    18 Tones G.E.Aerodynamics of low aspect ratio wings at low Reynolds numbers with applications to micro air vehicle design and optimization[D].Ph.D.Dissertation,University of Notre Dame,Indiana,2002.
    19 Shyy,W.,Lian,Y.,Tang,J.,Viieru,D.,et al.Aerodynamics of low Reynolds number flyers [M],Cambridge University Press,New York,2008.
    20 Shyy W,Ifju P.Membrane wing-based micro air vehicles[J].Applied Mechanics Reviews,2005,58(4),283-301.
    21 Viieru,D.,Tang,J.,Lian,Y.,et al.Flapping and flexible wing aerodynamics of low Reynolds number flight vehicles[R].AIAA 2006-0503,2006.
    22 Tang,J.,Viieru,D.,Shyy,W.Effects of Reynolds number and flapping kinematics on hovering aerodynamics[R].AIAA 2007-129,2007.
    23 Tang,J.,Viieru,D.,Shyy,W.A Study of aerodynamics of low Reynolds number flexible airfoils[R].AIAA 2007-4212,2007.
    24 Lian,Y.,Shyy,W.Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil[J].AIAA Journal,2007,45:1501-1513.
    25 Emblemsvag J.,Suzuki R.Numerical simulation of flapping micro air vehicles[R].AIAA 2002-23197,2002.
    26 Sun Q., Body D.L., Candler V.G Numerical simulation of gas flow over micro scale airfoils [R], AIAA 2001 -3071,2001.
    
    27 Schroeder E.J, Baeder J.D. Using computational fluid dynamics for micro-air vehicle airfoil validation and prediction [A]. Proceedings of the 23rd AIAA Applied Aerodynamics Conference [C], Toronto, Ontario, Canada, 2005: 1-14.
    
    28 Cosyn P., Vierendeels J. Numerical investigation of low aspect ratio wings at low Reynolds numbers [A]. Proceedings of the 23rd AIAA Applied Aerodynamics Conference [C], Toronto, Ontario, Canada, 2005:1-15.
    
    29 Grasmeyer J.M., Keennon M.T. Development of the black widow micro air vehicle [R]. AIAA paper 2001 -0127, 2001.
    
    30 MicroSTAR micro air vehicle design to reality [EB/OL]. BAE Systems, 2000. http://euler.aero.iitb.ac.in/docs/MAV/www.baesystems.com/microstar.pdf
    
    31 Morris S.J., Holden M. Design of micro air vehicles and flight test validation [EB/OL]. http://www.spyplanes.com
    
    32 Shyy W., Berg M., Ljungqvist D. Flapping and flexible wings for biological and micro vehicles [J]. Progress in Aerospace Sciences, 1999,35: 455-506.
    
    33 Shyy W., Klevebring F. Nilsson M, et al. A study of rigid and flexible low Reynolds number airfoils [J]. Journal of Aircraft, 1999, 36: 523-529.
    
    34 Shyy W., Jenkins D.A., Smith R.W. Study of adaptive shape airfoils at low Reynolds number in oscillatory flows [J]. AIAA Journal. 1997, 35: 1545-1548.
    
    35 Albertani R., Boria F. Development of reliable and mission capable micro air vehicles [EB/OL]. http://www.mil.ful.edu/publications/MAV_2005_Intl_Competion_Korea .pdf, 2005.
    
    36 DeLaurier J.D., Harris J.M. Experimental study of oscillating-wing propulsion [J]. Journal of Aircraft, 1982, 19: 368-373.
    
    37 Kellogg J., Bovais C., Cylinder D., et al. Non-conventional aerodynamics for MAVs [A]. Proceedings of 16th International Conference on Unmanned Air Vehicle Systems [C], Bristol, UK, 2001: 1-12.
    
    38 Pomsin-Sisirak T, Lee S.W. Nassef H., et al. MEMS wing technology for a battery-powered ornithopter[A].Proceedings of 13rd IEEE Annual International Conference on MEMS[C],Miyazald,Japan,2000:709-804.
    39 Pornsin-Sisirak T.N.,Tai Y.C.,Ho C.M.Microbat:a palm-sized electrically powered omithopter[EB/OL].http://ho.seas.ucla.edu/publications/conference/2001/jp110_2001.pdf,2000.
    40 Michelson,R.C,Helmick,D.A reciprocating chemical muscle(RCM) for micro air vehicle "Entomopter" flight(A).Proceedings of the International Conference on Association for Unmanned Vehicle Systems[C],Baltimore,1997:429-435.
    41 Michelson R.C.Planetary exploration using biomimetics-an entomopter for flight on Mars[R].Phase Ⅱ Final Report,NASA Institute for Advanced Concepts Project NAS5-98051,2002.
    42 World's smallest ornithopter wins at micro air vehicle competition[EB/OL].http://uanews.opi.arizona.edu/node/12533,2006.
    43 University of Florida Micro Air Vehicle Laboratory[EB/OL].http://www.mae.ufl.edu/mav /Index.html
    44 美昆虫机试飞成功,重60毫克用于隐秘监视[EB/OL].http://news.163.com/07/0911/12/3040EEN30001121M.html,2007
    45 Fearing F.S.,Chiang K.H.,Dickinson M.H.Wing transmission for a micromechanical flying insect[A].Proceedings of IEEE International Conference on Robotics and Automation[C],San Francisco,USA,2000:1354-1358.
    46 Avadhanula S.,Fearing R.S.Flexure design rules for carbon fiber microrobotic mechanisms[A],Proceedings of IEEE International Conference on Robotics and Automation[C],Barcelona,Spain,2005:1579-1584.
    47 Steltz E.,Avadhanula S.,Fearing R.S.High lift force with 275 Hz wing beat in MFI[A].Proceedings of IEEE International Conference on Intelligent Robots and Systems[C],University of California,USA,2007:3987-3992.
    48 Wang H.,Zeng L.,Liu H.,et al.Measuring wing kinematics,flight trajectory,and body attitude during forward flight and turning maneuvers in dragonflies[J].Journal of Experimental Biology,2003,206:745-757.
    49 Zhang S.,Zeng L.Design of a two-degree of freedom beating-machine[J].Key Engineering Materials,2005,295-296:607-612.
    50 Zhao P.F.,Liu C.Y.,Yang J.M.A flapping model wing experiment for insect flight investigation[A].The 2~(nd) International Symposium on Aero Aqua Bio-Mechanisms[C],Honolulu,Hawaii,2003.
    51 赵攀峰,刘春阳,杨基明.一种扑翼运动的模型实验及流场测量方法[J].实验力学,2004,19(4):408-414.
    52 王铁成.确定低雷诺数翼型转捩分离泡位置的实验研究[J].空气动力学学报,1992,2:235-238.
    53 王晋军,涂建强.平面形状对MAV气动特性的影响[J].空气动力学学报,2007,25(4):474-A78.
    54 Wu J.H.,Sun M.Unsteady aerodynamic forces of a flapping wing[J].Journal of Experimental Biology,2004,207:1413-1427.
    55 Sun M.,Du t2 Lift and power requirements of hovering insect flight[J].Acta Mechanica Sinica,2003,19:458-469.
    56 Sun M.,Xiong Y.Dynamic flight stability of a hovering bumblebee[J].Journal of Experimental Biology,2005,208:447-459.
    57 白鹏.微型飞行器低雷诺数若干空气动力学问题研究[D].北京航空航天气动力技术研究院博士学位论文,2005.
    58 余永亮.昆虫前飞拍翼非定常空气动力学的理论模化研究[D].中国科学技术大学博士学位论文,2004.
    59 黄国平,洪刚,梁德旺.微型飞行器低雷诺数三维流场数值模拟[J].空气动力学学报,2007,25(1):132-136.
    60 李锋,石文,欧忠明.微型飞行器气动特性和飞行控制[J].空气动力学学报,2005,23(1):84-87.
    61 李建华,李锋.低雷诺数反齐默曼机翼的气动特性[J].计算物理,2007,24(1):49-53.
    62 胡宇群.微型飞行器中的若干动力学问题研究[D].南航博士学位论文,2002.
    63 Torres G.,Mueller T.J.Micro aerial vehicle development:design,components,fabrication,and flight-testing[R].Presentation at the AUSVSI Unmanned Systems 2000 Symposium and Exhibition,Orlando,Florida,2000.
    64 崔尔杰.生物运动仿生力学与智能微型飞行器[J].力学与实践,2004,26(2):1-8.
    65 Michael S.S.Experiments on Airfoils at Low Reynolds Numbers[R].AIAA,1996-62,1996.
    66 李锋,白鹏.微型飞行器低雷诺数空气动力学[J].力学进展,2007,37(2):257-268.
    67 Torres G.E.Aerodynamics of Low Aspect Ratio Wings at Low Reynolds Numbers with Applications to Micro Air Vehicle Design and Optimization[D].Ph.D.Dissertation,University of Notre Dame,Indiana,2002.
    68 Anderson J.D.Fundamentals of aerodynamics[M].McGraw-Hill,New York,1991.
    69 Bollay W.A non-linear wing theory and its application to rectangular wings of small aspect ratio[J].Zeitschrift Fur Angewandte Mathematik und Mechanik,1939,19(1):21-35.
    70 Weinig F.Lift and drag of wings with small span[R].NACATM-1151,1947.
    71 Polhamus E.C.A concept of the vortex lift of sharp-edge delta wings based on a leading-edge-suction analogy[R].NASA TN D-3767,1966.
    72 Polhamus E.C.Predictions of vortex-lift characteristics by a leading-edge-suction analogy [J].Journal of Aircraft,1971,8(4):193-199.
    73 Lamar J.E.Extension of leading-edge-suction analogy to wings with separated flow around the side edges at subsonic speeds[R].NASATR R-428,1974.
    74 Lamar J.E.Prediction of vortex flow characteristics of wings at subsonic and supersonic speeds[J].Journal of Aircraft,1976,13(7):490-494.
    75 Hoemer S.F.Fluid-dynamic drag[M].Hoerner Fluid Dynamics,Brick Twon,NJ,1965.
    76 Hoerner S.F.,Borst H.V.Fluid-dynamic lift[M].Hoerner Fluid Dynamics,Brick Town,NJ,1975.
    77 Mueller T.J.,DeLaurier J.D.Aerodynamics of small vehicles[J].Annual Review of Fluid Mechanics,2003,35:89-111.
    78 于鑫,孙茂.小型飞行器空气动力学[J].力学进展,2004,34(2):270-279.
    79 Tones G.E.,Mueller T.J.Aerodynamic Characteristics of Low Aspect Ratio Wings at Low Reynolds Numbers[A].Proceedings of Conference on Fixed,Flapping,and Rotary Wing Vehicles at Very Low Reynolds Numbers[C],Notre Dame,2000.
    80 Chorin A. A numerical method for solving incompressible viscous flow problems [J]. Journal of Computational Physics, 1967, 2: 12-26.
    
    81 Rogers S E, Kwak D. Steady and unsteady solutions of the incompressible Navier-Stokes equations [J]. AIAA Journal, 1989,29(4): 603-610.
    
    82 Rogers S.E., Kwak D. An upwind differencing scheme for the steady-state incompressible Navier-Stokes equations [R]. NASA TM 101051,1988.
    83 Baldwin B.S., Barth T.J. A one-equation turbulence transport model for high Reynolds number wall-bounded flows [R]. NASA TM 102847, 1990.
    84 Thompson J.F., Soni B. Handbook of grid generation [M]. CRC Press, 1998.
    
    85 Gordon W.N., Hall C.A. Construction of curvilinear coordinate systems and application to mesh generation [J]. International Journal for Numerical Methods in Engineering, 1973, 7: 461-477.
    86 Eriksson, L.E. Three-dimensional spline-generated coordinate transformations for grids around wing-body configurations [A]. Numerical Grid Generation Techniques [C], NASA CP-2166, 1980.
    87 Eriksson, L.E. Transfinite mesh generation and computer-aided analysis of mesh effects [D]. University of Uppsala, Sweden, 1984.
    88 Smith, R.E., Wiese, M.R. Interactive algebraic grid generation [R]. NASA TP 2533,1986.
    89 Eiseman, P.R., Smith, R.E. Applications of algebraic grid generation [R]. Proceedings of AGARD Specialist Meeting on Applications of Mesh Generation to Complex 3-D Configurations, 90N21979,1990.
    90 Samareh-Abolhassani, J., Sadrehaghighi, I., Smith, R.E., et al. Applications of Lagrangian blending functions for grid generation around airplane geometries [J]. Journal of Aircraft, 1990,27 (10): 873-877.
    91 Steger J.L., Chaussee D.S. Generation of body fitted coordinates using hyperbolic partial differential equations [J]. SIAM Journal of Scientific and Computing, 1980, 1: 431-437.
    92 Steger J.L., Rizk Y.M. Generation of three dimensional body fitted coordinates using hyperbolic partial differential equations [R]. NASA TM-86753, 1985.
    93 Chan W.M., Steger J.L. A generalized scheme for three-dimensional hyperbolic grid generation JR].AIAA 91-1585,1991.
    94 Tai C.H.,Chiang D.C.,Su Y.E Three-dimensional hyperbolic grid generation with inherent dissipation and Laplacian smoothing[J].AIAA Journal,1996,34(9):1801-1806.
    95 Chan W.M.,Steger J.L.Enhancements of a three-dimensional hyperbolic grid generation scheme[J].Applied Mathematics and Computation,1992,51:181-205.
    96 Gursul I,Taylor G,Wooding B.L.Vortex flows over fixed wing micro air vehicles[R].AIAA 2002-0698,2002.
    97 Micro aerial vehicle research[EB/OL].http://www.nd.edu/~mav/research.htm
    98 杨爱明,翁培奋.基于迎风格式的双曲型网格生成方法[J].空气动力学学报,2003,21(3):109-113.
    99 杨爱明,翁培奋.微型飞行器小展弦比机翼的低雷诺数气动力特性分析[J].空气动力学报,2005,23(1):57-67.
    100 Robert G.K.,Maurice O.F.Effect of wing leading-edge shape on aerodynamic characteristics of a 67~ swept wing-body model at mach 1.5 to 4.63[R].NASA TN D-3634,1966.
    101 Coutier-Delgnsha O.,Rebood J.L.,Fortes-Patella R.Numerical study of the effect of the leading edge shape on cavitation around inducer blade sections[A].Proceedings of 4th International Symposium on Cvitation(CAV'01)[C],Pasadena,California.,USA,2001.
    102 陆宏志,徐力平.压气机叶片前缘形状的改进设计[J].航空动力学报,2000,15(2):129-132.
    103 刘火星,李凌.二维NACA65叶型前缘几何形状对气动性能的影响[J].工程热物理学报,2003,24(2):231-233.
    104 方宝瑞.飞机气动布局设计[M].北京:航空工业出版社,1997.
    105 Eyi S.,Lee K.D.Inverse airfoil design using the Navier-Stokes equation[R].AIAA 93-0972,1993.
    106 Lee K.D.,Eyi S.Aerodynamic design via optimization[C].International Council of the Aeronautical Sciences,1990:1808-1818.
    107 Zhu Z.W.,Chan Y.Y.A new genetic algorithm for aerodynamic design based on geometric concept[R].AIAA 98-2900,1998.
    108 Mosetti G.,Poloni C.Aerodynamic shape optimization by means of genetic algorithm.[A].Proceedings of the 5th International Symposium on Computational Fluid Dynamics[C],Sendal,Japan,1993.
    109 陈国良,王煦法,庄镇泉.遗传算法及其应用[M].北京:人民邮电出版社,1996.
    110 徐成贤,陈志平,李乃成.近代优化方法[M].北京,科学出版社,2002.
    111 Ng T.T.H.,Leng G.S.B.Application of genetic algorithms to conceptual design of a micro-air vehicle[J].Engineering Applications of Artificial Intelligence,2002,15(5):439-445.
    112 Morris,S.J.Design and flight test results for micro-sized fixed-wing and VTOL aircraft [EB/OL].http://www.spyplanes.com/pdf/mavpaper.pdf,2003
    113 Rais-Rohani M.,Hicks G.R.Multidisciplinary design and prototype development of a micro air vehicle[J].Journal of Aircraft,1999,36(1):227-234.114 Ho,S.Unsteady aerodynamics and adaptive flow control of micro air vehicles[D].University of California Los Angeles,2003.
    115 De Jong,K.A.An analysis of the behaviour of genetic adaptive systems[D].University of Michigan,1975.
    116 Goldberg D.E.Genetic algorithm in search,optimization,and machine learning[M].MA:Addison Wesley,1989.
    117 Wright A.Genetic algorithms for real parameter optimization[M].Foundations of Genetic Algorithms.New York:Elsevier,1991:205-218.
    118 隋洪涛,陈红全.基于B样条的气动反设计遗传算法研究[J]_南京航空航天大学学报,1999,31(1):18-23.
    119 Eyi S.,Lee K.D.Inverse airfoil design via optimization[R].AIAA 93-0972,1993.
    120 Hicks R,Herme P.Wing design by numerical optimization[J].Journal of Aircraft,1978,15(7):07-413.
    121 Ramamoorthy P.,Padmavathi K.Airfoil design by optimization[J].Journal of Aircraft,1977,14(2):219-221.
    122 黄国平,洪刚,梁德旺.微型飞行器低雷诺数三维流场数值模拟[J].空气动力学学报,2007,25(1):132-136.
    123 McCroskey,W.J.,McAlister,K.W.,Carr,L.W.,et al.Dynamic stall on advanced of airfoil sections[J].Journal of the American Helicopter Society,1981,26(3):40-50.
    124 Gerontakos P.An Experimental Investigation of Flow over an Oscillating Airfoil[D].Master Dissertation,McGill University,Montreal,Canada,2004.
    125 Mueller T.J.The influence of laminar separation and transition on low Reynolds number airfoil hysteresis[J].Journal of Aircraft,1985,22(9):763-770.
    126 李栋,Igor M.S.,中村佳朗.薄翼失速翼型前缘分离泡对失速特性的影响[J].空气动力学学报,2006,24(3):361-366.
    127 Li D.,Igor M.S.2D RANS simulation for three different stall types[A].Proceedings of the Thirty-fifth Fluid Dynamics Conference of Japan[C],Kyoto,Japan,2003.
    128 Constantinescu G.S.,Pacheco R,Squires K.D.Detached-eddy simulation of flow over a sphere[R].AIAA 2002-0425,2002.
    129 Forsythe J.R.Detached-eddy simulation of fighter aircraft at high alpha[R].AIAA 2002-0591,2002.
    130 Deck S.Zonal-detached-eddy simulation of the flow around a high-lift configuration[J].AIAA Journal,2005,43(11):2372-2384.
    131 Spalart P.R.,Jou W.H.,Strelets M.,et al.Comments on the feasibility of LES for wings,and on a hybrid RANS/LES approach[A].Advances in DNS/LES[C],Columbus,1997:137-147.
    132 Scott Motron.DES and RANS simulations of delta wing vertical flows JR].AIAA 2002-0587.
    133 蒋瑾.基于DES方法的合成射流主动流动控制的数值模拟[D].上海大学硕士学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700