用户名: 密码: 验证码:
利用参量结构解盲源分离算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盲源分离是在源信号与传输信道均未知的情况下,仅利用接收天线的观测数据估计源信号。在过去的二十多年里,盲源分离在诸多研究领域引起了极大关注,广泛应用于语音信号处理,无线通信,图像识别与增强,数据分析以及生物医学信号处理等领域。本文主要研究了利用参量结构解盲源分离新算法。综合起来,本文的主要工作可以概括如下:
     1.在瞬时混合盲源分离情况下,重点关注了联合对角化问题,论述了基于正交联合对角化解盲源分离可辨识性定理以及基于非正交联合对角化解盲源分离可辨识性定理,为联合对角化算法提供了理论基础。随后,提出了一种基于多步分解(MSA)的正交联合对角化算法,该算法既可以像并行算法一样,一次性地恢复所有源信号,也可以根据一个参量指标排序,序贯地提取各个源信号。与经典的同样用于估计正交混迭矩阵,并恢复源信号的SOBI算法相比,所提算法在估计性能上具有优势。
     2.在详细地分析了现存的、用于表征联合对角化近似程度的各代价函数优缺点的基础上,提出了一种基于F-范数代价函数的快速复数域非正交联合对角化算法(CVFFDIAG)。该算法采用乘性迭代机制,每步迭代求解一个严格对角占优更新矩阵,保证了联合对角化器可逆,避免了F-范数代价函数可能产生的平凡解;算法对代价函数的合理性近似,使得求解过程更加简单易操作;算法不需要预白化操作,不要求目标矩阵的正定性,且可以处理复数问题,因而具有极广的适用性;详细的计算复杂度分析表明了该算法计算复杂度低,且简单易执行;大量的仿真实验结果验证了算法收敛速度快且收敛后性能良好。正是由于具备这些优点,该算法几乎可以推广应用于联合对角化算法所能解决的任何问题,作为示例,本文还重点讨论了将算法用于阵列信号处理,解决波达方向估计和谐波恢复问题。
     3.重点关注了卷积混合盲源分离中的联合块对角化问题,将提出的基于多步分解的正交联合对角化算法推广,并行地提出了一种基于多步分解的正交联合块对角化算法,解卷积混合盲源分离问题。
     4.针对许多现存的联合块对角化算法需要预白化操作的缺点,提出了一种不需要预白化的非正交联合块内对角化算法(JBID),由于该算法不需要预白化操作,从而避免了白化引入的误差,而且使得混迭矩阵的块Toeplitz结构得以保留,该算法充分利用了混迭矩阵的块Toeplitz结构以及源信号相关矩阵组的块内对角化结构,实现了只用一步便解决了卷积混合盲源分离问题。
     5.分析发现,当源信号为平稳信号时,卷积混合盲源分离问题中的参量具有更丰富的结构信息可以挖掘并利用,主要表现在,混迭矩阵具有块Toeplitz结构,源信号的连续延时相关矩阵具有块Toeplitz结构,且各块元素又具有对角化结构,并且,各个相关矩阵之间存在联系,具体表现为,它们之间有许多相同的非零元素,这些元素的位置有规律可循并可以作为预知的先验知识。为了充分利用这些结构特点,提出了一种基于块Toeplitz化和块内对角化算法(JBTBID)解卷积混合盲源分离问题。建立了三二次代价函数,并利用三迭代算法循环求取函数的最小点,由于需要充分考虑并利用这些结构信息,导致三迭代算法的三个子步的推导都非常复杂,本文给出了详细缜密的推导过程,并给出了算法严格的计算复杂度分析。JBTBID算法同样取消了多步分解算法中的预白化操作,并且也是只用一步便实现了卷积混合盲源分离,而且,在源信号近似满足平稳性假设的情况下,具有更好的分离性能,同时证明了算法是渐进收敛的。
     6.本文还挖掘汇总了解卷积混合盲源分离中所涉及参量的结构特点,介绍了三种参量结构,其中,最典型的是:在JBTBID的假设条件下,如果采取不同的数据排列方式,则可以得到不同的参量结构特点,具体为:混迭矩阵是块内Toeplitz矩阵;所有的源信号延时相关矩阵都具有块对角结构;所有的源信号相邻延时相关矩阵都具有块内Toeplitz结构;各源信号相邻延时相关矩阵之间有许多共同的非零元素。很明显,在以后提出的新的解卷积混合盲源分离算法中,可以考虑利用这些参量结构以提高算法性能。
Blind source separation (BSS) aims to estimate the source signals, i.e. to demix the mixtures captured by a number of sensors, without knowledge about the actual sources or the mixing procedure. In the past two decades, BSS has received much attention in various fields, such as speech and audio processing, wireless communication, image recognition and enhancement, data analysis and biomedical signal processing, etc. This dissertation attempts to do some research on BSS algorithms based on the utilizations of parametric structures. The main contributions of this dissertation are summarized as follows:
     1. The joint diagonalization structure in instantaneous BSS case is studied. The identifiability theorems of both the orthogonal joint diagonalization based BSS and non-orthogonal joint diagonalization based BSS are introduced, providing a theoretical basis for joint diagonalization based BSS algorithms. Based on these, a multi-step algorithm (MSA) for orthogonal joint diagonalization is proposed to solve BSS problem. This algorithm manages not only to recover all source signals simultaneously but also to extract source signals one by one. Compared with SOBI, which is one classic algorithm for orthogonal joint diagonalization, the MSA has better estimation performance.
     2. Detailed analysis on merits and drawbacks of existed cost functions for joint diagonalization is done. Thereafter, a fast algorithm, named CVFFDIAG (Complex-Valued Fast Frobenius DIAGonalization), for seeking the non-unitary approximate joint diagonalizer of a given set of complex-valued target matrices is proposed. The proposed algorithm adopts a multiplicative update to minimize the Frobenius-norm formulation of the approximate joint diagonalization problem. In each of multiplicative iterations, a strictly diagonally-dominant updated matrix is obtained. This scheme ensures the invertibility of the diagonalizer and thus guarantees the avoidance of the trivial solution to Frobenius-norm cost function. The special approximation of the cost function, the ingenious utilization of some structures and the skilful denotation of concerning variables result in the highly computational efficiency of the algorithm. Furthermore, the CVFFDIAG relaxes several constraints on the target matrices, e.g. unitarity and positive-definiteness assumptions or the real-valued or Hermitian assumption, and thus has more general utilizations. Detailed computational load analysis also shows the low computational complexity of the algorithm. Extensive numerical simulations are performed to illustrate the fast convergence and good performance of the CVFFDIAG. Due to these obvious merits, the CVFFDIAG could be used to solve many problems. We take the algorithm being used to estimate the DOA estimation and harmonica retrieval in array signal processing area as an example to show its various utilizations.
     3. The joint block diagonalization problem of convolutive BSS is paid much attention. The multi-step algorithm for orthogonal joint diagonalization to solve the instantaneous BSS problem is parallel extended to orthogonal joint block diagonalization to solve the convolutive BSS problem.
     4. An non-orthogonal joint block-inner diagonalization (JBID) algorithm, getting rid of the pre-whitening operation, is proposed. The discarding of pre-whitening operation ensures the avoidance of whitening errors and preserves the block Toeplitz structure of the mixing matrix. By fully considering the block-inner diagonalization structure of source signals correlation matrices at different time lags and the block Toeplitz structure of the mixing matrix, the JBID attains to recover all source signals in only one step.
     5. After careful analysis, we discover that there are abundant structure traits contained in parameters of convolutive BSS when the source signals are assumed to be real and stationary. These traits which could be used in our new algorithm are as follows. The mixing matrix possesses Toeplitz structure. The correlation matrices of source signals at successive time lags are block Toeplitz and block-inner diagonalization. Furthermore, these correlation matrices have many common entries. And the coordinates of these entries could be known ahead as a prior knowledge. The main idea behind the proposed algorithm is to implement the joint block Toeplitzation and block-inner diagonalization (JBTBID) of a set of correlation matrices of the observed vector sequence such that the mixture matrix can be extracted. For this purpose, a novel tri-quadratic cost function is introduced. The important feature of this tri-quadratic contrast function enables to develop an efficient algebraic method based on triple iterations for searching the minimum point of the cost function, which is called the triply iterative algorithm (TIA). Since the corresponding variables are highly structured, the derivation procedures in three sub-steps of TIA appear complex and need to be dealt with skill. But we still clearly explain the derivation procedures. We also take a close look at the computational complexity of our algorithm. This algorithm also discards the pre-whitening operation, manages to recover all source signals in only one step, and possesses good performance. Moreover, the asymptotical convergence of JBTBID is shown.
     6. We furthermore take a close look at the parametric structure traits of convolutive BSS and introduce three kinds of structures. We now introduce the representative one among them. Following all assumptions of JBTBID, when the received data are arrayed in different way, different parametric structures can be derived. Concretely speaking, the mixing matrix is block-inner Toeplitz. The correlation matrices of source signals at successive time lags possess block diagonalization and block-inner Toeplitz structures. Also, these correlation matrices have many common entries and the coordinates of these entries could be known ahead. It is obvious that, all these structure traits could be utilized when considering a new algorithm for the convolutive BSS problem.
引文
[1] Cichocki A, Amari S. Adaptive blind signal and image processing: learning algorithms and applications. U.K., New York, Chichester: Wiley. 2002.
    [2] Lee T W. Independent component analysis: theory and application. Dordrecht, Kluwer Academic. 1998.
    [3] Comon P. Independent component analysis: a new concept? Signal Processing. 1994, 36(3): 287-314.
    [4] Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representation. Signal Processing. 2001, 81(11): 2353-2362.
    [5] Hyvarinen A, Karhunen J, Oja E. Independent component analysis. New York, Wiley. 2001.
    [6] Haykin S. Unsupervised adaptive filtering. Vol 1: Blind source separation. New York, Wiley. 2000.
    [7] Stone J V. Independent component analysis: a tutorial introdution. MIT Press. 2004.
    [8] Makino S, Lee T W, Sawada H. Blind speech separation. Springer. 2007.
    [9]张贤达,保铮.通信信号处理.国防工业出版社. 2002.
    [10]杨福生,洪波.独立分量分析的原理与应用.清华大学出版社. 2006.
    [11]史习智.盲信号处理-理论与实践.上海交通大学出版社. 2008.
    [12]杨行峻.人工神经网络与盲信号处理.清华大学出版社. 2003.
    [13]马建仓,牛奕龙,陈海洋,盲信号处理,国防工业出版社, 2006.
    [14]张发启.盲信号处理及应用.西安电子科技大学出版社. 2006.
    [15] Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution. Neural computation. 1995, 7(6): 1004-1034.
    [16] Funaro M, Oja E, Valpola C. Independent component analysis for artifact separation in astrophysical images. Neural Networks. 2003, 16: 173-175.
    [17] Asano F, Ikeda S, Ogawa M, et al. Combined approach of array processing and independent component analysis for blind separation of acoustic signals. IEEE Transactions on Audio, Speech and Language Processing. 2003, 11(3): 204-215.
    [18]凌燮亭.近场宽带信号源的盲分离.电子学报. 1996, 24(7): 87-92.
    [19]张昕,胡波,凌燮亭.盲信号分离在数字无线通信中的一种应用.通信学报. 2000, 21(2): 73-77.
    [20] Lathauwer L D, Moor B D. Fetal electrocardiogram extraction by blind sourcesubspace separation. IEEE Tansactions on Biomedical Engineering. 2000, 47(5): 567-572.
    [21] Zarzoso V, Nandi A K. Noninvasive Fetal Electrocardiogram Extraction: Blind Separation Versus Adaptive Noise Cancellation. IEEE Transactions on Biomedical Engineering. 2001, 48(1): 12-18.
    [22] Jafari M J, Chambers J A. Fetal electrocardiogram extraction by sequential source separation in the wavelet domain. IEEE Tansactions on Biomedical Engineering. 2005, 52(3): 390-400.
    [23] Li X L, Zhang X D. Sequential blind extraction adopting second-order statistics. IEEE Signal Processing Letters. 2007, 14(1): 58-61.
    [24] Rieta J J, Castells F, Sanchez C, et al. Fibrillation Analysis Using Blind Source Atrial Activity Extraction for Atrial Separation. IEEE Transactions on Biomedical Engineering. 2005, 51(7): 1176-1186.
    [25] Joyce C A, Gorodnitsky I F, Kutas M. Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology. 2004, 41(2): 313-325.
    [26] Hong B, Yang F S, Pan Y F, et al. Single-trial estimation and analysis of PVEP based on independent component analysis. Tsinghua Science and Technology. 2001, 6(5): 503-508.
    [27]公昱文,张桂芸,马洪芝. ICA算法在fMRI中的应用.计算机工程与科学. 2008, 30(10): 37-39.
    [28] Lee T W, Lewicki M S. Unsupervised classification, segmentation, de-noising of images using ICA mixture models. IEEE Transactions on Image Processing. 2002: 270-279.
    [29] Liu C, Wechsler H. Independent component analysis of Gabor features for face recognition. IEEE Transactions on Neural Networks. 2003, 14(4): 919-928.
    [30] Fiori S. Overview of independent component analysis technique with an application to synthetic aperture radar (SAR) imagery processing. Neural Networks. 2003, 16: 453-467.
    [31] Chiu S, Lub C, Wenc D. A histogram based data-reducing algorithm for the fixed-point independent component analysis. Pattern Recognition Letters. 2007, 29(3): 5-6.
    [32]倪晋平.水声信号盲分离技术研究.西北工业大学博士学位论文. 2002.
    [33]倪晋平,马远良,杨坤德.水声信号盲分离的实数算法与复数算法.西北工业大学学报. 2002, 20(1): 44-48.
    [34] Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis. IEEE Transactions on Neural Networks. 2002, 13(6): 1450-1464.
    [35]谢德光,张贤达,李细林,等.基于独立分量分析的雷达目标识别方法.系统工程与电子技术. 2007, 29(2): 64-166.
    [36] Back A D, Weigend A S. What drives stock returns? an independent component analysis. Proceedings of the IEEE/IAFE/INFORMS 1998 Conference on Computational Intelligence for Financial Enginccring(CIFEr). 1998: 141-156.
    [37]魏巍.盲信号处理技术在地震数据处理中的应用研究.中国地质大学博士论文. 2009.
    [38] Herault J, Jutten C. Space or time adaptive signal processing by neural network models. AIP Conference Proceeding on Neural Network for Computing. 1986: 151.
    [39] Jutten C, Herault J. Blind separation of soueces, Part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing. 1991, 24(1): 1-10.
    [40] Comon P, Jutten C, Herault J. Blind separation of sources, Part II: Problems statement. Signal Processing. 1991, 24(1): 11-20.
    [41] Tong L, Liu R, Soon V C, et al. Indeterminacy and identifiablity of blind identification. IEEE Transactions on Signal Processing. 1991, 38(5): 499-509.
    [42] Cardoso J F, Souloumiac A. Blind beamforming for non-Gaussian signals. IEE Proceedings-F. 1993, 140(6): 362-370.
    [43] Amari S, Cichocki A, Yang H. A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems, MIT Press: Cambridge, MA. 1996: 757-763.
    [44] Cardoso J F, Laheld B H. Equivariant adaptive source separation. IEEE Transactions on Signal Processing. 1996, 44(12): 3017-3030.
    [45] Oja E, Karhunen J, Wang L, et al. Principle and independent components in neural networks-recent developments. Proceedings of The 7th Italian Workshop Neural Networks (WIRN'95), Vietri, Italy. 1995: 20-26.
    [46] Lee T, Sejnowski T J. Independent component analysis for sub-gaussian super-gaussian mixtures. In 4th Joint Symposium on Neural Computation Institute Neural Computation. 1997: 132-139.
    [47] Yang H H, Amari S. Adaptive on-line learning algorithms for blind separation: maximum entropy and minimum mutual information. Neural computation. 1997, 9(7): 1457-1482.
    [48] Amari S. Natural gradient works efficiently in learning. Neural computation. 1998, 10(1): 251-276.
    [49] Hyv?rinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks. 1999, 10(3): 626-634.
    [50] Hyvarinen A, Oja E. A Fast fixed-point algorithm for independent component analysis. Neural computation. 1997, 9(7): 1483-1492.
    [51] Belouchrani A, Abed-Meraim K, Cardoso J F, et al. A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing. 1997, 45(2): 433-443.
    [52] Afsari A. Simple LU and QR based non-orthogonal matrix joint diagonalizaiton. Proceedings of 6th Intitute Conference on ICA & BSS, Berlin Germany. 2006: 1-7.
    [53] Wang F X, Liu Z K, Zhang J. Nonorthogonal joint diagonalization algorithm based on trigonometric parametrization. IEEE Transactions on Signal Processing. 2007, 55(11): 5299-5308.
    [54] Souloumiac A. Nonorthogonal joint diagonalization by combining Givens and Hyperbolic rotation. IEEE Transactions on Signal Processing. 2009, 57(6): 2222-2231.
    [55] Sidiropoulos N D, Bro R, Giannakis G B. Parallel factor analysis in sensor array processing. IEEE Transactions on Signal Processing. 2000, 48(8): 2377-2388.
    [56] Van der Veen A J. Joint diagonalization via subspace fitting techniques. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Process (ICASSP). 2001, 5: 2773-2776.
    [57] Vollgraf R, Obermayer K. Quadratic optimization for simultaneous matrix diagonalization. IEEE Transactions on Signal Processing. 2006, 54(9): 3270-3278.
    [58] Yeredor A. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Transactions on Signal Processing. 2002, 50(7): 1545-1553.
    [59] Feng D Z, Zhang X D, Bao Z. An efficient multistage decomposition approach for independent components. Signal Processing. 2003, 83(1): 181-197.
    [60] Li Y Q, Wang J. Sequential blind extraction of instantaneously mixed sources. IEEE Transactions on Signal Processing. 2002, 50(5): 997-1006.
    [61] LI X L, Zhang X D. Sequential blind extraction adopting Second-order statistics. IEEE Transactions on Signal Processing. 2006, 14(1): 58-61.
    [62] Huang X, Wu H C, Principle J C,“Robust blind beamforming algorithm using joint multiple matrix diagonalization. IEEE Sensors Journal. 2007, 7(1): 130-136.
    [63] Afsari B. What can make joint diagonalization difficult. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Process (ICASSP). 2007, 3: 1377-1380.
    [64] Pham D T. Joint approximate diagonalization of positive definite Hermitian matrices. SIAM Journal of Matrix Analysis and Applications. 2001, 22: 1136–1152.
    [65] Todros K, Tabrikian J. Fast approximate joint diagonalization of positive definite Hermitian matrices. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Process (ICASSP). 2007, 3: 1373-1376.
    [66] Ziehe A, Laskov P, Nolte G. A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation. Journal of Machine Learning and Reseach. 2004, 5: 777-800.
    [67] Li X L, Zhang X D. Nonorthogonal joint diagonalization free of degenerate solution. IEEE Transactions on Signal Processing. 2007, 55(5): 1803-1814.
    [68] Dégerine S, Kane E. A comparative study of approximate joint diagonalization algorithms for blind source separation in presence of additive noise. IEEE Transactions on Signal Processing. 2007, 55(6): 3022-3031.
    [69] Tichavsky P, Yeredor A. Fast approximate joint diagonalization incorporating weight matrices. IEEE Transactions on Signal Processing. 2009, 57(3): 878-891.
    [70]胡波,凌燮亭. Hebbian无导师学习原理的盲均衡: (I)最小相位通道.通信学报. 1994, 15(5): 17-24.
    [71]胡波,凌燮亭. Hebbian无导师学习原理的盲均衡: (II)非最小相位通道.通信学报. 1994, 15(6): 17-22.
    [72]凌燮亭.延时狭带信号的自学习盲分离.电子学报. 1995, 23(1): 28-33.
    [73]张贤达.时间序列分析--高阶统计量方法.北京,清华大学出版社. 1996.
    [74]张贤达,保铮.盲信号分离.电子学报. 2001, 29(12): 1766-1771.
    [75]张贤达.盲信号处理几个关键问题的研究.深圳大学学报(理工版). 2004, 21(3): 196-200.
    [76]张贤达,朱孝龙,保铮.基于分阶段学习的盲信号分离.中国科学E辑. 2002, 32(5): 693-703.
    [77] Zhu X L, Zhang X D, Ye J M. Natural gradient-based recursive least-squares algorithm for adaptive blind source separation. Science in China, Series F. 2004,47: 55-65.
    [78] Ye J M, Zhu X L, Zhang X D. Adaptive blind separation with an unknown number of sources. Neural computation. 2004, 16(8): 1641-1660.
    [79] Lv Q, Zhang X D. A Unified Method for Blind Separation of Sparse Sources With Unknown Source Number. IEEE Signal Processing Letters. 2006, 13(1): 49-51.
    [80] Yang H, Zhang X D. A fast maximum likelihood sequence decoding method for multi-caxrier DS-CDMA using frequency spread coding. IEEE Transactions on Wireless Communications. 2004, 3(3): 770-780.
    [81]刘琚,梅良模,何振亚.一种盲信号分离的信息理论方法.山东大学学报(自然科学版). 1998, 33(4): 398-403.
    [82]刘琚,聂开宝,何振亚.非线性混叠信号的可分离性及分离方法研究.电子与信息学报. 2003, 25(1): 54-61.
    [83]刘琚,孙建德,张新刚.基于ICA的数字水印的方法.电子学报. 2004, 32(4): 657-660.
    [84]谷波,刘琚,许宏吉.波束空时分组编码的ICA盲检测方案.电子与信息学报. 2007, 29(1): 105-108.
    [85]何振亚,杨绿溪,刘琚,等.基于多变量密度估计的盲源分离方法.电子与信息学报. 23(4): 345-353.
    [86] Feng D Z, Zhang X D, Bao Z. A neural network learning for adaptively extracting crosscorrelation features between two high dimensional data streams. IEEE Transactions on Neural Networks. 2004, 15(6): 1541-1554.
    [87]虞晓,胡光锐.基于统计估计的盲信号分离算法.上海交通大学学报. 1999, 33(5): 566-569.
    [88]洪波,唐庆玉,杨福生. ICA在视觉诱发电位的少次提取与波形分析中的应用.中国生物医学工程学报. 2000, 19(3): 334-341.
    [89]谢胜利,王杰.一个基于盲信号分离的多路回波消除结构.电子学报. 2004, 32(7): 1124-1126.
    [90]章晋龙,何昭水,谢胜利,等.多个源信号混叠的盲分离几何算法.计算机学报. 2005, 28(9): 1575-1580.
    [91]何昭水,谢胜利,傅予力.信号的稀疏性分析.自然科学进展. 2006, 16(9): 1167-1173.
    [92]倪晋平,马远良,孙超,等.用独立成份分析算法实现水声信号盲分离.声学学报. 2002, 27(4): 321-326.
    [93]倪晋平,马远良,鄢社锋.基于高阶累积量的复数混合矩阵盲估计算法.电子与信息学报. 2002, 24(11): 1506-1511.
    [94]倪晋平,马远良,鄢社锋,等.水声信号盲分离算法性能评价准则.探测与控制学报. 2002, 24(2): 40-44.
    [95]吴小培,冯焕清,周荷琴,等.独立分量分析及其在脑电信号预处理中的应用.北京生物医学工程. 2001, 20(1): 35-37.
    [96]楼红伟,胡光锐.基于小波域的非平稳卷积混合语音信号的自适应盲分离.控制与决策. 2004, 19(1): 73-76.
    [97]李舜酩,杨涛.基于峭度的转子振动信号盲分离.应用力学学报. 2007, 4: 560-565.
    [98] Buchner H, Aichner R, Kellermann W. A generalization of blind source separation algorithm for convolutive mixtures based on second-order statistics. IEEE Transactions on Speech and Audio Processing. 2005, 13(1): 120-134.
    [99] Smaragdis P. Blind separation of convolved mixtures in the frequency domain. Neurocomputing. 1998, 22: 21-34.
    [100] Araki S, Makino S, Nishikawa T, et al. Fundamental limitation of frequency domain blind source separation for convolutive mixture of speech. IEEE Transactions on Speech and Audio Processing. 2003, 11(2): 109-116.
    [101] Parra L, Spence C. Convolutive blind separation of nonstationary sources. IEEE Transactions on Signal Processing. 2000, 8(3): 320-327.
    [102] Kurita S, Saruwatari H. Evaluation of blind signal separation method using directivity pattern under reverberant conditions. Proceedings of IEEE Acoustics, Speech, Signal Processing. 2000: 3140-3143.
    [103] Ikram M Z, Morgan D R. A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation. 2002: 881-884.
    [104] Saruwatari H, Kawamura T, Nishikawa T, et al. Blind source separation based on a fast-convergence algorithm combining ICA and beamforming. IEEE Transactions on Speech and Audio Processing. 2006, 14(2): 666-678.
    [105] Zhou Y, Xu B. Blind source separation in frequency domain. Signal Processing. 2000, 83: 2037-2046.
    [106] Sawada H, Mukai R, Araki S. A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Transactions on Speech and Audio Processing. 2004, 12(5): 530-538.
    [107] Anemuller J, Kollmeier B. Amplitude modulation decorrelation for convolutive blind source separation. Proceedings of the International Workshop on Independent Component Analysis and Blind Signal Separation. 2000: 215-220.
    [108] Murata N, Ikeda S, Ziehe A. An approach to blind source separation based on temporal structure of speech signals. Neurocomputing. 2001, 41: 1-24.
    [109] Yellin D, Weinstein E. Multichannel signal separation: methods and analysis. IEEE Transactions on Signal Processing. 1996, 44(1): 106-118.
    [110] Sun X, Douglas S C. Multichannel blind deconvolution of arbitrary signals: adaptive algorithms and stabiltiy analyisis. Proceedings of 34th Asilomar Conference on Signals System Computer. 2000, 2: 1412-1416.
    [111] Tong L. Identification of multichannel MA parameters using higher order statistics. Signal Processing. 1996, 53: 195-209.
    [112] Liang J, Ding Z. Blind MIMO system identification based on cummulant subspace decomposition. IEEE Transactions on Signal Processing. 2003, 51(6): 1457-1468.
    [113] Castella M, Rhioui S, Moreau E, et al. Quadratic higher order criteria for iterative blind separation of a MIMO convolutive mixture of sources. IEEE Transactions on Signal Processing. 2007, 55(1): 218-232.
    [114] Choi S, Hong H, Glotin H, et al. Multichannel signal separation for cocktail party speech recognition: a dynamic recurrent network. Neurocomputing. 2002, 49: 299-314.
    [115] Douglas S C, Sawada H, Makino S. Natural gradient multichannel blind deconvolution and speech separation using causal FIR filters. IEEE Transactions on Speech and Audio Processing. 2005, 13(1): 92-104.
    [116] Weinstein E, Feder M, Oppenheim A V. Multi-channel signal separation by decorrelation. IEEE Transactions on Speech and Audio Processing. 1993, 1(4): 405-413.
    [117] Gerven V S, Compernolle V D. Signal separation by symmetric adaptive decorrelation stability, convergence and uniqueness. IEEE Transactions on Signal Processing. 1995, 43(7): 1602-1612.
    [118] Kawamoto M, Matsuoka K, Ohnishi N. A method of blind separation for convolved non-stationary signals. Neurocomputing. 1998: 157-171.
    [119] Moulines E, Duhamel P, Cardoso J F, et al. Subspace methods for the blind identification of multichannel FIR filters. EEE Transactions on Signal Processing. 1995, 43: 516-525.
    [120] Tong L, Xu G, Kailath T. Blind identification and equalization based on second-order statistics: a time domain approach. IEEE Transactions on Information Theory. 1994, 40: 340-350.
    [121] Xu G. A least-squares approach to blind channel identification. IEEE Transactions on Signal Processing. 1995, 43(11): 2982-2993.
    [122] Abed-Meraim K. Prediction error method for second-order blind identifycation. IEEE Transactions on Signal Processing. 1997, 45(3): 694-705.
    [123]郑勇,冯大政.基于子空间方法的多输入多输出信道盲辨识与均衡.自然科学进展. 2006, 16(4): 463-469.
    [124] Gorokhov A, Loubaton P. Subspace-based techniques for blind separation of convolutive mixtures with temporally correlated sources. IEEE transactions on Circuits and Systems. 1997, 44(9): 813-820.
    [125] Bousbia-Salah H, Belouchrani A. Jacobi-like algorithm for blind signal separation of convolutive mixtures. Electronics Letters. 2001, 36(16): 1049-1050.
    [126] Bousbia-Salah H, Belouchrani A, Abed-Meraim K. Blind separation of convolutive mixtures using joint block diagonalization. EEE proceedings of International Symposium on Signal Processing and its Applications (ISSPA'01). 2001, 1: 13-16.
    [127] Abed-Meraim K, Belouchrani A. Algorithms for joint block diagonalization. Proceedings of 12th European Signal Processing Conference (EUSIPCO'04), Vienna, Austria. 2004: 209-212.
    [128] Theis F J. Blind signal separation into group of dependent signals using joint block diagonalization. Proceedings of. International Symposium on Circuits and Systems, Kobe, Japan. 2005: 5878-5881.
    [129] Fevotte C, Theis F J. Orthogonal approximate joint block-diagonalization. Technical Report GET/Télécom, Pairs. 2007:
    [130] Ghennioui H, Fadaili E M, Moreau N T. A nonunitary joint block diagonalization algorithm for blind separation of convolutive mixtures of sources. IEEE Signal Processing Letters. 2007, 14(11): 860-863.
    [131] Fadaili E M, Moreau T N, Moreau E. Non-orthogonal joint diagonalization/zero-diagonalization for source separation based on time-frequency distributions. IEEE Transactions on Signal Processing. 2007, 55(5): 1673-1687.
    [132] Haykin S. Adaptive Filter Theory. NJ, Englewood Cliffs: Prentice-Hall. 1998.
    [133] Sato A. A method of self-recovering equalization for multilevel amplitude modulation systems. IEEE Transactions on communations. 1975, 23(6): 679-682.
    [134] Godard D N. Self-recovering equalization carrier tracking in two-dimensional data communications systems. IEEE Transactions on communations. 1980, 28: 1867-1875.
    [135] Johnson C R, Schniter J P, Endres T J, et al. Blind equalization using the constant modulus criterian: A review. Proceedings of IEEE. 1998, 86: 1927-1950.
    [136] Shalvi O, Weinstein E. Super-exponential method for blind deconvolution. IEEE Transactions on Information Theory. 1993, 39(2): 504-519.
    [137] Li X L. A new gradient search interpretation of super-exponential algorithm. IEEE Signal Processing Letters. 2006: 173-176.
    [138] Regalia P A. On the equivalence between the Godard and Shalvi-Weinstein schemes of blind deconvolution. IEEE Transactions on Signal Processing. 1999, 73: 185-190.
    [139]何振亚,刘琚,杨绿溪,等.盲均衡和信道参数估计的一种ICA和进化计算方法.中国科学E辑. 2000, 30(1): 1-7.
    [140]苏野平,何量,杨荣震,等.一种改进的基于高阶累积量的语音盲分离算法.电子学报. 2002, 30(7): 956-958.
    [141]蓝宏,宋梁,胡波,等.一种基于改进的自相关匹配准则的盲均衡算法.电子学报. 2003, 31(7): 1095-1097.
    [142]丛进,杨绿溪.基于QR分解的MIMO信道盲辨识和盲均衡方法.电子学报. 2004, 32(10): 1589-1593.
    [143]周德鑫,冯大政,赵梦.利用高阶累积量的盲多输入多输出系统辨识.系统工程与电子技术. 2005, 21(17): 1837-1840.
    [144] Mei T M, Xi J T, Yin F L, et al. Blind source separation based on time-domain optimization of a frequency-domain independence criterion. IEEE Transactions on Audio, Speech and Language Processing. 2006, 14(6): 2075-2085.
    [145] Blaschke T, Wiskott L. CuBICA: independent component analysis by simultaneous third- and fourth-order cumulant diagonalization. IEEE Transactions on Signal Processing. 2004, 52(5): 1250-1256.
    [146] Zhu X L, Zhang X D, Ding Z Z, et al. Adaptive nonlinear PCA algorithms for blind source separation without prewhitening. IEEE transactions on Circuits and Systems-I: Regular Papers. 2006, 53(3): 745-753.
    [147] Yin F L, Mei T M, Wang J. Blind source separation based on decorrelation and nonstationarity. IEEE transactions on Circuits and Systems-I: Regular Papers. 2007, 54(5): 1150-1158.
    [148] Belouchrani A, Cichocki A. Robust Whitening Procedure in Blind Source Separation Context. Electronics Letters. 2000, 36(24): 2050-2051.
    [149] Yeredor A. Blind channel estimation using first and second derivatives of the characteristic function. IEEE Signal Processing Letters. 2002, 9(3): 100-103.
    [150] Yeredor A. Blind source separation via the second characteristic function. Signal Processing. 2000, 80(5): 897-902.
    [151] Eidinger E, Yeredor A. Blind source separation via the second Characteristic function with asymptotically optimal weighting. Proceedings of IEEE. 2004: 2004.
    [152] Eidinger E, Yeredor A. Blind MIMO identification using the second characteristic function. IEEE Transactions on Signal Processing. 2005, 53(11): 4067-4079.
    [153] Pham DT, Cardoso J F. Blind separation of instantaneous mixtures of nonstationary sources. IEEE Transactions on Signal Processing. 2001, 49(9): 1837-1848.
    [154] van der Veen A J, Paulraj A. An analycal constant modulus algorithm. IEEE Transactions on Signal Processing. 1996, 44(5): 1136-1156.
    [155]岳博,焦李成.一种新的联合对角化算法.电子与信息学报. 2003, 25(7): 892-895.
    [156] Tong L, Inouye Y, Liu R W. Waveform-preserving blind estimation of multiple independent sources. IEEE Transactions on Signal Processing. 1993, 41(7): 2461-2470.
    [157] Zhang H, Feng D Z, Zheng W X. A study of identifiability for blind source separation via non-orthogonal joint diagonalization. ISCAS. 2008: 3230-3233.
    [158] Micka O J, Weiss A J. Estimating frequencies of exponentials in noise using joint diagonalization. IEEE Transactions on Signal Processing. 1999, 47(2): 341-348.
    [159] Nie W K, Feng D Z. Two-dimensional frequency estimation using non-unitary joint diagonalisation. Electronics Letters. 2008, 44(9): 603-604.
    [160] Weiss A J, Friedlander B. Direction finding via joint diagonalization. Proceedings of IEEE Signal Processing Workshop on Statistical Signal and Array Processing (SSAP). 1996: 66-69.
    [161] Zeng W J, Li X L, Zhang X D. Direction-of-arrival estimation based on the joint diagonalization structure of multiple fourth-order cumulant matrices. IEEE Signal Processing Letters. 2009, 16(3): 164-167.
    [162] Joho M, Rahbar K. Joint diagonalization of correlation matrices by using Newton methods with application to blind signal separation. Proceedings of Sensor Array and Multichannel Signal Processing Workshop. 2002: 403-407.
    [163] Joho M, Rahbar K. Joint diagonalization of correlation matrices by using Gradient methods with application to blind signal separation. Proceedings of Sensor Array and Multichannel Signal Processing Workshop. 2002: 273-277.
    [164] Ziehe A, Laskov P, Muller K R, et al. A linear least-squares algorithm for joint diagonalization. Proceedings of 4th Internation Symposium on Independent Component Analysis and Blind Signal Separation. 2003: 469-474.
    [165] Wang W W, Sanei S, Chambers J A. Penalty function-based joint diagonalization approach for convolutive blind separation of nonstationary sources. IEEE Transactions on Signal Processing. 2005, 53(3): 1654-1669.
    [166] Golub G H, Loan C F V. Matrix Computation. Baltimore MD, Johns Hopkins University Press. 1989.
    [167] Cardoso J F. Source separation using higher-order moments. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Process (ICASSP). 1989: 2109-2112.
    [168] Horn A, Johnson C R. Matrix Analysis. Cambridge, Cambridge University Press. 1985.
    [169] Feng D Z, Zheng W X, Cichocki A. Matrix-group algorithm via improved whitening process for extracting statistically independent sources from array signals. IEEE Transactions on Signal Processing. 2007, 55(3): 962-977.
    [170] Pourrostam J, Zekavat S A, Pourkhaatoun M. Super-resolution direction-of-arrival estimation via blind signal separation methods. IEEE Radar Conference. 2007: 614-617.
    [171]张华,冯大政,聂卫科,等.非正交联合对角化盲源分离算法.西安电子科技大学学报. 2008, 35(1): 27-31.
    [172]聂卫科,冯大政,张华.空时矩阵组三迭代DOA估计新方法.系统工程与电子技术. 2008, 30(3): 404-408.
    [173] Roy R, Kailath T. ESPRIT-Estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustic, Speech and Signal Processing. 1989, 37(7): 984-995.
    [174] He Z, Xie S, Ding S, et al. Convolutive blind source separation in the frequency domain based on sparse representation. IEEE Transactions on Audio, Speech and Language Processing. 2007, 15(5): 1551-1563.
    [175] Rahbar K, Reilly J P. A frequency domain method for blind source separation of convolutive audio mixtures. IEEE Transactions on Speech and Audio Processing. 2005, 13(5): 832-844.
    [176] Abed-meraim K, Loubaton P, Molines E. A subspace algorithm for certain blind identification problems. IEEE Transactions on Information Theory. 1997, 43(2): 499-510.
    [177] Thomas J, Deville Y, Hosseini S. Time-domain fast fixed-point algorithms for convolutive ICA. IEEE Signal Processing Letters. 2006, 13(4): 228-231.
    [178] Ma C T, Ding Z, Yau S F. A two-stage algorithm for MIMO blind deconvolution of nonstationary colored signals. IEEE Transactions on Signal Processing. 2000, 48(4): 1187-1192.
    [179] Huang Y T, Benesty J, Chen J D. A blind channel identification-based two-stage approach to separation and dereverberation of speech signals in a reverberant environment. IEEE Transactions on Speech and Audio Processing. 2005, 13(5): 882-895.
    [180] Zarzoso V, Nandi A K. Blind MIMO equalization with optimum delay using independent component analysis. International Journal of Adaptive Control Signal Processing. 2004, 18: 245-263.
    [181] LaSalle J P. The Stability of Dynamical Systems. Philadelphia, PA, SIAM Press. 1976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700