用户名: 密码: 验证码:
自噬体形成和UPR信号通路激活在心肌慢性缺氧适应中意义的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     紫绀型先心病是临床常见的先天性畸形,心肌慢性缺氧是此类患者共同的病理生理过程。心肌慢性缺氧适应是促进心肌细胞存活和生长的关键,但是心肌慢性缺氧适应的确切机制尚不清楚。
     低氧时,内质网中蛋白质正确折叠发生障碍,导致未折叠蛋白和异常折叠蛋白质的堆积,引起内质网应激(ER stress)。未折叠蛋白反应(UPR)是内质网应激时适应性代偿的重要信号通路之一。内质网应激同时能够增强细胞自噬能力。细胞自噬和UPR被认为可能是缓解内质网应激的重要途径。深入研究慢性缺氧对心肌细胞中细胞自噬和UPR的活化及可能作用,将有助于深化对心肌慢性缺氧适应的认识。本实验分别在紫绀型先天性心脏病患儿心肌组织标本中观察细胞自噬变化;在心肌组织标本和体外培养的心肌细胞慢性缺氧模型上,研究慢性缺氧对心肌细胞中UPR活性变化的影响,并探讨细胞自噬和UPR在心肌慢性缺氧适应中的意义。
     研究方法:
     本研究分三部分:
     第一部分:统计分析2008年在我科行先心病手术治疗患儿的临床特征和恢复、预后的关系;
     第二部分:选取紫绀型和非紫绀型先天性心脏病患儿,收集手术中切除的肥厚右室流出道心肌组织。透射电镜观察心肌细胞中自噬体的形成;western blotting检测LC3Ⅱ/LC3Ⅰ比值的变化,检测细胞自噬的变化;免疫组化观察GRP78/Bip在心肌组织中的表达;提取心肌组织的总RNA,采用RT-PCR检测GRP78/Bip和XBP-1s mRNA表达水平;提取心肌组织的总蛋白,应用Western blot检测XBP-1s蛋白表达水平,PERK、eEF2α磷酸化水平以及ATF6f的表达水平;
     第三部分:体外培养H9c2大鼠心肌细胞株,将细胞暴露于1% O2、5% CO2的环境中建立缺氧细胞模型,培养不同时间段后,提取心肌细胞的总RNA,应用RT-PCR检测GRP78/Bip和XBP-1s mRNA表达水平的变化;提取心肌细胞的总蛋白,应用Western blot检测第二部分实验指标的变化。
     研究结果:
     主要结果如下:
     1、紫绀型先心病患者在术前心肌酶谱、术中转流时间、术后ICU监护时间和心包引流量方面显著高于非紫绀型先心病患者。说明紫绀型先心病患者虽然在术前与非紫绀型先心病患者差异不大,但实际病情更重,预后差,恢复时间长;
     2、紫绀型先天性心脏病患儿心肌组织中可观察到自噬体的存在,且LC3Ⅱ/LC3Ⅰ比值显著升高,提示细胞自噬作用增强;
     3、与非紫绀组相比,紫绀型先天性心脏病患儿心肌组织中GRP78/Bip蛋白表达明显增强(p < 0.001)。免疫组化检测表明GRP78/Bip在胞浆中有较强的表达。相似的,GRP78/Bip mRNA表达水平显著升高(p < 0.01);
     4、紫绀型先心病患儿心肌组织中PERK活性和ATF6活性均显著增强(p < 0.001),但是IRE1活性无显著变化(p > 0.05);
     5、体外细胞实验研究发现:在缺氧条件下UPR活性表现出缺氧时间依赖性的变化。其中,IRE1在缺氧的最初6小时内升高最快,6小时左右达到高峰,此后逐渐降至正常对照水平;PERK活性在12小时左右达到高峰,此后维持在较低但高于对照水平; ATF6活性在24小时内逐渐升高,在12小时左右达到高峰,此后维持在较低但高于对照水平;
     结论:
     1.紫绀型先心病患者术前存在一定程度的心肌损害,表现为术前心肌酶谱升高。
     2.首次观察到紫绀型先心病患儿心肌组织中细胞自噬体形成,UPR三条信号通路激活,尤其ATF6和PERK信号通路活性增加明显。
     3.建立H9c2心肌细胞株慢性缺氧细胞模型;慢性缺氧时IRE-1信号通路早期活性升高,随后逐渐降低至正常水平,ATF6和PERK信号通路活性水平均出现先逐渐升高后稳定在高水平的趋势。
     综上所述,自噬体形成和UPR信号通路激活对慢性缺氧条件下,心肌细胞的存活和功能调节可能有重要意义。
Background and Objective:
     Congenital heart disease, especially cyanotic cardiac defects which result in chronic hypoxia in the neonate until operative correction is achieved, remains a major cause of death in infancy. Myocardial adaptation to chronic hypoxia is critical for the survival and function of cardiomyocytes. Under hypoxic condition, the maturation of protein in the cardiomyocyte was frustrated. Many misfolded or unfolded protein accumulating in the endoplasmic reticulum (ER) triggers ER stress. Cells have developed elaborate protein quality control systems that recognize improperly folded proteins and either refold them or facilitate their degradation. One such quality control system is the unfolded protein response, or the UPR. The UPR is a highly conserved signal transduction system that is activated when cells are subjected to ER stress in ways that impair the folding of nascent proteins in this organelle. Recent observations indicate that in the heart, the UPR is activated during acute stresses, including ischemia/reperfusion. However, the roles of UPR in the longer term stresses such as chronic hypoxia have not been well defined.
     Autophagy is an evolutionarily conserved process that results in the degradation of cytosolic components inside lysosomes. Under normal conditions, it is a nonstop, reparative, life-sustaining mechanism for recycling cellular components, such as long-lived proteins and damaged organelles. Therefore, autophagy is thought to be involved in many physiological processes, including cellular differentiation, tissue remodeling, growth control, cell defense and adaptation to an adverse environment. Autophagy can be stimulated and this occurs as a cellular response to both extracellular (e.g. nutrient starvation, hypoxia, overcrowding, high temperature) and intracellular (e.g. accumulation of damaged or superfluous organelles) stress conditions. Also, both ER stress and the UPR could trigger autophagy. However, whether autophagy plays a protective role in cardiomyocytes under chronic hypoxia is unclear.
     So, the aim of this study is to provide an insight into the involvement of autophagy and the UPR in the myocardial adaptation to chronic hypoxia both in vivo and in vitro.
     Methods:
     Samples taken from the right ventricular outflow tract were collected from patients with cyanotic(n = 19) or acyanotic (n = 12) congenital heart disease. Autophagosome was studied by electromicroscopy, while the protein level of LC3Ⅰand LC3Ⅱwere evaluated by western blotting. For the activity of UPR, the expression of Bip was examined by immunohistochemistry, while XBP-1 splicing mRNA and Bip mRNA were tested by RT-PCR. The XBP-1s protein, phorspho-eIF2α, Bip, ATF6f and phorspho-PERK were tested by western blotting.
     To evaluated the effect of chronic hypoxia on each branch of the UPR in the cardiomyocytes in vitro, primary rat cardiomyocytes and embryonic rat-heart-derived H9c2 cells were cultivated and exposed to 1.0% O2, 5.0% CO2 for different durations to establish the chronic hypoxic cell model. Control cells were cultivated in the same conditions except for 21% O2 concentration. After different duration of hypoxic exposure, cells were collected and subjected to RT-PCR and western blot to detecting the mRNA and protein expression of the UPR.
     Results:
     1. By electron microscope, we found autophagosome in the cytoplasm.The rate of LC3Ⅱ/LC3Ⅰwas increased (p < 0.001) in the myocardium from patient with cyanotic cardiac defect.
     2. Immunohistochemistry revealed that GRP78/Bip was expressed in the cytoplasm. The protein levels of GRP78/Bip were significantly elevated (p < 0.001) in patients with cyanotic compared to acyanotic congenital heart disease. Also, the expression of GRP78/Bip mRNA were markedly increased in cyanotic patients (p < 0.05).
     3. Western blot analysis revealed that the level phospho-PERK, phorspho-eIF2αwas elevated in cyanotic hearts compared with their acyanotic counterparts (p < 0.001); also, the level of ATF6 fragment was increased (p < 0.01). However, there are no significant difference about the XBP-1 splicing mRNA and XBP-1s protein expression in this two groups (p > 0.05).
     4. The expression of XBP-1 splicing mRNA and XBP-1s protein in hypoxic cultivated H9c2 cells were significantly increased in the first 6h after exposed to hypoxia. And, it decreased sharply to the control level.
     5. In hypoxia-esposed cells, the levels of phospho-PERK, phorspho-eIF2αwere increased in the first 12h, and stayed at nearly that high level during the period of hypoxia.
     6. Similarily, ATF6 fragment, Bip mRNA and rotein were all increased in the 24h after exposed to hypoxia, and remained highly expression.
     Conclusions:
     Expression of autophagy was increased in patients with cyanotic cardiac defect. Upregulation of endogenous UPR in cardiomyocytes under chronic hypoxia has been observed both in vivo and in vitro. Taken together, the findings here suggested that UPR might plays an important role in myocardial adaptation to chronic hypoxia.
引文
1. Kornosky JL, Salihu HM. Getting to the heart of the matter: epidemiology of cyanotic heart defects. Pediatr Cardiol. 2008;29(3):484-497.
    2. Corno AF. Surgery for congenital heart disease. Curr Opin Cardiol. 2000;15(4): 238-243.
    3. Najm HK, Wallen WJ, Belanger MP, Williams WG, Coles JG, Van Arsdell GS, Black MD, Boutin C, Wittnich C. Does the degree of cyanosis affect myocardial adenosine triphosphate levels and function in children undergoing surgical procedures for congenital heart disease? J Thorac Cardiovasc Surg. 2000;119(3):515-524.
    4. Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K. The role of autophagy in the heart. Cell Death Differ. 2009;16(1):31-38.
    5. Koh M, Spivak-Kroizman T, Powis G. HIF-1 regulation: not so easy come, easy go. Trends in Biochemical Sciences. 2008;33(11):526-534.
    6. Arsham AM, Howell JJ, Simon MC. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. Journal of Biological Chemistry. 2003;278(32):29655-29660.
    7. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519-529.
    8. Glembotski CC. The role of the unfolded protein response in the heart. J Mol Cell Cardiol. 2008;44(3):453-459.
    9. Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med. 2001;7(8):345-350.
    10. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006;70(5): 1469-1480.
    11. Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends in Cell Biology. 2004;14(1):20-28.
    12. Drummond I, Lee A, Resendez Jr E, Steinhardt R. Depletion of intracellular calcium stores by calcium ionophore A23187 induces the genes for glucose-regulated proteins in hamster fibroblasts. Journal of Biological Chemistry. 1987;262(26):12801.
    13. Lee A. Mammalian stress response: induction of the glucose-regulated protein family.Current opinion in cell biology. 1992;4(2):267.
    14. Valkonen M, Penttila M, Saloheimo M. Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microb. 2003;69(4):2065-2072.
    15. Zhu C, Johansen F, Prywes R. Interaction of ATF6 and serum response factor. Molecular and Cellular Biology. 1997;17(9):4957.
    16. Yoshida H, Haze K, Yanagi H. elai,(1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem.273:33741-33749.
    17. Cox J, Shamu C, Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. CELL- CAMBRIDGE MA-. 1993;73:1197-1197.
    18. Mori K, Ma W, Gething M, Sambrook J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell. 1993;74(4):743.
    19. Diwan A, Matkovich SJ, Yuan Q, Zhao W, Yatani A, Brown JH, Molkentin JD, Kranias EG, Dorn GW, 2nd. Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death. J Clin Invest. 2009;119(1):203-212.
    20. Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, Koromilas A, Wouters B. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2 {alpha}. Molecular and Cellular Biology. 2002;22(21):7405.
    21. Romero-Ramirez L, Cao HB, Nelson D, Hammond E, Lee AH, Yoshida H, Mori K, Glimcher LH, Denko NC, Giaccia AJ, Le QT, Koong AC. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Research. 2004;64(17):5943-5947.
    22. Thuerauf DJ, Marcinko M, Gude N, Rubio M, Sussman MA, Glembotski CC. Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res. 2006;99(3):275-282.
    23. Liu LP, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. Hypoxia-inducedenergy stress regulates mRNA translation and cell growth. Molecular Cell. 2006;21(4):521-531.
    24. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witter LA, Ellisen LW, Kaelin WG. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Gene Dev. 2004;18(23):2893-2904.
    25. Jian Z, Li JB, Ma RY, Chen L, Zhong QJ, Wang XF, Wang W, Hong Y, Xiao YB. Increase of macrophage migration inhibitory factor (MIF) expression in cardiomyocytes during chronic hypoxia. Clinica Chimica Acta. 2009;405(1-2): 132-138.
    26. Borger DR, Gavrilescu LC, Bucur MC, Ivan M, DeCaprio JA. AMP-activated protein kinase is essential for survival in chronic hypoxia. Biochemical and Biophysical Research Communications. 2008;370(2):230-234.
    27. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741-752.
    28. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463-477.
    29. Martinet W, Knaapen MW, Kockx MM, De Meyer GR. Autophagy in cardiovascular disease. Trends Mol Med. 2007;13(11):482-491.
    30. Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007;462(2):245-253.
    31. Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y, Sadoshima J, Vatner SF. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A. 2005;102(39):13807-13812.
    32. Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. Circ Res. 2009;104(2):150-158.
    33. Kang PM, Izumo S. Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends in Molecular Medicine. 2003;9(4):177-182.
    34. Yan L, Kim SJ, Ge H, Masurekar M, Massover WH, Diaz G, Yang GP, Sadoshima J, Vatner SF, Vatner DE. Autophagy, a survival mechanism in chronically ischemic myocardium. Circulation. 2004;110(17):298-298.
    35. Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs J, Oh S, Koga Y. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature. 2000;406(6798):906-910.
    36. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27-42.
    37. Kolar F, Ostadal B. Molecular mechanisms of cardiac protection by adaptation to chronic hypoxia. Physiol Res. 2004;53 Suppl 1:S3-13.
    38. Yang YP, Liang ZQ, Gu ZL, Qin ZH. Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin. 2005;26(12):1421-1434.
    39. Ferraro E, Cecconi F. Autophagic and apoptotic response to stress signals in mammalian cells. Arch Biochem Biophys. 2007;462(2):210-219.
    40. Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. Journal of Biological Chemistry. 2006;281(40):29776-29787.
    41. Tanaka Y, Guhde G, Suter A, Eskelinen A, Hartmann D, Lullmann-Rauch R, Janssen P, Blanz J, Figura K, Saftig P. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2 deficient mice. Nature. 2000;406(6798):902-905.
    42. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature Medicine. 2007;13(5):619-624.
    43. Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang GP, Matsui Y, Sadoshima J, Vatner SF. Autophagy in chronically ischemic myocardium. P Natl Acad Sci USA. 2005;102(39):13807-13812.
    44. May D, Gilon D, Djonov V, Ltin A, Lazarus A, Gordon O, Rosenberger C, Keshet E. Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation. P Natl Acad Sci USA. 2008;105(1):282-287.
    45. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29(10):2570-2581.
    46. Baron SJ, Li J, Russell RR, 3rd, Neumann D, Miller EJ, Tuerk R, Wallimann T, Hurley RL, Witters LA, Young LH. Dual mechanisms regulating AMPK kinase action in the ischemic heart. Circ Res. 2005;96(3):337-345.
    47. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo SQ, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genetics. 2004;36(6):585-595.
    48. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100(6):914-922.
    49.肖娟,肖颖彬,陈林,等.发绀型先天性心脏病心肌线粒体生物合成观察[J].重庆医学, 2008, 37(9): 1476-1479.
    50. Blobel G. Protein targeting. Bioscience Reports. 2000;20(5):303-344.
    51. Thuerauf DJ, Marcinko M, Belmont PJ, Glembotski CC. Effects of the isoform-specific characteristics of ATF6 alpha and ATF6 beta on endoplasmic reticulum stress response gene expression and cell viability. Journal of Biological Chemistry. 2007;282(31):22865-22878.
    52. Bertolotti A, Zhang Y, Hendershot L, Harding H, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature cell biology. 2000;2(6):326-332.
    53. Ma K, Vattem K, Wek R. Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. Journal of Biological Chemistry. 2002;277(21):18728.
    54. Shamu C, Walter P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. The EMBO Journal. 1996;15(12):3028.
    55. Sidrauski C, Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell. 1997;90(6): 1031-1040.
    56. Shen J, Snapp E, Lippincott-Schwartz J, Prywes R. Stable binding of ATF6 to BiP inthe endoplasmic reticulum stress response. Molecular and Cellular Biology. 2005;25(3):921.
    57. Harding HP, Zhang YH, Zeng HQ, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Molecular Cell. 2003;11(3):619-633.
    58. Calfon M, Zeng H, Urano F, Till J, Hubbard S, Harding H, Clark S, Ron D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415(6867):92-96.
    59. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002; 324(7329):71-86.
    60. Haze K, Okada T, Yoshida H, Yanagi H, Yura T, Negishi M, Mori K. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochemical Journal. 2001;355(Pt 1):19.
    61. Wu J, Rutkowski D, Dubois M, Swathirajan J, Saunders T, Wang J, Song B, Yau G, Kaufman R. ATF6 optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Developmental Cell. 2007;13(3):351-364.
    62. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007;14(2):230-239.
    63. Yu BC, Chang CK, Ou HY, Cheng KC, Cheng JT. Decrease of peroxisome proliferator-activated receptor delta expression in cardiomyopathy of streptozotocin- induced diabetic rats. Cardiovasc Res. 2008;80(1):78-87.
    64. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P. IRE1 signaling affects cell fate during the unfolded protein response. Science. 2007;318(5852):944-949.
    65. Kondo S, Murakami T, Tatsumi K, Ogata M, Kanemoto S, Otori K, Iseki K, Wanaka A, Imaizumi K. OASIS, a CREB/ATF-family member, modulates UPR signalling inastrocytes. Nature cell biology. 2005;7(2):186-194.
    66. Okada T, Yoshida H, Akazawa R, Negishi M, Mori K. Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochemical Journal. 2002;366(Pt 2):585.
    67. Rutkowski D, Arnold S, Miller C, Wu J, Li J, Gunnison K, Mori K, Akha A, Raden D, Kaufman R. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins.
    68. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM, Mori K, Akha AAS, Raden D, Kaufman RJ. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. Plos Biol. 2006;4(11):2024-2041.
    69. Hendershot LM. The ER chaperone BiP is a master regulator of ER function. Mt Sinai J Med. 2004;71(5):289-297.
    70. Morris J, Dorner A, Edwards C, Hendershot L, Kaufman R. Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. Journal of Biological Chemistry. 1997;272(7):4327.
    71. Hong M, Luo SZ, Baumeister P, Huang JM, Gogia RK, Li MQ, Lee AS. Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. Journal of Biological Chemistry. 2004;279(12): 11354-11363.
    72. Hong M, Li MQ, Mao CH, Lee AS. Endoplasmic reticulum stress triggers an acute proteasome-dependent degradation of ATF6. Journal of Cellular Biochemistry. 2004;92(4):723-732.
    73. Shang J, Lehrman MA. Discordance of UPR signaling by ATF6 and Ire1p-XBP1 with levels of target transcripts. Biochemical and Biophysical Research Communications. 2004;317(2):390-396.
    74. Hung CC, Ichimura T, Stevens JL, Bonventre JV. Protection of renal epithelial cells against oxidative injury by endoplasmic reticulum stress preconditioning is mediated by ERK1/2 activation. Journal of Biological Chemistry. 2003;278(31):29317-29326.
    75. Hayashi T, Chan PH, Deguchi K, Saito A, Nagotani S, Jin G, Li F, Kamada H, Abe K. Induction of grp78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. Stroke. 2004;35(6):E249-E249.
    1. Blobel G. Protein targeting. Bioscience Reports. 2000;20(5):303-344.
    2. Wang XJ, Robbins J. Heart failure and protein quality control. Circulation research. 2006;99(12):1315-1328.
    3. Patterson C, Ike C, Willis PW, Stouffer GA, Willis MS. The bitter end - The ubiquitin-proteasome system and cardiac dysfunction. Circulation. 2007;115(11): 1456-1463.
    4. Drummond I, Lee A, Resendez Jr E, Steinhardt R. Depletion of intracellular calcium stores by calcium ionophore A23187 induces the genes for glucose-regulated proteins in hamster fibroblasts. Journal of Biological Chemistry. 1987;262(26):12801.
    5. Lee A. Mammalian stress response: induction of the glucose-regulated protein family. Current opinion in cell biology. 1992;4(2):267.
    6. Valkonen M, Penttila M, Saloheimo M. Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microb. 2003;69(4):2065-2072.
    7. Kim Y, Lee A. Transcriptional activation of the glucose-regulated protein genes andtheir heterologous fusion genes by beta-mercaptoethanol. Molecular and Cellular Biology. 1987;7(8):2974.
    8. Kozutsumi Y, Segal M, Normington K, Gething M, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. 1988.
    9. Dorner A, Wasley L, Raney P, Haugejorden S, Green M, Kaufman R. The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. Journal of Biological Chemistry. 1990;265(35):22029.
    10. Chang S, Wooden S, Nakaki T, Kim Y, Lin A, Kung L, Attenello J, Lee A. Rat gene encoding the 78-kDa glucose-regulated protein GRP78: its regulatory sequences and the effect of protein glycosylation on its expression. Proceedings of the National Academy of Sciences. 1987;84(3):680.
    11. Zhu C, Johansen F, Prywes R. Interaction of ATF6 and serum response factor. Molecular and Cellular Biology. 1997;17(9):4957.
    12. Yoshida H, Haze K, Yanagi H. elai,(1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem.273:33741-33749.
    13. Cox J, Shamu C, Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. CELL-CAMBRIDGE MA-. 1993;73:1197-1197.
    14. Mori K, Ma W, Gething M, Sambrook J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell. 1993;74(4):743.
    15. Kohno K. How transmembrane proteins sense endoplasmic reticulum stress. Antioxidants & Redox Signaling. 2007;9(12):2295-2304.
    16. Bertolotti A, Zhang Y, Hendershot L, Harding H, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature cell biology. 2000;2(6):326-332.
    17. Ma K, Vattem K, Wek R. Dimerization and release of molecular chaperone inhibitionfacilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. Journal of Biological Chemistry. 2002;277(21):18728.
    18. Shamu C, Walter P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. The EMBO Journal. 1996;15(12):3028.
    19. Sidrauski C, Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell. 1997;90(6):1031-1040.
    20. Shen J, Snapp E, Lippincott-Schwartz J, Prywes R. Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Molecular and Cellular Biology. 2005;25(3):921.
    21. Harding H, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Methods Enzymol. 1997;276:307 326.
    22. Calfon M, Zeng H, Urano F, Till J, Hubbard S, Harding H, Clark S, Ron D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415(6867):92-96.
    23. Shen J, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Developmental Cell. 2002;3(1):99-111.
    24. Ye J, Rawson R, Komuro R, Chen X, DavéU, Prywes R, Brown M, Goldstein J. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Molecular Cell. 2000;6(6):1355-1364.
    25. Haze K, Okada T, Yoshida H, Yanagi H, Yura T, Negishi M, Mori K. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochemical Journal. 2001;355(Pt 1):19.
    26. Kondo S, Murakami T, Tatsumi K, Ogata M, Kanemoto S, Otori K, Iseki K, Wanaka A, Imaizumi K. OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nature cell biology. 2005;7(2):186-194.
    27. Lu R, Yang P, O'Hare P, Misra V. Luman, a new member of the CREB/ATF family, binds to herpes simplex virus VP16-associated host cellular factor. Molecular andCellular Biology. 1997;17(9):5117.
    28. DenBoer L, Hardy-Smith P, Hogan M, Cockram G, Audas T, Lu R. Luman is capable of binding and activating transcription from the unfolded protein response element. Biochemical and Biophysical Research Communications. 2005;331(1):113-119.
    29. Stirling J, O'Hare P. CREB4, a transmembrane bZip transcription factor and potential new substrate for regulation and cleavage by S1P. Molecular biology of the cell. 2006;17(1):413.
    30. Wu J, Rutkowski D, Dubois M, Swathirajan J, Saunders T, Wang J, Song B, Yau G, Kaufman R. ATF6 optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Developmental Cell. 2007;13(3):351-364.
    31. Thuerauf DJ, Morrison L, Glembotski CC. Opposing roles for ATF6 alpha and ATF6 beta in endoplasmic reticulum stress response gene induction. Journal of Biological Chemistry. 2004;279(20):21078-21084.
    32. Thuerauf DJ, Marcinko M, Belmont PJ, Glembotski CC. Effects of the isoform-specific characteristics of ATF6 alpha and ATF6 beta on endoplasmic reticulum stress response gene expression and cell viability. Journal of Biological Chemistry. 2007;282(31):22865-22878.
    33. Brodsky JL. The protective and destructive roles played by molecular chaperones during ERAD (endoplasmic-reticulum-associated degradation). Biochemical Journal. 2007;404:353-363.
    34. Meusser B, Hirsch C, Jarosch E, Sommer T. ERAD: the long road to destruction. Nature cell biology. 2005;7(8):766-772.
    35. Lord JM, Roberts LM, Stirling CJ. Quality control: Another player joins the ERAD cast. Current Biology. 2005;15(23):R963-R964.
    36. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding H, Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287(5453):664.
    37. Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, Tohyama M. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. Journal of Biological Chemistry. 2001;276(17):13935.
    38. H?cki J, Egger L, Monney L, Conus S, Rosse T, Fellay I, Borner C. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene(Basingstoke). 2000;19(19):2286-2295.
    39. Hetz C, Bernasconi P, Fisher J, Lee A, Bassik M, Antonsson B, Brandt G, Iwakoshi N, Schinzel A, Glimcher L. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1 {alpha}. Science's STKE. 2006;312(5773):572.
    40. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Molecular biology of the cell. 1999;10(11):3787.
    41. Wang Y, Shen J, Arenzana N, Tirasophon W, Kaufman R, Prywes R. Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. Journal of Biological Chemistry. 2000;275(35):27013.
    42. Thuerauf D, Hoover H, Meller J, Hernandez J, Su L, Andrews C, Dillmann W, McDonough P, Glembotski C. MECHANISMS OF SIGNAL TRANSDUCTION-Sarco/endoplasmic reticulum calcium ATPase-2 expression is regulated by ATF6 during the endoplasmic reticulum stress response. Intracellular signaling of calcium. Journal of Biological Chemistry. 2001;276(51):48309-48317.
    43. Gorlach A, Klappa P, Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal. 2006;8(9-10):1391-1418.
    44. Paschen W. Endoplasmic reticulum dysfunction in brain pathology: Critical role of protein synthesis. Curr Neurovasc Res. 2004;1(2):173-181.
    45. Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Chan PH. Induction of GRP78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. J Cerebr Blood F Met. 2003;23(8):949-961.
    46. Koumenis C. ER stress, hypoxia tolerance and tumor progression. Curr Mol Med. 2006;6(1):55-69.
    47. Feldman DE, Chauhan V, Koong AC. The unfolded protein response: A novel component of the hypoxic stress response in tumors. Molecular Cancer Research. 2005;3(11):597-605.
    48. Thuerauf DJ, Marcinko M, Gude N, Rubio M, Sussman MA, Glembotski CC. Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res. 2006;99(3):275-282.
    49. Qi X, Vallentin A, Churchill E, Mochly-Rosen D. deltaPKC participates in the endoplasmic reticulum stress-induced response in cultured cardiac myocytes and ischemic heart. J Mol Cell Cardiol. 2007;43(4):420-428.
    50. Azfer A, Niu J, Rogers L, Adamski F, Kolattukudy P. Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. American Journal of Physiology- Heart and Circulatory Physiology. 2006:01378.02005.
    51. Severino A, Campioni M, Straino S, Salloum F, Schmidt N, Herbrand U, Frede S, Toietta G, Di Rocco G, Bussani R. Identification of protein disulfide isomerase as a cardiomyocyte survival factor in ischemic cardiomyopathy. Journal of the American College of Cardiology. 2007;50(11):1029-1037.
    52. Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, Kawase I, Hirota H. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol. 2005;25(21):9554-9575.
    53. Martindale JJ, Fernandez R, Thuerauf D, Whittaker R, Gude N, Sussman MA, Glembotski CC. Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circulation research. 2006;98(9):1186-1193.
    54. Vitadello M, Penzo D, Petronilli V, Michieli G, Gomirato S, Menabo R, Di Lisa F, Gorza L. Overexpression of the stress-protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia. Faseb Journal. 2003;17(3):923-+.
    55. Takagi H, Matsui Y, Sadoshima J. The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxid Redox Signal. 2007;9(9):1373-1381.
    56. Toth A, Jeffers J, Nickson P, Min J, Morgan J, Zambetti G, Erhardt P. Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia-reperfusion. American Journal of Physiology- Heart and Circulatory Physiology. 2006;291(1):H52.
    57. Rutkowski D, Arnold S, Miller C, Wu J, Li J, Gunnison K, Mori K, Akha A, Raden D,Kaufman R. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins.
    58. Okada K, Minamino T, Tsukamoto Y, Liao YL, Tsukamoto O, Takashima S, Hirata A, Fujita M, Nagamachi Y, Nakatani T, Yutani C, Ozawa K, Ogawa S, Tomoike H, Hori M, Kitakaze M. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction - Possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation. 2004;110(6):705-712.
    59. Hamada H, Suzuki M, Yuasa S, Mimura N, Shinozuka N, Takada Y, Suzuki M, Nishino T, Nakaya H, Koseki H, Aoe T. Dilated cardiomyopathy caused by aberrant endoplasmic reticulum quality control in mutant KDEL receptor transgenic mice. Molecular and Cellular Biology. 2004;24(18):8007-8017.
    60. Mao CH, Tai WC, Bai Y, Poizat C, Lee AS. In vivo regulation of Grp78/BiP transcription in the embryonic heart - Role of the endoplasmic reticulum stress response element and GATA-4. Journal of Biological Chemistry. 2006;281(13):8877-8887.
    61. Masaki T, Yoshida M, Noguchi S. Targeted disruption of CRE-binding factor TREB5 gene leads to cellular necrosis in cardiac myocytes at the embryonic stage. Biochemical and Biophysical Research Communications. 1999;261(2):350-356.
    1. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741-752.
    2. Dice JF. Chaperone-mediated autophagy. Autophagy. 2007;3(4):295-299.
    3. Ferraro E, Cecconi F. Autophagic and apoptotic response to stress signals in mammalian cells. Arch Biochem Biophys. 2007;462(2):210-219.
    4. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032-1036.
    5. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. Journal of Cell Biology. 2005;169(3):425-434.
    6. Yue ZY, Jin SK, Yang CW, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. P Natl Acad Sci USA. 2003;100(25):15077-15082.
    7. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463-477.
    8. Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs J, Oh S, Koga Y. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature. 2000;406(6798):906-910.
    9. Kostin S, Pool L, Elsasser A, Hein S, Drexler H, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klovekorn W. Myocytes die by multiple mechanisms in failing human hearts. Circulation research. 2003;92(7):715.
    10. Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007;462(2):245-253.
    11. Kang PM, Izumo S. Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends in Molecular Medicine. 2003;9(4):177-182.
    12. Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. Journal of Biological Chemistry. 2006;281(40):29776-29787.
    13. Tanaka Y, Guhde G, Suter A, Eskelinen A, Hartmann D, Lullmann-Rauch R, Janssen P, Blanz J, Figura K, Saftig P. Accumulation of autophagic vacuoles and cardiomyopathyin LAMP-2 deficient mice. Nature. 2000;406(6798):902-905.
    14. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature Medicine. 2007;13(5):619-624.
    15. Yamamoto S, Sawada K, Shimomura H, Kawamura K, James T. On the nature of cell death during remodeling of hypertrophied human myocardium. Journal of Molecular and Cellular Cardiology. 2000;32(1):161-175.
    16. Pfeifer U, F?hr J, Wilhelm W, D?mmrich J. Short-term inhibition of cardiac cellular autophagy by isoproterenol. Journal of Molecular and Cellular Cardiology. 1987;19(12):1179.
    17. Yamaguchi O, Higuchi Y, Hirotani S, Kashiwase K, Nakayama H, Hikoso S, Takeda T, Watanabe T, Asahi M, Taniike M, Matsumura Y, Tsujimoto L, Hongo K, Kusakari Y, Kurihara S, Nishida K, Ichijo H, Hori M, Otsu K. Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. P Natl Acad Sci USA. 2003;100(26):15883-15888.
    18. McMullen J, Sherwood M, Tarnavski O, Zhang L, Dorfman A, Shioi T, Izumo S. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation. 2004;109(24):3050.
    19. Elsasser A, Vogt AM, Nef H, Kostin S, Mollmann H, Skwara W, Bode C, Hamm C, Schaper J. Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. Journal of the American College of Cardiology. 2004;43(12):2191-2199.
    20. Knaapen M, Davies M, De Bie M, Haven A, Martinet W, Kockx M. Apoptotic versus autophagic cell death in heart failure. Cardiovascular Research. 2001;51(2):304.
    21. Miyata S, Takemura G, Kawase Y, Li Y, Okada H, Maruyama R, Ushikoshi H, Esaki M, Kanamori H, Li L. Autophagic cardiomyocyte death in cardiomyopathic hamsters and its prevention by granulocyte colony-stimulating factor. American Journal of Pathology. 2006;168(2):386.
    22. Kitsis RN, Peng CF, Cuervo AM. Eat your heart out. Nature Medicine.2007;13(5):539-541.
    23. Elmore S, Qian T, Grissom S, Lemasters J. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. The FASEB Journal. 2001:102061.
    24. Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: Molecular determinants and functional consequences. Physiol Rev. 2006;86(1):369-408.
    25. H?yer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase- , and Bcl-2. Molecular Cell. 2007;25(2):193-205.
    26. Liang X, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402(6762):672-675.
    27. Liang X, Kleeman L, Jiang H, Gordon G, Goldman J, Berry G, Herman B, Levine B. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. Journal of virology. 1998;72(11):8586.
    28. Pattingre S, Tassa A, Qu XP, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927-939.
    29. Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G. Functional and physical interaction between Bcl-X-L and a BH3-like domain in Beclin-1. Embo Journal. 2007;26(10):2527-2539.
    30. Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang GP, Matsui Y, Sadoshima J, Vatner SF. Autophagy in chronically ischemic myocardium. P Natl Acad Sci USA. 2005;102(39):13807-13812.
    31. May D, Gilon D, Djonov V, Ltin A, Lazarus A, Gordon O, Rosenberger C, Keshet E. Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation. P Natl Acad Sci USA. 2008;105(1):282-287.
    32. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27-42.
    33. Uchiyama Y, Koike M, Shibata M. Autophagic neuron death in neonatal brain ischemia/hypoxia. Autophagy. 2008;4(4):404-408.
    34. Valentim L, Lawrence KM, Townsend PA, Carroll CJ, Soond S, Scarabelli TM, Knight RA, Latchman DS, Stephanou A. Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. Journal of Molecular and Cellular Cardiology. 2006;40(6):846-852.
    35. Murohara T, Guo J, Lefer A. Cardioprotection by a novel recombinant serine protease inhibitor in myocardial ischemia and reperfusion injury. Journal of Pharmacology and Experimental Therapeutics. 1995;274(3):1246.
    36. Baron SJ, Li J, Russell RR, Neumann D, Miller EJ, Tuerk R, Wallimann T, Hurley RL, Witters LA, Young LH. Dual mechanisms regulating AMPK kinase action in the ischemic heart. Circulation research. 2005;96(3):337-345.
    37. Horman S, Beauloye C, Vertommen D, Vanoverschelde JL, Hue L, Rider MH. Myocardial ischemia and increased heart work modulate the phosphorylation state of eukaryotic elongation factor-2. Journal of Biological Chemistry. 2003;278(43):41970-41976.
    38. Kido M, Du LL, Sullivan CC, Li XD, Deutsch R, Jamieson SW, Thistlethwaite PA. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. Journal of the American College of Cardiology. 2005;46(11):2116-2124.
    39. Shohet RV, Garcia JA. Keeping the engine primed: HIF factors as key regulators of cardiac metabolism and angiogenesis during ischemia. J Mol Med. 2007;85(12):1309-1315.
    40. Kozarova A, Sliskovic I, Mutus B, Simon ES, Andrews PC, Vacratsis PO. Identification of redox sensitive thiols of protein disulfide isomerase using isotope coded affinity technology and mass spectrometry. J Am Soc Mass Spectr. 2007;18(2):260-269.
    41. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892-10903.
    42. Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiology of Disease. 2008;29(1):132-141.
    43. Juhaszova M, Zorov D, Kim S, Pepe S, Fu Q, Fishbein K, Ziman B, Wang S, Ytrehus K, Antos C. Glycogen synthase kinase-3 mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. Journal of Clinical Investigation. 2004;113(11):1535-1549.
    44. Odashima M, Usui S, Takagi H, Hong C, Liu J, Yokota M, Sadoshima J. Inhibition of endogenous Mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction. Circulation research. 2007;100(9):1344-1352.
    45. Kissova I, Deffieu M, Manon S, Camougrand N. Uth1p is involved in the autophagic degradation of mitochondria. Journal of Biological Chemistry. 2004;279(37):39068-39074.
    46. Ron D. Translational control in the endoplasmic reticulum stress response. Journal of Clinical Investigation. 2002;110(10):1383-1388.
    47. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007;14(2):230-239.
    48. Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic reticulum stress triggers autophagy. J Biol Chem. 2006;281(40):30299-30304.
    1. Bolli R, Becker L, Gross G, Mentzer Jr R, Balshaw D, Lathrop D. Myocardial protection at a crossroads: the need for translation into clinical therapy. Circulation research. 2004;95(2):125.
    2. Stein AB, Tang XL, Guo Y, Xuan YT, Dawn B, Bolli R. Delayed adaptation of the heart to stress - Late preconditioning. Stroke. 2004;35(11):2676-2679.
    3. Rull T, Cepinskas G, Kvietys PR. Erythropoietin protects cardiac myocytes from the dysfunction and injury induced by simulated ischemia/reperfusion: role of transcription factor AP-1. Faseb Journal. 2004;18(4):A228-A228.
    4. Trump B, Berezesky I. Calcium-mediated cell injury and cell death. The FASEB Journal. 1995;9(2):219.
    5. Flores-D az M, Alape-Giron A, Persson B, Pollesello P, Moos M, von Eichel-Streiber C, Thelestam M, Florin I. Cellular UDP-glucose deficiency caused by a single point mutation in the UDP-glucose pyrophosphorylase gene. Journal of Biological Chemistry. 1997;272(38):23784.
    6. Ron D, Walter P. Signal integration in 47. the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519-529.
    7. Calfon M, Zeng H, Urano F, Till J, Hubbard S, Harding H, Clark S, Ron D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415(6867):92-96.
    8. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107(7):881-891.
    9. Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Molecular and Cellular Biology. 2003;23(21):7448-7459.
    10. Harding H, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase [published erratum appears in Nature 1999 Mar 4; 398 (6722): 90][see comments]. Nature. 1999;397(6716):271-274.
    11. Harding, HP N, Zhang Y. etal. Regulated translation initiation controls stress inducedgene expression in mammalian cells. Mol Cell. 2000;6:1099-1108.
    12. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Silver, Pam. Mammalian Transcription Factor ATF6 Is Synthesized as a Transmembrane Protein and Activated by Proteolysis in Response to Endoplasmic Reticulum Stress. Mol Biol Cell. 1999;10(11):3787-3799.
    13. Xianglin S, Ye J, Leonard S, Ding M, Vallyathan V, Castranova V, Rojanasakul Y, Dong Z. Antioxidant properties of (-)-epicatechin-3-gallate and its inhibition of Cr (VI)—induced DNA damage and Cr (IV)—or TPA-stimulated NF-kB activation. Mol. Cell. Biochem. 2000;206:125-132.
    14. Reddy RK, Duheau L, Kleiner H, Parr T, Nichols P, Ko B, Dong DZ, Ko H, Mao CH, DiGiovanni J, Lee AS. Cancer-inducible transgene expression by the Grp94 promoter: Spontaneous activation in tumors of various origins and cancer-associated macrophages. Cancer Research. 2002;62(24):7207-7212.
    15.Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends in Cell Biology. 2004;14(1):20-28.
    16. Harding H, Calfon U, M F N. I., and Ron, D.(2002) Transcriptional and translational control in the mammalian unfolded protein response. Annu. Rev. Cell Dev. Biol.18:575–599.
    17. Brostrom M, Mourad F, Brostrom C. ARTICLES-Regulated Expression of GRP78 During Vasopressin-Induced Hypertrophy of Heart-Derived Myocytes Published online 1 August 2001. Journal of Cellular Biochemistry. 2001;83(2):204-217.
    18. Thuerauf D, Hoover H, Meller J, Hernandez J, Su L, Andrews C, Dillmann W, McDonough P, Glembotski C. MECHANISMS OF SIGNAL TRANSDUCTION- Sarco/endoplasmic reticulum calcium ATPase-2 expression is regulated by ATF6 during the endoplasmic reticulum stress response. Intracellular signaling of calcium. Journal of Biological Chemistry. 2001;276(51):48309-48317.
    19. Barnes J, Smoak I, Branch S. Expression of glucose-regulate proteins (GRP78 and GRP94) in hearts and fore-limb buds of mouse embryos exposed to hypoglycemia in vitro. Cell Stress & Chaperones. 1999;4(4):250.
    20. Barnes J, Smoak I. Glucose-regulated protein 78 (GRP78) is elevated in embryonic mouse heart and induced following hypoglycemic stress. Anatomy and Embryology. 2000;202(1):67-74.
    21. Masaki T, Yoshida M, Noguchi S. Targeted disruption of CRE-binding factor TREB5 gene leads to cellular necrosis in cardiac myocytes at the embryonic stage. Biochemical and Biophysical Research Communications. 1999;261(2):350-356.
    22. Okada K, Minamino T, Tsukamoto Y, Liao YL, Tsukamoto O, Takashima S, Hirata A, Fujita M, Nagamachi Y, Nakatani T, Yutani C, Ozawa K, Ogawa S, Tomoike H, Hori M, Kitakaze M. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction - Possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation. 2004;110(6):705-712.
    23. Zhang PL, Lun MY, Teng JM, Huang J, Blasick TM, Yin LJ, Herrera GA, Cheung JY. Preinduced molecular chaperones in the endoplasmic reticulum protect cardiomyocytes from lethal injury. Ann Clin Lab Sci. 2004;34(4):449-457.
    24. Vitadello M, Penzo D, Petronilli V, Michieli G, Gomirato S, Menabo R, Di Lisa F, Gorza L. Overexpression of the stress-protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia. Faseb Journal. 2003;17(3):923-+.
    25. Hamada H, Suzuki M, Yuasa S, Mimura N, Shinozuka N, Takada Y, Suzuki M, Nishino T, Nakaya H, Koseki H, Aoe T. Dilated cardiomyopathy caused by aberrant endoplasmic reticulum quality control in mutant KDEL receptor transgenic mice. Molecular and Cellular Biology. 2004;24(18):8007-8017.
    26. Shen J, Prywes R. ER stress signaling by regulated proteolysis of ATF6. Methods. 2005;35(4):382-389.
    27. Romero-Ramirez L, Cao HB, Nelson D, Hammond E, Lee AH, Yoshida H, Mori K, Glimcher LH, Denko NC, Giaccia AJ, Le QT, Koong AC. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Research. 2004;64(17):5943-5947.
    28. Shang J. Quantitative measurement of events in the mammalian unfolded protein response. Methods. 2005;35(4):390-394.
    29. Ron D. Translational control in the endoplasmic reticulum stress response. Journal of Clinical Investigation. 2002;110(10):1383-1388.
    30. Lee A. The glucose-regulated proteins: stress induction and clinical applications. Trends in Biochemical Sciences. 2001;26(8):504-510.
    31. Chen X, Ding Y, Liu C, Mikhail S, Yang C. Overexpression of glucose-regulated protein94 (Grp94) in esophageal adenocarcinomas of a rat surgical model and humans. Carcinogenesis. 2002;23(1):123.
    32. Kozutsumi Y, Segal M, Normington K, Gething M, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. 1988.
    33. Dorner A, Wasley L, Raney P, Haugejorden S, Green M, Kaufman R. The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. Journal of Biological Chemistry. 1990;265(35):22029.
    34. Shui R, Pouyssegur J, Pastan I. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts. Proc Natl Acad Sci USA. 1977;74:3840-3844.
    35. Welch W, Garrels J, Thomas G, Lin J, Feramisco J. Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose-and Ca2+-ionophore-regulated proteins. Journal of Biological Chemistry. 1983;258(11):7102.
    36. Gorlach A, Klappa P, Kietzmann T. The endoplasmic reticulum: Folding, calcium homeostasis, signaling, and redox control. Antioxidants & Redox Signaling. 2006;8(9-10):1391-1418.
    37. Paschen W. Endoplasmic reticulum dysfunction in brain pathology: Critical role of protein synthesis. Curr Neurovasc Res. 2004;1(2):173-181.
    38. Hayashi T, Chan PH, Deguchi K, Saito A, Nagotani S, Jin G, Li F, Kamada H, Abe K. Induction of grp78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. Stroke. 2004;35(6):E249-E249.
    39. Vikman P, Edvinsson L. Gene expression profiling in the human middle cerebral artery after cerebral ischemia. Eur J Neurol. 2006;13(12):1324-1332.
    40. Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N, Harding H, Novoa I, Varia M, Raleigh J. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. The EMBO Journal. 2005;24(19):3470.
    41. Koumenis C. ER stress, hypoxia tolerance and tumor progression. Curr Mol Med. 2006;6(1):55-69.
    42. Feldman DE, Chauhan V, Koong AC. The unfolded protein response: a novel component of the hypoxic stress response in tumors. Mol Cancer Res. 2005;3(11):597-605.
    43. Thuerauf DJ, Marcinko M, Gude N, Rubio M, Sussman MA, Glembotski CC. Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res. 2006;99(3):275-282.
    44. Qi X, Vallentin A, Churchill E, Mochly-Rosen D. deltaPKC participates in the endoplasmic reticulum stress-induced response in cultured cardiac myocytes and ischemic heart. J Mol Cell Cardiol. 2007;43(4):420-428.
    45. Azfer A, Niu J, Rogers L, Adamski F, Kolattukudy P. Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. American Journal of Physiology- Heart and Circulatory Physiology. 2006:01378.02005.
    46. Severino A, Campioni M, Straino S, Salloum F, Schmidt N, Herbrand U, Frede S, Toietta G, Di Rocco G, Bussani R. Identification of protein disulfide isomerase as a cardiomyocyte survival factor in ischemic cardiomyopathy. Journal of the American College of Cardiology. 2007;50(11):1029-1037.
    47. Martindale JJ, Fernandez R, Thuerauf D, Whittaker R, Gude N, Sussman MA, Glembotski CC. Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circulation research. 2006;98(9):1186-1193.
    48. Shintani-Ishida K, Nakajima M, Uemura K, Yoshida K. Ischemic preconditioning protects cardiomyocytes against ischemic injury by inducing GRP78. Biochemical and Biophysical Research Communications. 2006;345(4):1600-1605.
    49. Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, Kawase I, Hirota H. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol. 2005;25(21):9554-9575.
    50. Takagi H, Matsui Y, Sadoshima J. The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxid Redox Signal. 2007;9(9):1373-1381.
    51. Nickson P, Toth A, Erhardt P. PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress. Cardiovascular Research. 2007;73(1):48-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700