用户名: 密码: 验证码:
竹伐桩促腐微生物的筛选及培养条件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近来竹资源的大力开发造成林地留下大量伐桩、同时竹木质纤维素原料利用率不高造成资源浪费、以及环境污染问题,高效竹木质纤维素降解菌的筛选及其降解能力的研究必将是竹伐桩促腐工作、竹木质纤维素原料高效利用的关键。本论文主要分为以下几个部分:
     1.竹伐桩促腐微生物的分离筛选
     采用直接稀释法和富集分离法对竹腐伐桩的样品中的微生物进行分离纯化,利用纤维素底物或木质素底物类似物的平板法对菌株进行初筛,采用菌株纤维素酶活、水溶性木质素降解率和漆酶酶活测定的方法进行复筛。共分离筛选15株微生物菌株,包括真菌菌株F2、F3、F4、F9、F10、F13、F14,放线菌菌株A1-A3和细菌菌株B1-B5。
     2.菌株降解性能研究及菌种鉴定
     采用固态竹屑培养基,测定了复筛菌株培养15 d时对竹纤维素和竹木质素的降解率,其中真菌菌株F2和F1O对竹纤维的降解率分别为23.96%和24.31%,均高于参照菌株绿色木霉YJ-3的19.59%;对竹木质素的降解率分别为16.92%和19.15%,均高于参照菌株黄孢原毛平革菌ME-446的16.53%。生长情况较好的细菌菌株均有一定降解能力。
     为挑选有效菌株,对4株产芽孢细菌进行了16S rDNA序列测定和部分生理生化实验,根据结果初步鉴定B2-B5分别为Bacillus. sp、B. simplex、B. sphaericus、B. subtilis。对真菌菌株F2和F10进行了形态学观察,初步将F2鉴定为Trichoderma.sp,将F10鉴定为Fusarium oxysporum。结合F2的rDNA ITS序列分析将F2初步鉴定为Trichoderma harzianum。除F. oxysporum为常见植物病原菌外。其余菌株均为对植物生长有益或有抗植病能力的微生物。
     为获得有效的混合菌种,首先对菌株B2-B5进行了拮抗实验,发现B5对B2-B4均有拮抗作用,B2对B3有拮抗作用。据此设计了F2+B2、F2+B4、F2+B5、F2+B3+B4和F2+B2+B4五种菌种组合,测定了混合菌株培养15 d时对竹纤维素和竹木质素的降解率,组合F2+B4和F2+B2+B4对竹纤维素降解率分别为26.64%,28.85%,对竹木质素降解率分别为21.13%,20.64%,均比F2单独培养效果好。
     3.木霉F2产孢条件研究
     木霉制剂一般以孢子形式应用。实验发现木霉F2在固态竹屑培养基中的最高孢子生物量远远高于PDA液态培养基。利用琼脂平板法进行的碳氮源选择实验确定以竹屑、麸皮、硫酸铵、水为固态培养基的成分。在此基础上的单因子实验确定固态竹屑培养基中竹屑与麸皮比例7:3、硫酸铵添加量0.4%、含水量75%、孢子最终接种浓度l×106spore/mL为木霉F2最佳产孢条件,在此条件下培养7 d其孢子生物量最高可达6.89x 1012spore/g。
Development and utilization of Bamboo Resources and lower material utilization rate have deteriorated the problem of bamboo stake and environmental pollution. The screening of microorganisms for degradation of lignocellulosic materials and research work of useful strains' degradation capability are the key factor for fast rotten technology on bamboo stake and bamboo material treatment. This pape is organized as follow:
     1. Isolation and screening of microorganisms for bamboo stakes
     we used direct dilution methods and enrichment and separation methods to screen microorganisms from rotted Bamboo stake materials. Initial screen was conducted using cellulose substrate and lignin analogues and secondary screening was conducted using enzyme activity determination and water-soluble lignin degradation rate. As a result,7 fungus strains were selected, that is F2, F3, F4, F9, F10, F13, F14,3 actinomycetes strains were selected,that is A1-A3,and 5 bacteria strains were selected,that is B1-B5.
     2. Studies on strain' bamboo lignocelluloses degradation ability and strain identification
     Cellulose and lignin degradation ability of screened strains were tested after 15 days' incubation in bamboo chip solid state medium. Results showed that strain F2 and strain F10 were the most efficient decomposer in tested condition.Strain F2 could decompose 23.96% of bamboo cellulose and 16.92% of bamboo lignin and strain F10 could decompose 24.31% of bamboo cellulose and 23.15% of bamboo lignin, the cellulose degradation rates of the two strains were both higher than that of the Trichoderma viride YJ-3,and their lignin degradation rates were both higher than that of the Phanerochaete chrysosporium ME-446.Bacteria strains which have higher biomass in tested condition also showed better degradation ability.
     In order to obtain effective strains, we conducted studies on morphological analysis, partial 16S rDNA sequences analysis and physiology and biochemistry for four spore-producing bacterium. Bacteria strain B2, B3, B4 and B5 were respectively preliminary identified as Bacillus.sp, B. simplex, B. sphaericus, B. subtilis. Basd on morphological analysis, strain F2 and F10 were respectively preliminary identified as Trichoderma.sp and Fusarium oxysporum. Combined with the results of rDNA ITS sequences analysis, strain F2 were respectively preliminary identified as Trichoderma Harzianum. Many strains of F. oxysporum caused plant Pathogen; other tested microbial strains usually do well to plant growth or have the ability of antipathogen.
     In order to screen the effective composite strains, we conducted antagonistic experiments firstly. According to the antagonistic phenomenon between bacteria strains, we designed several composites, among which the composite F2+B4 and F2+B2+B4 are the most effective decomposer after 15 days incubation in bamboo chip solid state medium. Results showed that, in tested condition, composite F2+B4 could decompose 26.64% of bamboo cellulose and 21.13% of bamboo lignin and strain F10 could decompose 28.85% of bamboo cellulose and 20.64% of bamboo lignin, The efficiency of which were both better single strain's.
     3. Studies on the Condition of Sporulation of strain F2
     In the third part of the experiment, the results of the design and optimization of sporulati-on medium for strain F2 show that spore biomass of strain F2 was much higher when using bamboo chip as the unique matrix of solid medium than using PDA liquid medium. Bamboo chips, ammonium sulfate and water were chosen as the components of the solid medium by comparison using agar plate method. The experiments selecting the carbon and nitrogen source selection experiments. Singles showed the optimum culture conditions for sporulation are as follows:the medium contains 25%(weight ratio) of the dry carbon matrix whose content of bamboo chip and wheat bran was seven to three,75% of nutrient solution which contains 0.4% of ammonium sulfate, the spore inoculation concentration was 1×106 spores/g after seeding. Under this culture condition, the most highest biomass is 6.89×1012 per gram of medium.
引文
[1]张蔚,李文彬,姚文斌.天然长竹纤维的分离机理及其制备方法初探[J].北京林业大学学报.2007,29(4):63-66.
    [2]曹石林,詹怀宇,陈礼辉.竹子深度脱木质素蒸煮与常规硫酸盐法蒸煮的比较[J].林产化学与工业.2006,26(2):65-68.
    [3]朱才熙.竹桩施肥劳民伤财[J].特种经济动植物,2005,6(5):16.
    [4]朱才熙.碳酸氢铵加盐巧除竹蔸[J].特种经济动植物,2003,8(3):27.
    [5]吴礼栋,吴菊华.毛竹竹蔸促腐技术研究初探[J].浙江林业科技,1998,18(2):26-29.
    [6]翁甫金,吴礼栋.毛竹伐桩快速腐烂技术试验研究[J].竹子研究汇刊,2001,20(4):47-51.
    [7]Enoki A, Tanaka H, Fuse G. Degradation of lignin-related compounds, pure cellulose, and wood components by white-rot and brown-rot fungi [J]. Holzforschung,1998,42:85-93.
    [8]Pandey K K, Pitman A J. FTIR Studies of the Changes in Wood Following Decay by Brown-rot and White-rot Fungi [J]. International Biodeterioration & Biodegradation. Elsevier Science Ltd,2003, 52(33):151-160.
    [9]王文久,辉朝茂,刘翠等.云南14种主要材用竹化学成分研究[J].竹子研究汇刊.1999.18(2):74-78.
    [10]刘力.竹材化学与利用[M].杭州:浙江大学出版社.2006.12.
    [11]南京林业大学.木材化学[M].北京:中国林业出版社,1990.11.
    [12]曾荣,罗学刚,谭向红等.竹木质素研究进展[J].四川农业大学学报.2004,22(3):274-277
    [13]张齐生,关明杰,纪文兰.毛竹材质生长过程中化学成分的变化[J].南京林业大学学报(自然科学版).2002,26(2):7-10.
    [14]肖春玲.微生物纤维素酶的应用研究[J].微生物学杂志,2002,22(2):33-35.
    [15]王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木质素的定量分析程序[J].微生物学通报,1987,14(2):81-84.
    [16]Grous W R, Converse A O, Grethlein H E. Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar [J]. Applied Biochem and Biotech.2000,84-86 (6):97-110.
    [17]Jacobus P, H van Wyk. Cellulose hydrolysis and cellulase adsorption after pretreatment of cellulose materials [J]. Biotechnol. Techniques,1997,11(6):443-445.
    [18]Sun R C. Tomkinson J. Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw [J]. Uetrason. Sonochem,2002,9(2):85-93.
    [19]Rebecca A S, Ye C, Ratna R. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks [J]. Bioresource technology.2007,98(16):3000-3011.
    [20]陈洪章.纤维素生物技术[M].北京:化学工业出版社,2004,12.
    [21]Azzam A M. Saccharification of bagasse cellulose pretreated with ZnCl2 and HCl [J]. Biomass, 1987,12 (1):71-77.
    [22]杭怡琼,薛惠琴,郁怀丹等.白腐真菌对稻草秸秆的降解及其有关酶活性的变化[J].菌物系统,2001,20(3):403-407.
    [23]Ohmine K, Ooshima H, Harano Y. Kinetic study on enzymatic hydrolysis of cellulose by cellulase from Trichoderma ressei [J]. Biotechnol Bioeng.1983,25(8):2041-2053.
    [24]赵荣乐.纤维素酶研究进展[J].喀什师范学院学报,2005,6(25):51-54.
    [25]齐军茹,廖劲松,彭志英.3-甘露聚糖酶的制备及其应用研究进展[J].中国食品添加剂,2002(6):12-15.
    [26]石军,陈安国.添加剂木聚糖酶的应用研究进展[J].中国饲料,2002(4):10-12.
    [27]Collins T, Gerday C H, Feller G. Xylanases, xylanase families and extremophilic xylanases [J]. FEMS Microbiol Rev,2005,29:3-23.
    [28]杨浩萌,姚斌,范云六.木聚糖酶分子结构与重要酶学性质关系的研究进展[J].生物工程学报,2005,21(1):6-11.
    [29]Subramaniyan S, Prema P. Biotechnology of Microbial Xylanases:Enzymology, Molecular Biology, and Application [J]. Critical Reviews in Biotechnology,2002,22:33-64.
    [30]尹峻峰,王涛.真菌降解木质素的研究现状[J].云南林业科技,2003(1):75-78.
    [31]Reid I D, Paice M G. Effects of manganese peroxide on residrallignin of soft wood krafg pulp [J]. Appl Environ Microbiol,1998,64:2273-2277.
    [32]Hannes C, Majcherczyk A, Huettermann A. Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system [J]. Journal of Biotechnology, 1998,61(2):151-156.
    [33]赵曦,黄艺,杨青.木质素降解酶研究进展与外生菌根真菌[J].环境科学与技术,2008,31(1):45-50.
    [34]刘洁,李宪臻,高培基.纤维素酶活力测定方法评述[J].工业微生物,1994,24(4):27-32.
    [35]傅力,丁友晡,张篪.纤维素酶测定方法的研究[J].新疆农业大学学报,2000,23(2):45-48.
    [36]赵玉萍,杨娟.四种纤维素酶酶活测定方法的比较[J].食品研究与开发,2006,27(3):116-118.
    [37]Susumu S. Fluorimetric determination of reducing carbohydrates with 2-cyanoacetamide and application to automated analysis of carbohydrates as borate complexes [J]. Analytical Chemistry. 1980,52:1079-1082.
    [38]Tien M, Kirk T K. Lignin peroxidase of Phanerochaete chrysosporium [J]. Methods in Enzymology, 1988,161:238-249.
    [39]Michel J R F C, Dass S B, Grulke E A, et al.Role of a manganese peroxidase and lignin peroxidase of Phanerochate chrysosporium [J]. Appli Environ Microbiol,1991,57:2368-2375.
    [40]李慧蓉.白腐真菌生物学和生物技术[M].北京:化学工业出版社,2005,6.
    [41]Frederick S. Archibald. A New Assay for Lignin-type Peroxidase Employing the Dye Azure B [J]. Appl. Environ. Microbiol.1992,58(9):3110-3116.
    [42]Fukushima Y, Kirk T K. Laccase component of the Ceriporiopsis subvermispora lignin-degrading system [J]. Appl Environ Microbiol.1995 Mar; 61(3):872-876.
    [43]周金燕,张发群,桑原正章.真菌产锰过氧化物酶和漆酶的研究.Ⅰ.富氮培养基筛选产酶的真菌[J].微生物学报,1993,33(5):387-391.
    [44]阎宏涛,邓延倬,曾云鹗.漆酶铜蓝蛋白的脉冲激光光声法测定[J].生物化学与生物物理进展,1989,16(4):306-309.
    [45]望天志,李卫萍.微量热法测定漆酶的活性[J].自然杂志,1997,19(6):361-363.
    [46]王蔚,高培基.褐腐真菌木质纤维素降解机制的研究进展[J].微生物学通报,2002,29(3):90-93.
    [47]路梅,李多川.嗜热毛壳菌(Chaetomium thermophile)液体发酵产生纤维素酶及酶学性质的研究[J].工业微生物,2003,33(3):21-24.
    [48]Romero M, Aguado L. Cellulase production by Neurospora crassa on wheat straw [J]. Enzyme and Microbial Technology,1999(25):244-250.
    [49]赵林果,周潭澈,盂鹏等.β-葡萄糖苷酶产生菌的筛选及其所产纤维素酶酶系组成分析[J].工业 微生物,2007,37(5):47-50.
    [50]苏昕,梁莉丽,钱林艺等.碱性纤维素酶嗜碱芽孢杆菌AH-8的研究[J].微生物学杂志,2006,3(26):35-39.
    [51]余红英,王炜军,王炜军等.枯草芽孢杆菌SA-22 β-甘露聚糖酶的纯化及其特性(英文)[J].生物工程学报,2003,19(3):327-331.
    [52]张红莲,姚斌,范云六.木聚糖酶的分子生物学及其应用[J].生物技术通报.2002,3:23-26.
    [53]许牡丹,杨伟东,许宝红等.微生物β-甘露聚糖酶的制备与应用研究进展[J].动物医学进展.2006,27(9):31-34.
    [54]陈立祥,章怀云.木质素生物降解及其应用研究进展[J].中南林学院学报,2003(1):79-85.
    [55]Levinl F. Ligninolytic enzymes of the white rot basidiomycete Trametes trogii [J]. Acta Biotechnol, 2001,21(2):179-186.
    [56]徐春燕,王宏勋,周建兵.诱导物和金属离子对竹子白腐菌降解影响的研究[J].生物技术,2005,15(6):68-71.
    [57]予民,周毋娜,郑连爽等.棉秆非纤维组分嗜碱细菌生物降解及制浆研究[J].中国造纸,1998,5(3):46-49.
    [58]葛诚.微生物肥料研究、生产领域现状及发展建议[M].北京:中国农业科技出版社,1996,7.
    [59]孙中涛,姚良同,孙凤鸣.微生物肥料对棉田土壤生态与棉花生长的影响[J].中国生态农业学报,2005,13(3):54-56.
    [60]Meharg A A, Cairney J W G. Ectomycorrhizas-extending the capabilities of rhizosphere remediation[J].Soil Biol Biochem,2000,32:1475-1484.
    [61]Tabora P, Shintani M, Elango F. Bananas With EM (Effective Microorganisms) And Compatible Technologies and Economic Consequences [EB/OL]. http://www.royagcol.ac.uk/research/conferences/tabo.htm,2002-08-28
    [62]李雪玲,刘慧,张天宇.三株木霉生防菌的生物学特性研究[J].山东农业大学学报(自然科学版),2003,34(1):5-8.
    [63]Kleifeld O, Chet I. Trichoderma harzianum-interaction with plants and effect on growth response [J]. Plant Soil,1992;144:267-272.
    [64]陈庆森.利用多菌种混合发酵转化玉米秸杆的研究[J].生物技术,1999,9(4):15-28.
    [65]杨云龙,薛嵘,吴国庆.固定化PSB处理亚硫酸钠造纸废水[J].中国环境科学,2001,21(4):351-354.
    [66]Semedo L T A S, Gomes R C, Bon E P, et al. Endocellulase and exocellulase activities of two Streptomyces strain isolated from a forest soil[J]. Appl Biochem Biotechnol 2000,84:267-76.
    [67]Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:a review [J].Bioresource Technology,2000,72 (2):169-183.
    [68]Gokhale D V, Patil S G, Bastawde K B, Potential application of yeast cellulase-free xylanase in agrowaste material treatment to remove hemicellulose fractions[J]. Bioresource Technology,1998, 63(2):187-191.
    [69]石军,陈安国.添加剂木聚糖酶的应用研究进展[J].中国饲料,2002(4):10-12.
    [70]冯树,周樱桥.微生物混合培养及其应用[J].微生物学通报,2001,28(3):92-95.
    [71]刘学贤.EM-新型复合微生物制剂[J].禽业科技,1997,13(5):15-16.
    [72]范秀容,李广武,沈萍.微生物学实验[M].北京:高等教育出版社.1994:90-93.
    [73]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版杜.1985:90-164.
    [74]郁红艳,曾光明,黄国和等.木质素降解真菌的筛选及产酶特性[J].应用与环境生物学报,2004,10(5):639-642.
    [75]叶姜瑜.一种纤维素分解菌鉴别培养基[J].微生物学通报,1 997,24(4):251-252.
    [76]王晓芳,徐旭士,吴敏等.一株纤维素分解菌的分离与筛选[J].生物技术,2001,11(2):28-30.
    [77]孙先锋,张志杰,崔虹军.造纸黑液木质素降解微生物的分离和降解特性研究[J].环境工程,2006,30(3):78-80.
    [78]Miller L.Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Anal Chem, 1959,31:426-428.
    [79]Vallander L, Erik K E. Enzymic saccharification of pretreated wheat straw [J]. Biotechnology and Bioengineering,1985,17:639-650.
    [80]Arora, P K G. Effects of various media and supplements on laccase production by some white rot fungi [J]. Bioresource Technol,2001,77:89-91.
    [81]张辉,戴传超,朱奇等.生物降解木质素研究新进展[J].安徽农业科学,2006,34(9):1780-1784.
    [82]薛惠琴,杭恬琼,陈谊.稻草秸秆中木质素、纤维素测定方法的研讨[J].上海畜牧兽医通讯,200l(2):15.
    [83]Stackebrandt E, Ludwig W, Fox G E.16S ribosomal RNA oligonucleotide cataloging[J]. Methods Microbiology,1985,18:75-107.
    [84]庄彩云,李潞滨,胡陶.适用于rDNA ITS分析的兰属茵根真菌培养及DNA提取方法[J].北京农学院学报,2007,22(3):4-6.
    [85]Rainey F A, Ward-Rainey N, Kroppenstedt R M, et al. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage:proposal of Nocardiopsiaceae fam.nov..Int J Syst Bacteriol,1996,46:28-96.
    [86]Kim S B, Yoon J H, Kim H, et al.A Phylogenetic analysis of the genus Saccharomonospora conducted with 16S rRNA gene sequence[J]. Int J Syst Bacteriol,1995,45:351-356.
    [87]布坎南,吉本斯编.中国科学院微生物研究所伯杰细菌鉴定手册翻译组译.伯杰氏细菌鉴定手册[M].北京:科学出版杜,1984.
    [88]Heyrman J, Logan N, Rodriguez-Diaz M, et al. Study of mural painting isolates, leading to the transfer of' Bacillus maroccanus' and' Bacillus carotarum' to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to' Bacillus macroides' and description of Bacillus muralis sp. nov.[J]. International Journal Systematic and Evolutionary Microbiology,2005,55:119-131.
    [89]中国科学院微生物研究所.菌种保藏手册[M].北京:中国科学出版社,1980:53-65.
    [90]刘秀花,梁峰,刘茵.河南省土壤中芽孢杆菌属资源调查[J].河南农业科学,2006(8):67-71.
    [91]韩绍印,席宇,翁海波等.一株高环境适应性纤维素降解菌的筛选及鉴定[J].河南农业科学,2007(12):51-54.
    [92]Hoon Kim, M. Y. Pack Endo-β-1,4-glucanase encoded by Bacillus subtilis gene cloned in Bacillus megaterium [J]. Enzyme and Microbial Technology,1988,10(6):347-351.
    [93]丁延芹,王建平,刘元.几株固氮芽孢杆菌的分离与鉴定[J].农业生物技术学报,2004,12(6):690-697.
    [94]M.R. Swain and R.C. Ray Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora[J]. Microbiological Research, In Press, Corrected Proof, Available online 22 February 2007
    [95]雷丽萍,夏振远,王弱等.尼古丁降解菌株L1的分离与降解特性[J].农业生物技术学报,2007,15(4):721-722.
    [96]王永义,彭清忠,彭清静.一株苯酚降解茵的分离与鉴定[J].生物技术通讯,2007,18(6):952-954.
    [97]孙军,段玉玺,吕国忠.辽宁木霉属真菌的形态分类研究[J],菌物研究,2006,4(2)38-44.
    [98]刘焕利,王金生.枯草杆菌B3抗植物病原真菌蛋白的纯化及其性质的研究[J].农业生物技术学报,1995,3,(3):33-38.
    [99]王英姿,祁之秋,谷祖敏.绿色木霉菌固体发酵培养基优化组合正交筛选[J].植物保护,2007,33(2):33-35.
    [100]Anand Singh, Shishir Srivastava and H.B. Singh Effect of substrates on growth and shelf life of Trichoderma harzianum and its use in biocontrol of diseases[J]. Bioresource Technology, 2007,98(2):470-473.
    [101]胡奇,安志伟,郑东虎.玫烟拟青霉液体培养中菌丝生长变化初步观测[J].天津农业科学,2003,(4):15-17.
    [102]朱茂山,蔡忠杰,关天舒.木霉菌Tr01菌株分生孢子萌发影响因子研究[J].沈阳农业大学学报,2005,10,36(5):554-557.
    [103]王芊.木霉菌BTW4孢子萌发的条件研究[J].黑龙江农业科学,2002,(5):5-6.
    [104]Sawant I S, Sawant S D. A simple method for achieving high CFU of Trichoderma harzianum on organic wastes for field application [J]. Indian Phytopathelogy,1996,49(2):185-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700