用户名: 密码: 验证码:
新型光电测距与三维成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作是以中国科大物理系与美国微软公司西雅图硬件部的国际合作为背景,着重针对一维单模垂直腔面发射激光器(VCSEL)自混合测距、二维光学双镜头三角法测距和基于LED阵列飞行时间(Time of Flight:TOF)测距的三维成像三方面进行了深入的理论和实验研究。
     本文重点研究了影响单模VCSEL自混合测距的精度和动态范围等重要参数的各种因素,并对系统进行了优化设计;重点研究了二维光学双镜头三角法测距系统的光电设计方法,深入分析了光学双镜头三角法测距误差来源并对其进行了合理地修正;从原理结构和方法上提出一种新的基于LED阵列TOF测距的三维成像技术,深入地分析了实验结果,从理论上提出了简化的信噪比(Signal NoiseRatio:SNR)模型,合理的解释了深度图象像素数量、深度测量分辨率和深度测量速度等重要参数之间的制约关系,并且为系统优化设计提供了参考。
     本论文的主要研究工作和成果如下:
     1.完成了单模VCSEL自混合测距的原理与系统研究;设计了系统的光学和信号处理电路,搭建了单模VCSEL自混合测距系统原型样机;从理论和实验上对影响系统测距精度和动态范围等重要参数的各种因素进行了深入分析研究。应用差频模拟锁相技术代替快速傅立叶信号处理技术,选取最佳的三角波调制频率以及对单模VCSEL进行小电流调制等优化设计方法,可明显提高拍频信号信噪比,使测距精度达到2mm,动态范围扩大到50~500mm。
     2.完成了二维光学双镜头三角法测距的原理与系统研究;详细阐述了二维双镜头三角法测距系统的光学和电子学设计,研制了实时二维双镜头三角法测距系统样机,深入分析了系统测距误差来源并对其进行了修正。通过应用小孔成像代替普通镜头成像,从实验角度证明了大视角非近轴光线的镜头失真是造成测距误差的主要原因。基于实验的角度提出了一种经验修正公式,简化了理论修正公式的形式,明显地提高系统的测距精度和速度。修正后的测距系统实际工作范围可达80mm×100mm,分辨率高于0.2mm,定位精度优于2mm。
     3.从原理结构和方法上提出一种新的基于LED阵列TOF测距的三维成像技术。详细阐述了10×10的LED阵列TOF测距的三维成像系统的光学和电子学设计,构建了实时的10×10 LED阵列TOF测距的三维成像系统样机。深入地分析了TOF测距的结果,从理论上提出了简化的SNR模型,合理的解释了深度图象像素数量、深度测量分辨率和深度测量速度等重要参数之间的制约关系,并且为系统优化设计提供了参考。优化后的10×10 LED阵列TOF测距的三维成像系统在5~100cm的范围内,深度分辨率优于±5mm,图像获取速度可达10fps。
     本论文的创新点主要包括:
     1.利用差频模拟锁相技术处理VCSEL自混合信号,明显改善了自混合拍频信号在拐点处的不连续,同时对信号波形的调幅干扰和波形失真有明显抑制效果,明显提高拍频信号的信噪比,提高了测距精度和动态范围。对单模VCSEL选取合适的三角波调制频率以及进行小电流调制等优化设计方法,可以改善自混合拍频信号频率的测量精度和减小由激光器非线性调制引入的测距误差。
     2.从实验角度证明了光学双镜头三角法测距系统中大视角非近轴光线的镜头失真是造成测距误差的主要原因,并与基于镜头大视角成像的高阶畸变理论分析的结果一致。针对复杂理论修正公式,基于实验的角度提出了一种经验修正公式,简化了修正公式的形式,明显地提高系统的测距精度和速度。
     3.从原理结构和方法上提出一种新的基于LED阵列TOF测距的三维成像技术。应用快速时分扫描光功率调制的LED阵列方法实现了无需机械移动高速采样的深度测量;应用“共透镜”法实现了两维图象与深度图像的高精度对准。设计了新型的快速响应的FBAGC电路,提高了系统的测量速度。基于理论分析提出了简化的SNR模型,合理的解释了深度图象像素数量、深度测量分辨率和深度测量速度等重要参数之间的制约关系,并验证了构建实时高像素三维成像系统的可行性。
The works in this dissertation are based on the international cooperation between Department of Physics,University of Science and Technology of China(USTC) and Seattle Hardware Division of Microsoft,which includes theoretical and experimental research on one-dimensional(1D) single mode vertical-cavity surface-emitting laser (VCSEL) range finding,two-dimensional(2D) triangulation-based optical rang finding with dual lens and three-dimensional(3D) imaging based on LED array time of flight(TOF) range finding.
     We have put emphasis on the study of various factors which influence the range accuracy and dynamic range of laser range finder,and emphasized the study of the photoelectric design method for 2D triangulation-based optical rang finder with dual lens,and give in-depth analysis and appropriate remedy on the triangulation ranging error.Also we have proposed a new 3D imaging system based on LED array time of flight(TOF) range finder,analyzed the experimental results in detail and developed a simple Signal Noise Ratio(SNR) model to explain the mutual restriction among the pixel number of depth image,depth measurement resolution and depth measurement speed,which give a good guidance for the optimized design of the 3D imaging system.
     The main research works and conclusions are as follows:
     1.We accomplished the theory and system researches of laser range finding by self-mixing effect in a single mode VCSEL,designed the optics and signal processing circuit for the system and builded the protype of the single mode VCSEL laser range finder;We analyzed various factors influencing the system key parameters in theory and experiment,such as ranging accuracy and dynamic range,etc.By applying difference frequency analog phase-locked loop(PLL) instead of Fast Fourier Transform(FFT) to process self-mixing beat signal,choosing the optimum triangular wave frequency and small current to modulate single-mode VCSEL,the signal noise ratio(SNR) of beat signal has been enhanced,which finally makes the ranging accuracy is better than 2 mm and the measurement dynamic range is as large as 50~500 mm.
     2.We completed the theory and system researches of the 2D triangulation-based optical rang finding with dual lens,delivered the optics and electronics design for this system in detail,constructed the protype of real-time 2D triangulation-based optical rang finder and gave in-depth analysis and appropriate remedy on the triangulation ranging error.By applying the pinhole imaging instead of normal lens imaging to study 2D ranging,we demonstrated the large visual angle abaxial light aberration of lens is the main reason for the ranging error,and propose an empirical remedy equation based on experiments,which not only simplify the form of theoretical remedy equation but also obviously improve ranging accuracy and speed.The actual work region of this ranging system after remedy is as large as 80 mm×100 mm,the average resolution and ranging error in x and y direction are better than 0.2 mm and 2 mm,respectively.
     3.We proposed a new 3D imaging system based on LED array time of flight range finder in principle and structure,gave the detail design on the optics and electronics for the 10×10 LED array 3D imaging system,and builded the real time protype.Moreover,we analyzed the experimental results in detail and developed a simple SNR model to explain the mutual restriction among the pixel number of depth image,depth measurement resolution and depth measurement speed,which gives a good guidance for the optimized design of the 3D imaging system.The 10×10 LED array 3D imaging system after optimization can acquire at a rate of 10 frames per second(fps) with a depth resolution better than±5mm in the range of 5~100 cm.
     The innovative results in this dissertation are as follows:
     1.Use difference frequency analog PLL to process self-mixing beat signal,so the phase abrupt changes in the beat signal corresponding to the inflection points of the modulation triangular waves have been improved obviously,and the amplitude modulation and distorted waveform has been rejected obviously, which enhance the SNR of beat signal and finally improve,the ranging accuracy and measurement dynamic range.By choosing the optimum triangular wave frequency and small current to modulate single-mode VCSEL, the frequency measurement accuracy of self-mixing beat signal be improved and the ranging error introduced by VCSEL nonlinear modulation can be reduced.
     2.Based on experiment,we demonstrated the large visual angle abaxial light aberration of lens is the main reason for the ranging error in the 2D triangulation-based optical rang finder with dual lens,which keeps good agreement with the high order distortion theory of imaging lens.We also proposed an experiment-based empirical remedy equation,which not only simplify the form of theoretical remedy equation but also obviously improve ranging accuracy and speed.
     3.We proposed a new 3D imaging system based on LED array time of flight range finder in principle and structure.The high speed depth measurement can be achieved by employs fast electronic time-division scanning of a two-dimensional array of LED light sources instead of using mechanical scanning,which means no moving or rotating parts are needed in this system. The co-lens method is used to assure the natural registration between the range image and 2D image.The design of fast feedback AGC(FBAGC) circuit obviously reduces the system feedback response time and improves system measurement speed.Based on the theoretical analysis,a simple SNR model is developed to explain the mutual restriction among the pixel number of depth image,depth measurement resolution and depth measurement speed.Finally, the feasibility of implementing a real time large pixels version of the system is also demonstrated.
引文
[1]王惠文主编.2002.光纤传感技术及其应用[M].北京:国防工业出版社.
    [2]孙长库,叶声华.2001.激光测量技术[M].天津:天津大学出版社.
    [3]蓝信钜.2001.激光技术[M].北京:科学出版社.
    [4]K.T.V.Grattan and B.T.Meggitt.2000.Optical fiber sensor technology[M].Kluwer Academic Publishiers.
    [5]S.Martelluci,A.N.Chester,and A.G.Mignani.2000.Optical Sensors and Microsystems:New Concepts,Materials,Technologies[M].Kluwer Academic Publishiers.
    [6]金国藩,李景镇.1998.激光测量学[M].北京:科学出版社.
    [7]李少慧等译.1997.光纤传感器[M].武汉:华中理工大学出版社.
    [8]杨国光.1997.近代光学测试技术[M].杭州:浙江大学出版社.
    [9]苏大图.1996.光学测试技术[M].北京:北京理工大学出版社.
    [10]刘迎春,传感器原理设计与应用[M].长沙:国防科技大学出版社,1988.
    [11]赵凯华,钟锡华.1984.光学[M].北京:北京大学出版社.
    [12]R.Schwarte,G.Hausler,R.W.Malz,in B.Jahne(ed.).2000.Three-dimensional imaging techniques,in:Computer Vision and Applications [M].Vol.1,Academic Press,177-345.
    [13]F.Chen,G.M.Brown,M.Song.2000.Overview of three-dimensional shape measurement using optical methods[J],Opt.Eng.39:10-22.
    [14]R.Schwarte.2001.Dynamic 3D-Vision[J].Proc.IEEE Int.Sym.on electron devices for microwave and optoelectronic applications'01,241-248.
    [15]F.Blais.2004.Review of 20 years of range sensor development[J].J.Electr Imaging,13:231-240.
    [16]M.Amann,T.Bosch,M.Lescure,R.Myllyl(a|¨),M.Rioux.2001.Laser ranging:a critical review of usual techniques for distance measurement[J].Opt.Eng.40:10-19.
    [17]T.Bosch and M.Lescure,Eds.1995.Selected Papers on Laser Distance Measurement[M],SPIE Milestone Series,Vol.MS-115,SPIE Optical Engineering Press.
    [18]大越孝敬.1982.三维成象技术[M].北京:机械工业出版社.
    [19]T.H.Maiman.1960.Stimulated Optical Radiation in Ruby[J].Nature,187:493-494.
    [20]P.G.R.King et al.1963.Metrology with an optical master[J].Rev.Sci.,17:180-182.
    [21]T.Kanada and K.Nawata.1979.Injection laser characteristics due to reflected optical power[J].IEEE J.Quantum Electron,15:559-565
    [22]L.Goldberg et al.1982.Spectral characteristics of semiconductor lasers with optical feedback[J].IEEE J.Quantum Electron.,18:555-563.
    [23]J.Sacher,W.Elsasser and E.Gobel.1989.Intermittency in the coherence collapse of a semiconductor laser with external feedback[J].Phys.Rev.Lett,63:2224-2227.
    [24]M.J.Rudd.1968.A laser Doppler velocimeter employing the laser as a mixer-oscillator[J].J.Phys.E,1:723-726.
    [25]J.H.Churnside.1984.Laser Doppler velocimetry by modulating a CO2 laser with backscattered light[J].Appl.Opt,23:61-66.
    [26]J.H.Churnside.1984.Signal-to-noise in a backscatter-modulated Doppler velocimeter[J].Appl.Opt,23:2079-2106.
    [27]E.T.Shimizu.1987.Directional discrimination in the self-mixing type laser Doppler velocimeter[J].Appl.Opt,26:4541-4544.
    [28]H.W.Jentink et al.1988.Small laser Doppler velocimeter based on the self-mixing effect in a diode laser[J].Appl.Opt,27:379-385.
    [29]S.Shinohara et al.1989.Compact and versatilie self-mixing type semiconductor laser Doppler velocimeter direction-discrimination circuit[J].IEEE Trans.Instrum.Meas.,38:574-577,1989.
    [30]W.M.Wang et al.1992.Fiber-optic Doppler velocimeter that incorporates active optical feedback from a diode laser[J].Opt.Lett,17:819-821.
    [31]N.Tsukuda et al.1994.New range-finding speedometer using a self-mixing laser diodemodulated by triangular wave pulse current[J].IMTC94.332-335.
    [32]K.Meigas et al.1999.Coherent photodetection for pulse profile registration[J].Proc.SPIE,3598:195-202.
    [33]P.A.Porta,D.Purtin and J.G.McInerney.2002.Laser Doppler velocimetry by optical self-mixing in vertical-cavity surface-emitting lasers[J].IEEE Photon.Technol.Lett,14:1719-1721.
    [34]J.R.Tucker,Y.L.Lim,K.Bertling.2006.Fluid flow rate measurement using the change in laser junction voltage due to the self-mixing effect[J].IEEE Conference on Optoelectronic and Microelectronic Materials and Devices,192-195.
    [35]Zhang Yuyan,Wang Yutian.2007.Laser Doppler Velocimetry based on self-mixing effect in vertical-cavity surface-emtting lasers[J].Proc.of ICEMI,1-414-1-416.
    [36]J.R.Tucker et al.2007.Parallel self-mixing imaging system based on an array of vertical-cavity surface-emitting lasers[J].Applied Optics,46:6237-6246.
    [37]F.Gouaux,N.Servagent,and T.Bosch.1998.Absolute Distance Measurement with an Optical Feedback Interferometer[J].Appl.Opt,37:6684-6689.
    [38]N.Servagent,F.Gouaux,T.Bosch.1998.Measurements of displacement using the self-mixing interference in a laser diode[J].J.Opt.,29:168-173.
    [39]T.Bosch,N.Servagent,F.Gougux,G.Mourat.1998.Self-mixing interference inside a laser diode:application for displacement,velocity,and distance measurement[J].Proc.of SPIE,3478:98-108.
    [40]T.Bosch and N.Servagent.1997.A displacement sensor for spectrum analysis using the optical feedback in a single-mode laser diode[J].IEEE Instru.and Meas.Tech.Conf.,870-873.
    [41]T.Bosch.1996.A scanning rangefmder using the self-mixing effect inside a laser diode for 3-D vision[J].IEEE Instru.and Meas.Tech.Conf,226-231.
    [42]T.Bosch et al.1998.Three-dimensional object construction using a self-mixing typescanning laser range finder[J].IEEE Trans.Instrum.Meas.,47:1326-1329.
    [43]Timothy D.Cole et al.2000.Flight characterization of the NEAR laser rangefinder[J].Proc.of SPIE,4035:131-142.
    [44]D.Dupuy et al.2001.A FMCW laser range-finder based on a delay line technique[J].IEEE Trans.Instrum.Meas.Tech.Conf,2:1084-1088.
    [45]T.Maier and E.Gornik.2000.Integrated sensor chip for interferometric displacementmeasurements[J].IEEE Electron.Lett.,36:792-794.
    [46]G.Mourat,N.Servagent,T.Bosch.2000.Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode[J].Opt.Eng.,39:738-743.
    [47]S.Donati and et al.1996.A PC-interfaced,compact laser-diode feedback interferometer fordisplacement measurements[J].IEEE Trans.Instrum.Meas.,45:942-947.
    [48]J.Kato and N.Kikuchi.1995.Optical feedback displacement sensor using a laser diode and its performance improvement[J].Meas.Sci.Tech.,6:45-52.
    [49]N.Servagent,T.Bosch et al.1997.A laser displacement sensor using the self-mixing effect for modalanalysis and defect detection[J].IEEE Trans.Instrum.Meas.,46:847-850.
    [50]P.A.Roos,M.Stephens and C.E.Wieman.1996.Laser vibrometer based on optical-feedback-induced frequency modulation of a single-mode laser diode[J].Appl.Opt,35:6754-6761.
    [51]K.Hara et al.1997.Compact and Versatile Self-Mixing Type Semiconductor Laser Doppler Velocimeter with Direction Discrimination Circuit[J].IEEE Instru.and Meas.Tech.Conf.,860-864.
    [52]Q.G.Wu et al.1998.Applications and accuracy improvement of vibrometer using frequency modulated self-mixing laser diode[J].Proc.of IEEE Instrum.Meas.Tech.Conf,707-711.
    [53]A.Iwamoto et al.1998.Compact and Fast Vibrational Displacement Sensor with Real-Time Analog Electrical Output Using Self-Mixing Laser Diode[J].SICE'98,899-902.
    [54]Y.Kakiuchi.1998.Measurement of small vibrational displacement by SM-LD vibrometerwith resonance element[J].SICE'98,903-906.
    [55]H.Lamela and J.I.Santos.1999.Vibrations and small displacements measurements using self-mixing techniques with multimode diode lasers[J].Proc.of SPIE,3945:158-163.
    [56]K.Otsuka and et al.2002.Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser[J].Opt.Lett,27:1339-1341.
    [57]S.Kaya.2001.Compact optical instrument for surface classification using self-mixing interference in a laser diode[J].Opt.Eng.,40:38-43.
    [58]R.Lang and K.Kobayashi.1980.External optical feedback effects on semiconductor injection laser properties[J].IEEE J.Quantum Electron.,QE-16:347-355.
    [59]F.S.Chen.1980.Simultaneous feedback control of bias and modulation currents for injection lasers[J].Electron.Lett,16:7-8.
    [60]W.M.Wang et al.1993.Self-mixing interference in a diode laser:experimental observations and theoretical analysis[J].Appl.Opt,32:1551-1558.
    [61]W.M.Wang et al.1994.Self-mixing interference inside a single-mode diode laser foroptical sensing applications[J].IEEE J.Lightwave Technol.,12:1577-1587.
    [62]J.A.Smith.1995.Lasers with optical feedback as displacement sensors[J].Opt.Eng.,34:2802-2810.
    [63]G.Beheim and K.Fritsch.1986.Range finding using frequency-modulated laser diode[J].Appl.Opt,25:1439-1442.
    [64]K.L.Deng and J.Wang.1994.Nanometer-resolution distance measurement with non-interferometer method[J].Appl.Opt.,33:113-116.
    [65]E.Gagnon.1999.Laser range imaging using the self-mixing effect in a laser diode[J].IEEE Trans.Instrum.Meas.,48:693-699.
    [66]J.R.Tucker,et al.2002.Laser range finding using the self-mixing effect in a vertical-cavity surface emitting laser[J].IEEE Conference on Optoelectronic and Microelectronic Materials and Devices,583-586.
    [67]S.Kobayasshi,et al.1982.Direct Frequency Modulation in AlGaAs Semiconductor Lasers[J].IEEE J.Quantum Electron.,QE-18:582-595.
    [68]F.Vogle,et al.2005.A low-cost medium-resolution rangefinder based on the self-mixing effect in a VCSEL[J].IEEE Trans.Instru.Meas.54:428-431.
    [69]R.P.Griffiths,et al.1998.Cavity-resonant optical position sensor-a new type of optical position sensor[J],CLEO,328.
    [70]P.Besnard,et al.1993.Feedback phenomena in a semiconductor laser induced by distant reflectors[J].IEEE Journal of quantum electronics,29:1271-1284.
    [71]P.Besnard,et al.1994.Feedback-induced polarization-switching in the Nd-doped fibre-laser[J].IEEE Journal of quantum electronics,30:242.
    [72]S.Poujouly,et al.1998.High resolution laser range-finder based on phase-shift measurement method[J].Proc.of SPIE,3520:123-132.
    [73]M.Zahid,et al.1997.High-Frequency Phase Measurement for Optical Rangefinding System[J].IEEE Proc.of Sci.Meas.Tech.144:141-148.
    [74]S.Poujouly,et al.1999.Digital laser range finder:phase-shift estimation by undersamplingtechnique[J].IECON,3:1312-1317.
    [75]B.Journet,et al.2000.A Low-Cost Laser Range Finder Based on an FMCW-Like Method[J].IEEE Trans,on Instru.and Meas.,49,:840-843.
    [76]P.Besesty,et al.1999.Compact FMCW advanced laser rangefinder[J].CLEO,552-553.
    [77]D.Dupuy,et al.2002.Improvement of the FMCW Laser Range-Finder by an APD Working as an Optoelectronic Mixer[J].IEEE Trans,on Instru.and Meas.,51:1010-1014.
    [78]G.Bazin,et al.1996.A New Laser Range-Finder Based on FMCW-Like Method[J].IEEE IMTC,90-93.
    [79]G.Beheim and K.Fritsch.1986.Range finding using frequency-modulated laser diode[J].Appl.Opt.,25:1439-1442.
    [80]R.Lange,2000.3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD-Technology[D]:[Ph.D.].Germany:University of Siegen.11-13.
    [81]T.Sawatari.1976.Real-time noncontacting distance measurement using optical triangulation[J].Appl.Opt,15:2821-2824.
    [82]K.Youshida and S.Hirose.1988.Laser triangulation range finder available under direct sunlight[J].IEEE ICRA'88,3:1702-1708.
    [83]R.G.Dorsch et at.1994.Laser triangulation:fundamental uncertainty in distance measurement[J].Appl.Opt.,vol.33:1306-1314.
    [84]V.I.Shlychkov.2005.Study of the precision characteristics of algorithms for measuring the coordinates in triangulation devices[J].J.Opt.Technol,72:482-485.
    [85]E.Higurashi et al.1999.Monolithically Integrated Optical Displacement Sensor Based on Triangulation and Optical Beam Deflection[J].Appl.Opt.,38:1746-1751.
    [86]A.Simoni et al.2002.Integrated Optical Sensors for 3D Vision[J].Proc.of IEEE Sensors,1:1-4.
    [87]W.Schertenleib.1995.Measurement of structures(surfaces) utilizing the SMART 310 laser tracking system[M].Optical 3-D Measurement Techniques Ⅲ,Wichmann.
    [88]S.Kyle,R.Loser,and D.Warren.1997.Automated part positioning with the laser tracker[J].Eureka Transfers Technology.
    [89]J.M.Huntley.2000.Optical shape measurement technology:past,present,and future[J].Proceedings of SPIE.4076:162-173.
    [90]F.Chen,G.M.Brown,M.Song.2000.Overview of three-dimensional shape measurement using optical methods[J],Opt.Eng.39:10-22.
    [91]Zonghua Zhang,David Zhang.et al.2002.New 3D imaging sensor:gaining range and texture[J].Proc.SPIE,4875:925-930.
    [92]彭翔,张宗华,朱绍明,胡小唐.1999.基于白光数字莫尔的三维光学数字成像系统[J].光学学报.19:1401-1405.
    [93]彭翔,张宗华,朱绍明,胡小唐.1999.三维光学数字像的一种解析逼近模型[J].光学学报,19:1571-1575.
    [94]张宗华,彭翔,刘常青,胡小唐.2004.基于CT的头颅骨三维表面重建[J].中国生物医学工程学报,23:392-397.
    [95]P.S.Huang,S.Zhang and F.P.Chiang.2005.Trapezoidal Phase-Shifting Method for 3-D Shape Measurement[J].Opt.Eng.44:123601.
    [96]S.Zhang and S.T.Yau.2006.High-resolution,Real-time Absolute 3-D Coordinate Measurement Based on the Phase Shifting Method[J].Opt.Express,14:2644-2649.
    [97]C.Niclass,A.Rochas,P.A.Besse and E.Charbon.2005.Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes[J].IEEE Journal of Solid-State Circuits,40:1847-1854.
    [98]N.Blanc,T.Oggier,G.Gruener,J.Weingarten,A.Codourey,P.Seitz.2004.Miniaturized smart cameras for 3D-imaging in real-time mobile robot applications[J].Proc.of IEEE 2004,Sensors,1:471-474.
    [99]G.J.Iddan and G.Yahav.2006.3D imaging in the studio.www.3dvsystems.com.il.
    [100]G.Yahav,G.J.Iddan and D.Mandelboum.2006.3D Imaging Camera for Gaming Application,www.3dvsystems.com.il.
    [1]曾树荣.2002.半导体器件物理基础[M].北京:北京大学出版社.
    [2]明海,张国平,谢建平.1998.光电子技术[M].合肥:中国科学技术大学出版社.
    [3]雷肇枥.1997.光纤通信基础[M].成都:电子科技大学出版社.
    [4]李玲,黄永清.1999.光纤通信系统[M].北京:国防工业出版社.
    [5]黄德修,刘雪峰.1999.半导体激光器及其应用[M].北京:国防工业出版社.
    [6]蓝信钜.2001.激光技术[M].北京:科学出版社.
    [7]徐公权等译.2001.光纤通信技术[M].北京:机械工业出版社.
    [8]黄章勇.2001.光纤通信用光电子器件和组件[M].北京:北京邮电大学出版社.
    [9]王惠文主编.2002.光纤传感技术及其应用[M].北京:国防工业出版社.
    [10]李玉权等译.2002.光纤通信[M].第3版.北京:电子工业出版社.
    [11]黄章勇.2003.光纤通信用新型光无源器件[M].北京:北京邮电大学出版社.
    [12]余金中.2003.半导体光电子技术[M].北京:化学工业出版社.
    [13]Y.Kakiuchi.1998.Measurement of Small Vibrational Displacement by SM-LD Vibrometer with Resonance Element[J],SICE'98,107A:903-906.
    [14]K.Otsuka et al.2002.Intracavity second-harmonic and sum-frequency generation with a laser-diode-pumped multitransition-oscillation LiNdP_4O_(12) laser [J].Opt.Left,27:1339-1341.
    [15]J.A.Lehman et al.1997.High-frequency modulation characteristics of red VCSELs[J].Electron.Lett,vol.33:298-300,1997.
    [16]H.W.Jentink et al.1988.Small Laser Doppler Velocimeter Based on the Self-Mixing Effect in a Diode Laser[J].Appl.Opt.,27:379-385.
    [17]W.M.Wang et al.1993.Self-mixing interference in a diode laser:Experimental observations and theoretical analysis[J].Appl.Opt.32:1551-1558.
    [18]W.M.Wang et al.1994.Self-mixing interference inside a single mode diode laser for optical sensing applications[J].IEEE J.Lightwave Techno 1.,12:1577-1587.
    [19]P.J.Groot et al.1988.Ranging and velocimetry signal generation in a backscatter-modulated laser diode[J].Appl.Opt,27:4475-4480.
    [20]P.J.Groot.1990.Range-dependent optical feedback effects on the multi-mode spectrum of laser diodes[J].J.Mod.Opt.,37:1199-1214.
    [21]K.Petermann.1988.Laser diode modulation and noise[M].KTK Academic Publishiers.
    [22]K.Petermann,Laser diode modulation and noise[M].KTK Academic Publishiers,1988.
    [23]N.Schunk et al.1988.Numerical analysis of the feedback regimes for a single-modesemiconductor laser with external feedback[J].IEEE J.Quantum Electron.,24:1242-1247.
    [24]E.Gagnon;J.F.Rivest.1999.Laser range imaging using the self-mixing effect in a laser diode[J].IEEE Trans,on Instru.and Meas.,48:693-699.
    [25]R.E.Best.1984.Phase-Locker Loops[M].MC GRAW-HILL,151-164.
    [1]K.Yoshida,S.Hirose.1988.Laser tnangulation range finder available under direct sunlight[J].Proc.of IEEE International Conference on Robotics and Automation,3:1702-1708.
    [2]H.Lamela,S.Gomez,G.Carpintero,P.Acedo,L.Hernandez,E.Olias.1996.High speed range map obtaining in a tnangulation range finder for mobile robots[J].Proc.of the 1996 IEEE IECON 22nd International Conference,3:1566-1571.
    [3]A.Stefani M,J C P.Junior.L G.Neto.2000.A laser tnangulation range finder based on a chaotic modulation and decection system[J].Proc.of SPIE,4052:321-326.
    [4]L.Zeng,F.Yuan,D.Song,R.Zhang.1999.A two-beam laser tnangulation for measuring the position of a moving object[J].Optics and Lasers in Engineering,31:445-453.
    [5]S.Gorti,H.Tone,G.Imokawa.1999.Tnangulation method for detecting capillary blood flow and physical characteristics of the skin[J].Applied Optics,38:4914-4929.
    [6]H.Gui,L.Lv,W.Huang,J.Xu,D.He,H.Wang,J.Xie,T.Zhao,M.Hai.2006.Coarse error analysis and correction of a two dimensional triangulation range finder[J].Chinese Optics Letters,4:84-86.
    [1]金国藩,李景镇.1998.激光测量学[M],北京,科学出版社
    [2]W.Schertenleib.1995.Measurement of structures(surfaces) utilizing the SMART 310 laser tracking system[J].Optical 3-D Measurement Techniques Ⅲ,Wichmann.
    [3]S.Kyle,R.Loser,and D.Warren.1997.Automated part positioning with the laser tracker[J].Eureka Transfers Technology.
    [4]J.M.Huntley.2000.Optical shape measurement technology:past,present,and future[J].Proc.of SPIE,4076:162-173.
    [5]F.Chen,G.M.Brown,M.Song.2000.Overview of three-dimensional shape measurement using optical methods[J].Optical Engineering,39:10-22.
    [6]C.Niclass,A.Rochas,P.Besse,and E.Charbon.2005.Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes[J].IEEE Journal of Solid-State Circuits,40:1847-1854.
    [7]N.Blanc,T.Oggier,G.Gruener,J.Weingarten,A.Codourey,P.Seitz.2004.Miniaturized smart cameras for 3D-imaging in real-time mobile robot applications[J].Proc.of IEEE 2004,Sensors,1:471-474.
    [8]B.Buttgen,T.Oggier.et al.2004.Demonstration of a Novel Drift Field Pixel Structure for the Demodulation of Modulated Light Waves with Application in Three-Dimensional Image Capture[J].Proc.of SPIE,5302:9-20.
    [9]G.Sansoni,M.Carocci,and R.Rodella.2000.Calibration and Performance Evaluation of a 3-D Imaging Sensor Based on the Projection of Structured Light [J].IEEE Trans.on Instru.and Meas.49:628-636.
    [10]R.Gale.1999.Principles and Applications of the Digital Micromirror Device in Projection Displays[J].IEEE Lasers and Electro Optics Society,1:212-213.
    [11]Q.Chen,T.Wada.2005.A Light Modulation/Demodulation Method for Real-time 3D Imaging[J].Proc.of IEEE 3DIM'05,15-21.
    [12]Z.Zhang,D.Zhang.et al.2002.New 3D imaging sensor:gaining range and texture[J].Proc.SPIE,4875:925-930.
    [13]彭翔,张宗华,朱绍明,胡小唐.1999.三维光学数字像的一种解析逼近模型[J].光学学报,19:1571-1575.
    [14]彭翔,张宗华,朱绍明,胡小唐.1999.基于白光数字莫尔的三维光学数字成像系统[J].光学学报.19:1401-1405.
    [15]张宗华,彭翔,刘常青,胡小唐.2004.基于CT的头颅骨三维表面重建[J].中国生物医学工程学报,23:392-397.
    [16]R.Schwarte,G.Hausler,R.W.Malz.2000.Three-dimensional imaging techniques,in:Computer Vision and Applications[M].Vol.1,Academic Press,177-345.
    [17]F.Chen,G.M.Brown,M.Song.2000.Overview of three-dimensional shape measurement using optical methods[J].Opt.Eng.39:10-22.
    [18]R.Schwarte.2001.Dynamic 3D-Vision[J].Proc.IEEE Int.Sym.on electron devices for microwave and optoelectronic applications'01,241-248.
    [19]F.Blais.2004.Review of 20 years of range sensor development[J].J.Electr Imaging,13:231-240.
    [20]M.Amann,T.Bosch,M.Lescure,R.Myllyl(a|¨),M.Rioux.2001.Laser ranging:a critical review of usual techniques for distance measurement[J].Opt.Eng.40:10-19.
    [21]T.Bosch and M.Lescure,Eds.1995.Selected Papers on Laser Distance Measurement[M],SPIE Milestone Series,Vol.MS-115,SPIE Optical Engineering Press.
    [22]T.Prasad,K.Hartmann,W.Weihs,S.Ghobadi and A.Sluiter.2006.First steps in enhancing 3D vision technique using 2D/3D sensors[J].Proc.the 11~(th)Computer Vision Winter Workshop'06.82-86.
    [23]J.Marszalec,R.Myllyla,J.Lammasniemi.1995.A LED-array-based range-imaging sensor for fast three-dimensional shape measurements[J].Sens.Actuators A 46:501-505.
    [24]S.Zhang and P.S.Huang.2004.High-resolution,real-time 3D shape acquisition[J].Proc.IEEE Comp.Soc.Conf.on computer vision and pattern recognition workshop'04,28-37.
    [25]Q.Hu,P.S.Huang,F.Jin and F.P.Chiang.2003.Calibration of a three-dimensional shape measurement system[J].Opt.Eng,42:487-493.
    [26]S.Zhang and P.S.Huang.2004.High-resolution,real-time 3D shape acquisition[J].Proc.IEEE Comp.Soc.Conf.on computer vision and pattern recognition workshop'04,28-37.
    [27]Q.Hu,P.S.Huang,F.Jin and F.P.Chiang.2003.Calibration of a three-dimensional shape measurement system[J].Opt.Eng,42:487-493.
    [28]T.Oggier,R.Kaufmann,M.Lehmann,B.Buttgen,S.Neukom,M.Richter,M.Schweizer,P.Metzler,F.Lustenberger,N.Blanc.2005.Pixel Architecture with Inherent Background Suppression for 3D Time-of-Flight Imaging[J].Proc.SPIE.5665:1-8.
    [29]G.J.Iddan and G.Yahav.2006.3D imaging in the studio[J],www.3dvsystems.com.il.
    [30]G.Yahav,G.J.Iddan and D.Mandelboum.2006.3D Imaging Camera for Gaming Application[J].www.3dvsystems.com.il.
    [31]邱天.2006.数字激光散斑图像的仿真建模和位移测量算法研究[D]:[博士].合肥:中国科学技术大学,56-58.
    [32]M.Lindner,A.Kolb and K.Hartmann,2007,Date-Fuse of PMD-Based Distance-Information and High-Resolution RGB-Images[J].Proc.IEEE Int.Sym.on signals,circuits and systems'07,1-4.
    [33]K.D.Kuhnert and M.Stommel,2006,Fusion of stereo-camera and pmd-camera data for real-time suited precise 3D environment reconstruction[J].Proc.IEEE Int.Conf.on Intelligent Robots and Systems,4780-4785.
    [34]M.Lindner and A.Kolb,2006,Lateral and Depth Calibration of PMD-Distance Sensors[J].Proc.ISVC 2006,524-533.
    [35]T.Bosch,M.Lescure.1997.Crosstalk analysis of lm to 10m laser phase-shift range finder[J].IEEE Trans.Instrum.Meas 46:1224-1228.
    [36]G.Perchet,M.Lescure and T.Bosch.1997.Errors analysis of phaseshift laser range finder with high level signal[J].Sens.Actuators A,62:534-538.
    [37]H.R.Walker.2004.Systems involving group delay[J].www.VMSK.org
    [38]H.R.Walker.2004.Ultra narrow band modulation[J].Proc.2004 IEEE Sar.Sym.on Advances in Wired and Wireless Communication,19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700