用户名: 密码: 验证码:
环氧树脂微胶囊及其二元自修复材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物基复合材料在使用过程中,受到外界荷载、温度等环境作用,材料内部会产生微裂纹。为了阻止微裂纹扩展,延长材料使用寿命,研究了两类不同修复机理的二元自修复材料,即基于阴离子引发链段聚合的环氧树脂二元自修复体系、基于加成聚合的环氧树脂二元自修复体系。开展了以微胶囊形式为载体,包覆环氧树脂及其阴离子固化剂和加成聚合型固化剂的研究,并运用液-液界面热力学的理论解释了液-液界面的稳定性对微胶囊的产率和性能的影响。
     无论采用何种微胶囊化方法,都需要形成一个具有两相界面的亚稳定体系,然后在连续相中加入可聚合或可成膜高分子,在分散相与连续相界面处聚合或沉降形成壳结构,最终微胶囊化。那么,乳液的稳定性将显著地影响着微胶囊的产率和性能。本文首先将界面热力学的原理应用到微胶囊化过程中,从热力学角度解释乳液稳定对微胶囊产率和质量的巨大影响。利用聚电解质自吸附的原理在油水界面层形成凝胶颗粒,促进乳液趋于稳定,成功合成了壳聚糖-脲醛树脂壁材微胶囊,并给出了微胶囊的最佳合成条件。此外,应用界面热力学理论解释了其他微胶囊化过程中,乳液稳定对微胶囊产率和性能的影响。
     其次,对环氧树脂微胶囊的合成原理、合成工艺以及性能进行了研究。通过原位乳液聚合法成功制备了包含环氧树脂及其活性稀释剂的脲醛树脂壁材微胶囊,给出了微胶囊的最佳合成条件。在此条件下合成的微胶囊具有最适宜制备自修复材料的物理性能。通过化学结构和物理结构分析,证明了微胶囊具有芯-壁结构,并证明了芯材具有反应活性。此外,微胶囊具有良好的热稳定性,在253℃以下可保持其化学稳定性。
     在此基础上,研究了基于阴离子引发链段聚合的环氧树脂微胶囊/DMP-30微胶囊二元自修复体系。其中固化剂的包覆是通过复相乳液法,制备了聚苯乙烯包覆阴离子催化剂DMP-30的微胶囊,对微胶囊的合成原理、合成工艺、表面形貌、粒径分布和平均粒径、化学结构、芯材抗渗透性、芯材活性、热稳定性进行了研究。通过化学结构和物理结构分析,证明了微胶囊具有芯-壁结构,并证明了芯材具有反应活性。但是,微胶囊在溶剂乙醇中的抗渗透性较差。此外,微胶囊在153℃以下可保持化学稳定性。最后,制备了掺杂环氧树脂微胶囊和DMP-30微胶囊的环氧树脂断裂韧性试样,测定修复效率,得出不同环氧树脂微胶囊含量和DMP-30微胶囊含量的条件下,随着DMP-30微胶囊含量和环氧树脂微胶囊含量的增加,自修复试样均呈现修复效率增加的现象。由于DMP-30微胶囊的抗渗透性较差,导致该体系的修复效率较低。环氧树脂/DMP-30二元自修复体系还有待于进一步研究,特别是在选择合适的芯材承载方式的方面。
     此外,还研究了基于阴离子引发链段聚合的环氧树脂微胶囊/2MZ-AZINE潜伏型固化剂二元自修复体系,制备了环氧树脂基自修复断裂韧性试样,测定其修复效率,试验结果表明:在较低微胶囊含量时,自修复效率对微胶囊含量的依赖性较差,一旦在某个小的修复单元内达到自修复的温度条件和2MZ-AZINE达到引发反应的最小值时,则会引发环氧树脂的开环聚合反应。此时,环氧树脂微胶囊和2MZ-AZINE的化学计量比对修复效率的影响较小,主要是受修复剂和固化剂在基体中的分布影响。确定了最佳的修复剂含量为15%的环氧树脂微胶囊和2%的2MZ-AZINE,其修复效率为~83%。并通过修复前后断裂面的SEM图片证明了成功实现了自修复过程。
     最后,研究了基于加成聚合的环氧树脂微胶囊/乙二胺微胶囊二元自修复体系。其中固化剂乙二胺的包覆是通过溶剂萃取与界面聚合相结合的方法,成功制备了环氧树脂-乙二胺壁材包覆乙二胺固化剂的微胶囊,对微胶囊的合成原理、合成工艺、化学结构、表面形貌、粒径分布和平均粒径、热稳定性、芯材活性进行了研究,并给出了最佳的合成条件。通过化学结构和物理结构分析,证明了微胶囊具有芯-壁结构以及芯材具有反应活性。微胶囊外观晶莹剔透呈规则球形,粘附少,且该方法所制备的微胶囊不需要考虑与环氧树脂基体之间的界面问题。此外,微胶囊在90℃以下可保持化学稳定性,但不可无限制的暴露于热环境中。最终制备了环氧树脂断裂韧性试样,测定其修复效率,试验结果表明:在较低环氧树脂微胶囊和乙二胺微胶囊含量时,自修复效率主要受到微胶囊在基体中的分布影响;在较高微胶囊含量时,主要是受到微胶囊含量的影响。最佳环氧树脂微胶囊与乙二胺微胶囊含量为12%和8%,呈现~80.4%的修复效率,并通过修复前后断裂面的SEM图片证明了成功实现了自修复过程。
     同时,对环氧树脂/DMP-30自修复体系、环氧树脂/2MZ-AZINE自修复体系和环氧树脂/乙二胺自修复体系,从制备工艺、修复机理和修复效率以及经济成本进行了对比研究。在自修复材料制备工艺方面,环氧树脂/DMP-30自修复体系和环氧树脂/乙二胺自修复体系采用的都是双微胶囊体系,对材料的力学性能损伤较大;环氧树脂/2MZ-AZINE自修复体系采用的是单微胶囊体系,对材料的力学性能损伤相对较小。在修复机理和修复效率方面,环氧树脂/DMP-30自修复体系、环氧树脂/2MZ-AZINE自修复体系均为阴离子引发环氧开环聚合的机理,较少的固化剂含量即可实现固化;环氧树脂/乙二胺自修复体系是基于加成聚合的环氧树脂二元自修复体系,修复效率与环氧树脂微胶囊含量与乙二胺微胶囊含量在一定含量范围内存在依赖关系。在经济成本方面,环氧树脂/DMP-30自修复体系的成本相对较高。
Microcracks are inevitably generated during the use of structural polymericcomposite when affected by the environmental factors such as outside load andtemperature. We designed two different kinds of binary self-healing polymericmaterials, which are based on anionic chain polymerization and additionpolymerization of epoxy and its curing agent, in order to prevent microcrackspropagating and prolong using life. Microencapsulation of epoxy resin and itshardeners were investigated respectively. Also, effect of stabilization of liquid-liquidinterface of oil-water emulsion on microcapsule’s yield and properties wereinterpreted through the theory of interface thermodynamics.
     A metastable emulsion system of liquid-liquid interface is essential formationfor all microencapsulation. Then shell material former polymerized at the interfacebetween dispersed phase and continuous phase, forming microcapsules. Therefore,the stabilization of emulsion would greatly influence on microcapsule’s yield andproperties. First of all, in this paper, the theory of interface thermodynamics wasapplied in microencapsulation process to explain the effect of stabilization ofemulsion on yield and properties of microcapsules. For the application example, wesuccessfully prepared chitosan-(urea formaldehyde) shell microcapsule usingparticle-stabilized emulsion by an interfacial gel layer which is self-assembled byelectrostatic adsorption between negatively charged surfactant SDS and positivelycharged polysaccharide chitosan in an oil-in-water emulsion. Finally, the optimumconditions for preparing microcapsules were concluded. Additionally, the theory ofinterface thermodynamics were also applied in other microencapsulation process inthis paper.
     Secondly, we investigated synthetic principle, synthesis condition and propertiesof epoxy-containing microcapsules. Microcapsules were synthesized by in situpolymerization of urea and formaldehyde in an emulsion. The optimum conditionsfor preparing microcapsules were concluded. Under the optimum conditions,resultant microcapsules possess adequate physical properties for application in self-healing materials. The core-shell structure of microcapsule was proved by FT-IR,OM and SEM. The reactivity of core material was proved by DSC. Besides,microcapsules possess good thermal stabilization, which can keep chemicalstabilization under253℃.
     On this basis, binary self-healing material based on anionic chainpolymerization of epoxy resin and DMP-30was developed. DMP-30-containingmicrocapsules were prepared by solvent evaporation method. The synthetic principle,synthesis process, surface morphology, size distribution and average diameter, chemical structure, core anti-permeability, reactivity of core material and thermalstabilization were investigated. The core-shell structure and core reactivity ofmicrocapsules were proved, but the anti-permeability of microcapsules in ethanolsolvent was poor. Otherwise, microcapsules can keep chemical stabilization under153℃. Finally, self-healing samples with epoxy-containing microcapsules and DMP-30-containing microcapsules were fabricated, and self-healing efficiency was testedby fracture toughness before and after healing process. The results shows that self-healing efficiency increases with the enhancement of content of microcapsules.Unfortunately, healing efficiency of this system is lower because of the poor anti-permeability of microcapsules. This system needs further investigation, especially onthe suitable carrier of core material.
     Besides, we also investigated binary self-healing system with epoxy-containingmicrocapsule and latent hardener2MZ-AZINE based on anionic chainpolymerization. Self-healing samples were prepared for measuring healing efficiency.It is worth noting that although healing efficiency increases with a rise inmicrocapsules content in the regime of low microcapsules content, the former isnearly independent of microcapsules content above a certain value. Once dosage of2MZ-AZINE reaches the prescribed minimum, anionic chain polymerization of thereleased epoxy begins at certain temperature. The requirement of stoichiometriccomposition at every inch of repair region is unnecessary. Therefore, the distributionof microcapsules and latent curing agent greatly influences the healing efficiency. Asa result, the optimal weight ratio of microcapsules and curing agent2MZ-AZINEembeded in the epoxy matrix are15wt%and2wt%, and the healing efficiency is~83%. The SEM photos of fracture surface before and after healing process provedthat healing process was successfully realized.
     At last, we investigated binary self-healing system with epoxy-containingmicrocapsule and ethylenediamine(EDA)-containing microcapsule based on additionpolymerization. EDA-containing microcapsules were successfully prepared bycombining solvent extraction method with interfacial polymerization method. Thesynthetic principle, synthesis process, chemical structure, surface morphology, sizedistribution and average diameter, thermal stabilization and reactivity of corematerial were investigated. The optimum conditions for preparing microcapsuleswere concluded. The core-shell structure and core reactivity of microcapsules wereproved. The appearance of resultant microcapsule was transparent, spherical and lessadhesion. The interface performance between microcapsules and matrix wasunnecessary to be considered because of the epoxy-EDA shell material when used inan epxoy-based composite. Additionally, microcapsules can keep chemicalstabilization under90℃, but unlimited exposure under thermal environment will leadto the increase of weight loss of core material. Finally, self-healing samples wereprepared for measuring healing efficiency. At lower content of epoxy-containing microcapsules and EDA-containing microcapsules, healing efficiency was mainlyinfluenced by distribution of both microcapusles in the matrix. At higher content ofboth microcapsules, content of both microcapsules was to be the main factor thatinfluenced the healing efficiency. As a result, the optimal weight ratio of epoxy-containing microcapsules and EDA-containing microcapsules embeded in the epoxymatrix are12wt%and8wt%, offering~80.4%healing efficiency. The SEM photosof fracture surface before and after healing process proved that healing process wassuccessfully realized.
     Additionally, epoxy/DMP-30self-healing system, epoxy/2MZ-AZINE self-healing system and epoxy/EDA self-healing system were comparatively investigatedat the aspect of preparation process, healing mechanism, healing efficiency andeconomic cost. In preparation process, we adopted double-microcapsule system onepoxy/DMP-30and epoxy/EDA self-healing system, which largely damaged themechanical performance of material. But epoxy/2MZ-AZINE self-healing systemwas adopted by single-microcapsule system, which weakly effected on themechanical performance of material compared with double-microcapsule system. Inhealing mechanism and healing efficiency, epoxy/DMP-30and epoxy/2MZ-AZINEself-healing system is based on anionic chain polymerization, which inferred that lesshardner content could initiate the polymerization. The epoxy/EDA self-healingsystem is based on addition polymerization, which inferred that content of thehealing agent largely influenced the healing efficiency at a certain range. Ineconomic cost, the expenditure of epoxy/DMP-30self-healing system is the most one.
引文
1Bergman S. D., Wudl F. Mendable polymers. Journal of Materials Chemistry.2008,18(1):41-62
    2Wool R. P. Self-healing materials: a review. Soft Matter.2008,4(3):400-418
    3Yuan Y. C., Yin T., Rong M. Z., Zhang M. Q. Self healing in polymers andpolymer composites. Concepts, realization and outlook: A review. ExpressPolymer Letters.2008,2(4):238-250
    4Wu D. Y., Meure S., Solomon D. Self-healing polymeric materials: A review ofrecent developments. Progress in Polymer Science.2008,33(5):479-522
    5Murphy E. B., Wudl F. The world of smart healable materials. Progress inPolymer Science.2010,35(1-2):223-251
    6Hucker M. J., Bond I. P., Haq S., Bleay S., Foreman A. Influence ofmanufacturing parameters on the tensile strengths of hollow and solid glassfibres. Journal of Materials Science.2002,37(2):309-315
    7Trask R. S., Williams G. J., Bond I. P. Bioinspired self-healing of advancedcomposite structures using hollow glass fibres. Journal of the Royal SocietyInterface.2007,4(13):363-371
    8Hucker M., Bond I., Foreman A., Hudd J. Optimisation of hollow glass fibresand their composites. Advanced Composites Letters.1999,8(4):181-189
    9Hucker M., Bond I., Bleay S., Haq S. Experimental evaluation of unidirectionalhollow glass fibre/epoxy composites under compressive loading. CompositesPart a-Applied Science and Manufacturing.2003,34(10):927-932
    10Williams G., Trask R., Bond I. A self-healing carbon fibre reinforced polymerfor aerospace applications. Composites Part a-Applied Science andManufacturing.2007,38(6):1525-1532
    11Dry C. Procedures developed for self-repair of polymer matrix compositematerials. Composite Structures.1996,35(3):263-269
    12Li V. C., Lim Y. M., Chan Y. W. Feasibility study of a passive smart self-healingcementitious composite. Composites Part B-Engineering.1998,29(6):819-827
    13Dry C., McMillan W. Three-part methylmethacrylate adhesive system as aninternal delivery system for smart responsive concrete. Smart Materials&Structures.1996,5(3):297-300
    14Motuku M., Vaidya U. K., Janowski G. M. Parametric studies on self-repairingapproaches for resin infused composites subjected to low velocity impact. SmartMaterials&Structures.1999,8(5):623-638
    15Bleay S. M., Loader C. B., Hawyes V. J., Humberstone L., Curtis P. T. A smartrepair system for polymer matrix composites. Composites Part a-AppliedScience and Manufacturing.2001,32(12):1767-1776
    16Pang J. W. C., Bond I. P. A hollow fibre reinforced polymer compositeencompassing self-healing and enhanced damage visibility. Composites Scienceand Technology.2005,65(11-12):1791-1799
    17Bond I. P., Pang J. W. C. A hollow fibre reinforced polymer compositeencompassing self-healing and enhanced damage visibility. Composites Scienceand Technology.2005,65(11-12):1791-1799
    18Jang B. Z., Chen L. C., Hwang L. R., Hawkes J. E., Zee R. H. The Response ofFibrous Composites to Impact Loading. Polymer Composites.1990,11(3):144-157
    19White S. R., Sottos N. R., Geubelle P. H., Moore J. S., Kessler M. R., Sriram S.R., Brown E. N., Viswanathan S. Autonomic healing of polymer composites.Nature.2001,409:794-797
    20Brown E. N., Kessler M. R., Sottos N. R., White S. R. In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. Journal ofMicroencapsulation.2003,20:719-730
    21Rule J. D., Moore J. S. ROMP reactivity of endo-and exo-dicyclopentadiene.Macromolecules.2002,35(21):7878-7882
    22Brown E. N., Sottos N. R., White S. R. Fracture testing of a self-healingpolymer composite. Experimental Mechanics.2002,42(4):372-379
    23Brown E. N., White S. R., Sottos N. R. Microcapsule induced toughening in aself-healing polymer composite. Journal of Materials Science.2004,39(5):1703-1710
    24Brown E. N., White S. R., Sottos N. R. Fatigue crack propagation inmicrocapsule-toughened epoxy. Journal of Materials Science.2006,41(19):6266-6273
    25Brown E. N., White S. R., Sottos N. R. Retardation and repair of fatigue cracksin a microcapsule toughened epoxy composite-Part II: In situ self-healing.Composites Science and Technology.2005,65(15-16):2474-2480
    26Brown E. N., White S. R., Sottos N. R. Retardation and repair of fatigue cracksin a microcapsule toughened epoxy composite-Part1: Manual infiltration.Composites Science and Technology.2005,65(15-16):2466-2473
    27Kessler M. R., White S. R. Cure kinetics of the ring-opening metathesispolymerization of dicyclopentadiene. Journal of Polymer Science Part a-Polymer Chemistry.2002,40(14):2373-2383
    28Kessler M. R., Sottos N. R., White S. R. Self-healing structural compositematerials. Composites Part a-Applied Science and Manufacturing.2003,34(8):743-753
    29Kessler M. R., White S. R. Self-activated healing of delamination damage inwoven composites. Composites Part a-Applied Science and Manufacturing.2001,32(5):683-699
    30Rule J. D., Sottos N. R., White S. R. Effect of microcapsule size on theperformance of self-healing polymers. Polymer.2007,48(12):3520-3529
    31Mookhoek S. D., Blaiszik B. J., Fischer H. R., Sottos N. R., White S. R., van derZwaag S. Peripherally decorated binary microcapsules containing two liquids.Journal of Materials Chemistry.2008,18(44):5390-5394
    32Yuan L., Liang G. Z., Xie J. Q., He S. B. Synthesis and characterization ofmicroencapsulated dicyclopentadiene with melamine-formaldehyde resins.Colloid and Polymer Science.2007,285(7):781-791
    33Yuan L., Liang G. Z., Xie J. Q., Li L., Guo J. The permeability and stability ofmicroencapsulated epoxy resins. Journal of Materials Science.2007,42(12):4390-4397
    34Jones A. S., Rule J. D., Moore J. S., White S. R., Sottos N. R. Catalystmorphology and dissolution kinetics of self-healing polymers. Chemestry ofMaterials.2006,18(5):1312-1317
    35Wilson G. O., Porter K. A., Weissman H., White S. R., Sottos N. R., Moore J. S.Stability of Second Generation Grubbs' Alkylidenes to Primary Amines:Formation of Novel Ruthenium-Amine Complexes. Advanced Synthesis&Catalysis.2009,351(11-12):1817-1825
    36Rule J. D., Brown E. N., Sottos N. R., White S. R., Moore J. S. Wax-protectedcatalyst microspheres for efficient self-healing materials. Advanced Materials.2005,17(2):205
    37Kamphaus J. M., Rule J. D., Moore J. S., Sottos N. R., White S. R. A new self-healing epoxy with tungsten (VI) chloride catalyst. Journal of the Royal SocietyInterface.2008,5(18):95-103
    38Caruso M. M., Delafuente D. A., Ho V., Sottos N. R., Moore J. S., White S. R.Solvent-promoted self-healing epoxy materials. Macromolecules.2007,40(25):8830-8832
    39Caruso M. M., Blaiszik B. J., White S. R., Sottos N. R., Moore J. S. Fullrecovery of fracture toughness using a nontoxic solvent-based self-healingsystem. Advanced Functional Materials.2008,18(13):1898-1904
    40Blaiszik B. J., Caruso M. M., McIlroy D. A., Moore J. S., White S. R., Sottos N.R. Microcapsules filled with reactive solutions for self-healing materials.Polymer.2009,50(4):990-997
    41Cho S. H., Andersson H. M., White S. R., Sottos N. R., Braun P. V.Polydimethylsiloxane-based self-healing materials. Adv Mater.2006,18(8):997
    42Keller M. W., White S. R., Sottos N. R. A self-healing poly(dimethyl siloxane)elastomer. Advanced Functional Materials.2007,17(14):2399-2404
    43Cho S. H., White S. R., Braun P. V. Self-Healing Polymer Coatings. AdvancedMaterials.2009,21(6):645
    44Yuan L., Liang G. Z., Xie J. Q., Li L., Guo J. Preparation and characterization ofpoly(urea-formaldehyde) microcapsules filled with epoxy resins. Polymer.2006,47(15):5338-5349
    45Yuan Y. C., Rong M. Z., Zhang M. Q. Preparation and characterization of poly(melamine-formaldehyde) walled microcapsules containing epoxy. ActaPolymerica Sinica.2008,(5):472-480
    46Xiao D. S., Rong M. Z., Zhang M. Q. A novel method for preparing epoxy-containing microcapsules via UV irradiation-induced interfacialcopolymerization in emulsions. Polymer.2007,48(16):4765-4776
    47Yin T., Rong M. Z., Zhang M. Q., Yang G. C. Self-healing epoxy composites-Preparation and effect of the healant consisting of microencapsulated epoxy andlatent curing agent. Composites Science and Technology.2007,67(2):201-212
    48Rong M. Z., Zhang M. Q., Zhang W. A novel self-healing epoxy system withmicroencapsulated epoxy and imidazole curing agent. Advanced CompositesLetters.2007,16(5):167-172
    49Yin T., Zhou L., Rong M. Z., Zhang M. Q. Self-healing woven glassfabric/epoxy composites with the healant consisting of micro-encapsulatedepoxy and latent curing agent. Smart Materials&Structures.2008,17(1):-
    50Yuan Y. C., Rong M. Z., Zhang M. Q. Preparation and characterization ofmicroencapsulated polythiol. Polymer.2008,49(10):2531-2541
    51Yuan Y. C., Rong M. Z., Zhang M. Q., Chen B., Yang G. C., Li X. M. Self-healing polymeric materials using epoxy/mercaptan as the healant.Macromolecules.2008,41(14):5197-5202
    52Xiao D. S., Yuan Y. C., Rong M. Z., Zhang M. Q. Hollow polymericmicrocapsules: Preparation, characterization and application in holding borontrifluoride diethyl etherate. Polymer.2009,50(2):560-568
    53Xiao D. S., Yuan Y. C., Rong M. Z., Zhang M. Q. Self-healing epoxy based oncationic chain polymerization. Polymer.2009,50(13):2967-2975
    54Xiao D. S., Yuan Y. C., Rong M. Z., Zhang M. Q. A Facile Strategy forPreparing Self-Healing Polymer Composites by Incorporation of CationicCatalyst-Loaded Vegetable Fibers. Advanced Functional Materials.2009,19(14):2289-2296
    55Wang H. P., Yuan Y. C., Rong M. Z., Zhang M. Q. Microencapsulation ofstyrene with melamine-formaldehyde resin. Colloid and Polymer Science.2009,287(9):1089-1097
    56Toohey K. S., Sottos N. R., Lewis J. A., Moore J. S., White S. R. Self-healingmaterials with microvascular networks. Nature Materials.2007,6(8):581-585
    57Toohey K. S., Hansen C. J., Lewis J. A., White S. R., Sottos N. R. Delivery ofTwo-Part Self-Healing Chemistry via Microvascular Networks. AdvancedFunctional Materials.2009,19(9):1399-1405
    58Toohey K. S., Sottos N. R., White S. R. Characterization of Microvascular-Based Self-healing Coatings. Experimental Mechanics.2009,49(5):707-717
    59Hansen C. J., Wu W., Toohey K. S., Sottos N. R., White S. R., Lewis J. A. Self-Healing Materials with Interpenetrating Microvascular Networks. AdvancedMaterials.2009,21(41):4143-+
    60Diels O., Alder K. Syntheses in the hydroaromatic series. I. Addition of “diene”hydrocarbons. Liebigs Ann Chem.1928,(460):98-122
    61Chujo Y., Sada K., Saegusa T. A Novel Nonionic Hydrogel from2-Methyl-2-Oxazoline.4. Reversible Gelation of Polyoxazoline by Means of Diels-AlderReaction. Macromolecules.1990,23(10):2636-2641
    62Wagener K. B., Engle L. P. Thermally Reversible Polymer Linkages.2. LinearAddition Polymers. Journal of Polymer Science Part a-Polymer Chemistry.1993,31(4):865-875
    63Gousse C., Gandini A., Hodge P. Application of the Diels-Alder reaction topolymers bearing furan moieties.2. Diels-Alder and retro-Diels-Alder reactionsinvolving furan rings in some styrene copolymers. Macromolecules.1998,31(2):314-321
    64Jones J. R., Liotta C. L., Collard D. M., Schiraldi D. A. Cross-linking andmodification of poly(ethylene terephthalate-co-2,6-anthracenedicarboxy byDiels-Alder reactions with maleimides. Macromolecules.1999,32(18):5786-5792
    65McElhanon J. R., Wheeler D. R. Thermally responsive dendrons and dendrimersbased on reversible furan-maleimide Diels-Alder adducts. Organic Letters.2001,3(17):2681-2683
    66Chen X. X., Dam M. A., Ono K., Mal A., Shen H. B., Nutt S. R., Sheran K.,Wudl F. A thermally re-mendable cross-linked polymeric material. Science.2002,295(5560):1698-1702
    67Chen X. X., Wudl F., Mal A. K., Shen H. B., Nutt S. R. New thermallyremendable highly cross-linked polymeric materials. Macromolecules.2003,36(6):1802-1807
    68Plaisted T. A., Nemat-Nasser S. Quantitative evaluation of fracture, healing andre-healing of a reversibly cross-linked polymer. Acta Materialia.2007,55(17):5684-5696
    69Tian Q., Yuan Y. C., Rong M. Z., Zhang M. Q. A thermally remendable epoxyresin. Journal of Materials Chemistry.2009,19(9):1289-1296
    70Zhang Y., Broekhuis A. A., Picchioni F. Thermally Self-Healing PolymericMaterials: The Next Step to Recycling Thermoset Polymers? Macromolecules.2009,42(6):1906-1912
    71Murphy E. B., Bolanos E., Schaffner-Hamann C., Wudl F., Nutt S. R., Auad M.L. Synthesis and characterization of a single-component thermally remendablepolymer network: Staudinger and Stille revisited. Macromolecules.2008,41(14):5203-5209
    72Stobbe H. Light reactions of the allo-and iso-cinnamic acids. Ber.1919,(52B):666-672
    73Chung C. M., Roh Y. S., Cho S. Y., Kim J. G. Crack healing in polymericmaterials via photochemical [2+2] cycloaddition. Chemistry of Materials.2004,16(21):3982-+
    74Scott T. F., Schneider A. D., Cook W. D., Bowman C. N. Photoinduced plasticityin cross-linked polymers. Science.2005,308(5728):1615-1617
    75Abry J. C., Bochard S., Chateauminois A., Salvia M., Giraud G. In situ detectionof damage in CFRP laminates by electrical resistance measurements.Composites Science and Technology.1999,59(6):925-935
    76Hou L., Hayes S. A. A resistance-based damage location sensor for carbon-fibrecomposites. Smart Materials&Structures.2002,11(6):966-969
    77Yarlagadda S., Kim H. J., Gillespie J. W., Shevchenko N. B., Fink B. K. A studyon the induction heating of conductive fiber reinforced composites. Journal ofComposite Materials.2002,36(4):401-421
    78Wang Y., Bolanos E., Wudl F., Hahn T., Kwok N. Self-healing polymers andcomposites based on thermal activation-art. no.65261l. Behavior andMechanics of Multifunctional and Composite Materials2007.2007,6526:L5261-L5261
    79Park J. S., Takahashi K., Guo Z. H., Wang Y., Bolanos E., Hamann-Schaffner C.,Murphy E., Wudl F., Hahn H. T. Towards Development of a Self-HealingComposite using a Mendable Polymer and Resistive Heating. Journal ofComposite Materials.2008,42(26):2869-2881
    80Kirkby E. L., Rule J. D., Michaud V. L., Sottos N. R., White S. R., Manson J. A.E. Embedded shape-memory alloy wires for improved performance of self-healing polymers. Advanced Functional Materials.2008,18(15):2253-2260
    81Williams K. A., Boydston A. J., Bielawski C. W. Towards electricallyconductive, self-healing materials. Journal of the Royal Society Interface.2007,4(13):359-362
    82童晓梅,张敏,张婷等.微胶囊自修复技术及其在聚合物基复合材料中的应用.塑料.2009,38(1):20-31
    83Zhang Y., Li L., Au W. M., Yang Z. M., He G. R., Deng S. X., Yang Z. H.,Chung J. W. Y., Wong T. K. S. Preparation and controlled-release analysis ofethyl cellulose-moxa leaf powder solution microcapsules. Advanced PolymerProcessing.2010,87-88:11-15
    84Whelehan M., von Stockar U., Marison I. W. Removal of pharmaceuticals fromwater: Using liquid-core microcapsules as a novel approach. Water Research.2010,44(7):2314-2324
    85Kuang S. S., Oliveira J. C., Crean A. M. Microencapsulation as a Tool forIncorporating Bioactive Ingredients into Food. Critical Reviews in Food Scienceand Nutrition.2010,50(10):951-968
    86Kim D. G., Jeong Y. I., Choi C., Roh S. H., Kang S. K., Jang M. K., Nah J. W.Retinol-encapsulated low molecular water-soluble chitosan nanoparticles.International Journal of Pharmaceutics.2006,319(1-2):130-138
    87Avadi M. R., Zohuriaan-Mehr M. J., Younessi P., Amini M., Tehrani M. R.,Shafiee A. Optimized synthesis and characterization of N-triethyl chitosan.Journal of Bioactive and Compatible Polymers.2003,18(6):469-479
    88Yuan L., Liang G. Z., Xie J. Q., Li L., Guo J. Preparation and characterization ofpoly(urea-formaldehyde) microcapsules filled with epoxy resins. Polymer.2006,47:5338-5349
    89Fang G. Y., Li H., Liu X., Wu S. M. Experimental Investigation of Performancesof Microcapsule Phase Change Material for Thermal Energy Storage. ChemicalEngineering&Technology.2010,33(2):227-230
    90Zhou L. M., Wang Y. P., Liu Z. R., Huang Q. W. Characteristics of equilibrium,kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. Journal of Hazardous Materials.2009,161(2-3):995-1002
    91宋健,陈磊,李效军.微胶囊化技术及应用.化学工业出版社,2001:53-230
    92梁治齐.微胶囊技术及其应用.中国轻工业出版社,1999:3-128
    93Wang R. G., Li H. Y., Liu W. B., He X. D. Surface Modification of Poly(urea-formaldehyde) Microcapsules and the Effect on the Epoxy CompositesPerformance. Journal of Macromolecular Science Part a-Pure and AppliedChemistry.2010,47(10):991-995
    94Ting Z., Min Z., Xiao-Mei T., Feng C., Jian-Hui Q. Optimal Preparation andCharacterization of Poly(urea-formaldehyde) Microcapsules. Journal of AppliedPolymer Science.2010,115(4):2162-2169
    95Yuan L., Gu A. J., Liang G. Z. Preparation and properties of poly(urea-formaldehyde) microcapsules filled with epoxy resins. Materials Chemistry andPhysics.2008,110(2-3):417-425
    96Li H. Y., Wang R. G., He X. D., Liu W. B., Hao H. Y. Preparation andcharacterization of self-healing poly (urea-formaldehyde) microcapsules-art.no.64232T. International Conference on Smart Materials and Nanotechnologyin Engineering, Pts1-3.2007,6423: T4232-T4232
    97Yuan L., Liang G. Z., Xie J. Q., Guo J., Li L. Thermal stability ofmicroencapsulated epoxy resins with poly(urea-formaldehyde). PolymerDegradation and Stability.2006,91(10):2300-2306
    98Cosco S., Ambrogi V., Musto P., Carfagna C. Urea-formaldehyde microcapsulescontaining an epoxy resin: Influence of reaction parameters on the encapsulationyield. Macromolecular Symposia.2006,234:184-192
    99Qu R. J., Sun Y. Z., Wang C. H., Lu S. L., Yu H. M., Cheng G. X. Syntheses andproperties of carboxymethyl chitosan/urea-formaldehyde snake-cage resins.Journal of Applied Polymer Science.2002,84(2):310-317
    100Gao G. B., Qian C. X., Gao M. J. Preparation and characterization of hexadecanemicrocapsule with polyurea-melamine formaldehyde resin shell materials.Chinese Chemical Letters.2010,21(5):533-537
    101Liu X., Sheng X., Lee J. K., Kessler M. R., Synthesis and characterization ofmelamine-urea-formaldehyde microcapsules containing ENB-based self-healingagents, in: S. Du, J. Leng, A.K. Asundi (Eds.) International Conference on SmartMaterials and Nanotechnology in Engineering, Pts1-3, Spie-Int Soc OpticalEngineering, Bellingham,2007, pp.42337-42337.
    102Erkan G., Sariisik M., Pazarlioglu N. K. The Microencapsulation of Terbinafinevia In Situ Polymerization of Melamine-Formaldehyde and Their Application toCotton Fabric. Journal of Applied Polymer Science.2010,118(6):3707-3714
    103Lee J. K., Liu X., Sheng X., Kessler M. R. Synthesis and Characterization ofMelamine-Urea-Formaldehyde Microcapsules Containing ENB-Based Self-Healing Agents. Macromolecular Materials and Engineering.2009,294(6-7):389-395
    104Liu X., Sheng X., Lee J. K., Kessler M. R. Synthesis and Characterization ofMelamine-Urea-Formaldehyde Microcapsules Containing ENB-Based Self-Healing Agents. Macromolecular Materials and Engineering.2009,294(6-7):389-395
    105Hu J. F., Chen H. Q., Zhang Z. B. Mechanical properties of melamineformaldehyde microcapsules for self-healing materials. Materials Chemistry andPhysics.2009,118(1):63-70
    106Zhang Z. B., Hu J. F., Chen H. Q. Mechanical properties of melamineformaldehyde microcapsules for self-healing materials. Materials Chemistry andPhysics.2009,118(1):63-70
    107Wang H. P., Yuan Y. C., Rong M. Z., Zhang M. Q., Melamine resin-walledmicrocapsules containing styrene: Preparation and characterization, in: A.K.T.Lau, J. Lu, V.K. Varadan, F.K. Chang, J.P. Tu, P.M. Lam (Eds.) Multi-FunctionalMaterials and Structures, Pts1and2, Trans Tech Publications Ltd, Stafa-Zurich,2008, pp.286-289.
    108Chen W., Liu X., Liu Y., Kim H. I. Synthesis of microcapsules withpolystyrene/ZnO hybrid shell by Pickering emulsion polymerization. Colloidand Polymer Science.2010,288(14-15):1393-1399
    109Pascu O., Garcia-Valls R., Giamberini M. Interfacial polymerization of an epoxyresin and carboxylic acids for the synthesis of microcapsules. PolymerInternational.2008,57(8):995-1006
    110Wang X., Li G. Q., Wei J., Guan W. W. A Novel Method to Control MicrocapsuleRelease Behavior Via Photo-Crosslink Polyurethane Acrylate Shells. Journal ofApplied Polymer Science.2009,113(2):1008-1016
    111Ichiura H., Morikawa M., Fujiwara K. Preparation of microcapsules that producecolor in response to humidity for use in intelligent functional paper. Journal ofMaterials Science.2005,40(8):1987-1991
    112Sottos N. R., McIlroy D. A., Blaiszik B. J., Caruso M. M., White S. R., Moore J.S. Microencapsulation of a Reactive Liquid-Phase Amine for Self-HealingEpoxy Composites. Macromolecules.2010,43(4):1855-1859
    113Tylkowski B., Pregowska M., Jamowska E., Garcia-Valls R., Giamberini M.Preparation of a new lightly cross-linked liquid crystalline polyamide byinterfacial polymerization. Application to the obtainment of microcapsules withphoto-triggered release. European Polymer Journal.2009,45(5):1420-1432
    114Ley S. V., Ramarao C., Lee A. L., Ostergaard N., Smith S. C., Shirley I. M.Microencapsulation of osmium tetroxide in polyurea. Organic Letters.2003,5:185-187
    115Yang J. L., Keller M. W., Moore J. S., White S. R., Sottos N. R.Microencapsulation of Isocyanates for Self-Healing Polymers. Macromolecules.2008,41(24):9650-9655
    116Li G., Feng Y. Q., Gao P., Li X. G. Preparation of mono-dispersed polyurea-ureaformaldehyde double layered microcapsules. Polymer Bulletin.2008,60(5):725-731
    117Salaun F., Bedek G., Devaux E., Dupont D. Influence of the washings on thethermal properties of polyurea-urethane microcapsules containing xylitol toprovide a cooling effect. Materials Letters.2011,65(2):381-384
    118Determan H., Meyer N., Wieland T. Ion Exchanger from Pearl-shaped CelluloseGel. Nature.1969,223(5205):499-500
    119Ohara Y., Arakawa M., Kondo T., Lee K. B. Preparation of EthylcellulosePolystyrene Composite Microcapsules of2-Phase Structure and Permeability ofthe Microcapsule Membranes Towards Phenobarbital. Journal of MembraneScience.1985,23(1):1-9
    120Chandy T., Mooradian D. L., Rao G. H. R. Evaluation of modified alginate-chitosan-polyethylene glycol microcapsules for cell encapsulation. ArtificialOrgans.1999,23(10):894-903
    121Gupta K. C., Jabrail F. H. Glutaraldehyde and glyoxal cross-linked chitosanmicrospheres for controlled delivery of centchroman. Carbohydrate Research.2006,341(6):744-756
    122Arshady R. Microspheres and Microcapsules: A Survey of. ManufacturingTechniques. Part1:Suspension Cross-Linking. Polymer Engineering and science.1989,29(24):1746
    123Yang R., Zhang Y., Wang X., Zhang Y. P., Zhang Q. W. Preparation of n-tetradecane-containing microcapsules with different shell materials by phaseseparation method. Solar Energy Materials and Solar Cells.2009,93(10):1817-1822
    124Fallahi E., Barmar M., Kish M. H. Preparation of Phase-change MaterialMicrocapsules with Paraffin or Camel Fat Cores: Application to Fabrics. IranianPolymer Journal.2010,19(4):277-286
    125Asada M., Takahashi H., Okamoto H., Tanino H., Danjo K. Theophylline particledesign using chitosan by the spray drying. International Journal ofPharmaceutics.2004,270(1-2):167-174
    126Zhang W. F., Chen X. G., Li P. W., Liu C. S., He Q. Z. Preparation andcharacterization of carboxymethyl chitosan and beta-cyclodextrin microspheresby spray drying. Drying Technology.2008,26(1):108-115
    127Ochiuz L., Peris J. E. Preparation and Characterisation of Alendronate-LoadedChitosan Microparticles Obtained Through the Spray Drying Technique.Medicinal Chemistry.2009,5(2):191-196
    128Yu C. Y., Han D. D., Wang W. Microencapsulation of Gram-Negative Bacteria bySpray Drying. International Journal of Food Engineering.2010,6(2):-
    129Langer G., Yamate G. Encapsulation of liquid and solid aerosol particles to formdry powders. Journal of Colloid Interface Science.1969,(29):450-455
    130Fan C. J., Zhou X. D. Effect of emulsifier on poly(urea-formaldehyde)microencapsulation of tetrachloroethylene. Polymer Bulletin.2011,67(1):15-27
    131Li J., Wang S. J., Liu H. Y., Wang S. K., You L. Microencapsulation of Sulfur inPoly(urea-formaldehyde). Journal of Applied Polymer Science.2011,122(2):767-773
    132陈平,王德中.环氧树脂及其应用.化学工业出版社.2004:48-78
    133张福田著.分子界面化学基础.2006,上海科学技术文献出版社:16-
    134德鲁·迈尔斯著.表面、界面和胶体;原理及应用.2005,化学工业出版社材料科学与工程出版中心:76-
    135程传煊编著.表面物理化学.1995,科学技术文献出版社:122-
    136Aiedeh K., Gianasi E., Orienti I., Zecchi V. Chitosan microcapsules as controlledrelease systems for insulin. Journal of Microencapsulation.1997,14:567-576
    137Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites.Science.1997,277:1232-1237
    138Wang B., Zhao Q. H., Wang F., Gao C. Y. Biologically Driven Assembly ofPolyelectrolyte Microcapsule Patterns To Fabricate Microreactor Arrays.Angewandte Chemie International Edition.2006,45:1560-1563
    139Wang C., Ye W., Zheng Y., Liu X., Tong Z. Fabrication of drug-loadedbiodegradable microcapsules for controlled release by combination of solventevaporation and layer-by-layer self-assembly. International Journal ofPharmaceutics.2007,338:165-173
    140Wan Ngah W. S., Fatinathan S. Adsorption of Cu(II) ions in aqueous solutionusing chitosan beads,chitosan–GLA beads and chitosan–alginate beads.Chemical Engineering Journal.2008,143:62-72
    141Grigoriev D. O., Bukreeva T., Mohwald H., Shchukin D. G. New Method forFabrication of Loaded Micro-and Nanocontainers:Emulsion Encapsulation byPolyelectrolyte Layer-by-Layer Deposition on the Liquid Core. Langmuir.2008,24:999-1004
    142Tong W. J., Dong W. F., Gao C. Y., Mohwald H. Charge-Controlled Permeabilityof Polyelectrolyte Microcapsules. Journal of Physical Chemistry B.2005,109:13159-13165
    143Babak V. G., Merkovich E. A., Desbrieres J., Rinaudo M. Formation of anordered nanostructure in surfactant-polyelectrolyte complexes formed byinterfacial diffusion. Polymer Bulletin.2000,45:77-81
    144Asua J. M. Miniemulsion polymerization. Prog. Polym. Sci.2002,27:1283-1346
    145Monteiro O. A. C., Airoldi C. Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. International Journal ofBiological Macromolecules.1999,26(2-3):119-128
    146Lawrie G., Keen I., Drew B., Chandler-Temple A., Rintoul L., Fredericks P.,Grondahl L. Interactions between Alginate and Chitosan BiopolymersCharacterized Using FTIR and XPS. Biomacromolecules.2007,8:2533-2541
    147Griffin W. C. Calculation of HLB Values of Non-Ionic Surfactants. Journal of theSociety of Cosmetic Chemists.1954,5:259
    148Brown E. N., White S. R., Sottos N. R. Microcapsule induced toughening in aself-healing polymer composite. Journal of Material Science.2004,39(5):1703-1710
    149陈洁,王鹏,王春.复相乳液法制备碳酸钠微胶囊的研究.河南工业大学学报.2009,30(2):5-7
    150张琦,王进美,王卫复.复相乳液法中药微胶囊的制备与性能研究.陕西科技大学学报.2010,28(1):46-49
    151孙曼灵著.环氧树脂应用原理与技术.2003,机械工业出版社:171-189
    152潘煜怡.咪唑类环氧树脂固化剂的改性方法及其应用.热固性树脂.2001,16(4):21-26
    153Jin H., Miller G. M., Sottos N. R., White S. R. Fracture and fatigue response of aself-healing epoxy adhesive. Polymer.2011,52(7):1628-1634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700