用户名: 密码: 验证码:
四种温带森林土壤二氧化碳、甲烷和氧化亚氮通量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中高纬度森林土壤在漫长的非生长季中对重要温室气体—二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)的释放或吸收在碳氮年收支中作用很大,但目前研究甚少。采用静态暗箱—气相色谱法,比较非生长季和生长季东北东部四种典型温带森林土壤表面CO2、CH4和N2O通量的时间动态及其影响因子。结果表明:整体看来,四种森林土壤在非生长季中均表现为CO2源、N2O源和CH4汇的功能。红松林、落叶松林、蒙古栎林、硬阔叶林的非生长季平均土壤表面CO2通量分别为65.5±8.1 mg m-2h-1(平均值±标准差)、70.5±10.2 mg m-2h-1、77.1±8.0 mg m-2h-1、80.5±23.5mg m-2h-1;CH4通量分别为-17.2±4.6μg m-2h-1、-15.4±4.2μg m-2h-1、-31.5±4.5μgm-2h-1、-23.6±4.1μg m-2h-1;N2O通量分别为19.3±5.1μg m-2h-1、11.5±2.5μgm-2h-1、16.4±4.0μgm-2h-1、14.4±5.4μgm-2h-1。所有林型非生长季土壤表面CO2通量在春季土壤解冻前均维持在较低水平;在解冻进程中随温度升高而增大,其中红松林和落叶松林出现一个释放峰值(硬阔叶林例外)。土壤表面CO2通量与5cm深土壤温度(T5)呈极显著的指数函数关系。在隆冬时节出现CH4净释放现象,但释放强度及其出现时间因林型而异,其中以红松林的释放强度较大,高达43.6μgm-2h-1。土壤表面CH4通量与T5呈显著的负相关。土壤表面N2O通量的时间动态格局在林型间的分异较大,但在春季土壤解冻阶段均释放出N2O,而释放峰值和出现时间因林型而异。土壤表面N2O通量则与0-10cm深土壤含水量呈显著的正相关(红松林除外)。生长季四种森林土壤在非生长季中均表现为CO2源和CH4汇的功能。红松林、落叶松林、蒙古栎林、硬阔叶林的生长季平均土壤表面CO2通量分别为:213.9±24.5mg m-2h-1(平均值±标准差)、216.5±18.1mg m-2h-1、293.2±23.1mg m-2h-1、349.8±25.8mg m-2h-1; CH4通量分别为-66.0±4.8μg m-2h-1、-84.2±6.8μg m-2h-1、-81.6±5.0μg m-2h-1、-76.0±5.4μg m-2h-1。生长季土壤表面CO2通量与5cm深土壤温度(T5)呈极显著的线性关系,而CH4通量与T5呈显著的负相关。本研究展示了非生长季温带森林土壤CO2、CH4和N2O通量对于三种主要大气温室气体的年释放量或吸收量的重要影响,并对4种温带森林生态系统土壤CO2、CH4的年通量进行了估算。
The forests in mid-and high-latitudes experience a long non-growing season, during which the emission or consumption of such greenhouse gases as CO2, CH4 and N2O by the forest soils plays an important role in ecosystem carbon and nitrogen budgets. However, quantification of these trace gases in non-growing seasons has been scarcely conducted. In this study, we examined temporal dynamics of soil CO2, CH4 and N2O effluxes and their controlling factors for four representative temperate forests in northeastern China with a static closed chamber and gas chromatograph technique. These forests were Korean pine (Pinus koraiensis) plantation, Dahurian larch (Larix gmelinii) plantation, Mongolian oak (Quercus mongolica) forest and hardwood broadleaved forest (dominated by Fraxinus mandshurica, Juglans mandshurica, and Phellodendron amurense). Six static chambers (40cm×50cm×50cm) were randomly installed in each forest type. From early November of 2008 to May of 2009, gas samples were collected and analyzed every 1-2 weeks in non-growing(16 times in total non-growing seasons), and once a month in growing seasons(6 times in total growing seasons) The results showed that all forest soils were overall atmospheric CO2 source, N2O source and CH4 sink during the non-growing season. The mean values of soil CO2 efflux in the non-growing season were 65.5±8.1 mg m-2h-1(mean±standard deviation),70.5±10.2 mg m-2h-1,77.1±8.0 mg m-2h-1, and 80.5±23.5 mg m-2h-1 for the pine plantation, larch plantation, oak forest, and hardwood forest, respectively; those of soil CH4 efflux were-17.2±4.6μg m-2h-1 (negative values represent sink),-15.4±4.2μg m-2h-1,-31.5±4.5μg m-2h-1,and-23.6±4.1μg m-2h-1,respectively; and those of N2O efflux were 19.3±5.1μg m-2h-1,11.5±2.5μg m-2h-1,16.4±4.0μg m-2h-1, and 14.4±5.4μg m-2h-1, respectively. The soil CO2 efflux remained fairly low until the spring soil thawing started when the soil CO2 efflux increased with soil temperature increasing. Also we observed a spike of soil CO2 emission during the vernal soil thawing period in all forest types except for the hardwood forests. There was a significant exponential relationship between soil CO2 efflux (P<0.001). The soil CH4 efflux was negatively correlated with soil temperature (P<0.001). The soils were a net CH4 source in the mid-winter for all forests, but the source strength, occurring time and duration changed with forest types. The largest mid-winter CH4 source was observed in the Korean pine plantation (43.6μg m-2h-1). The temporal variability of soil N2O efflux was relatively great among the forest types. All forest soils emitted N2O during the spring soil thawing period, but the maximum efflux and its occurring time varied with the forest types. The soil N2O efflux was positively correlated with soil water content between 0-10 cm depth for all forests except for the pine plantation(P<0.01). All forest soils were overall atmospheric CO2 source and CH4 sink during the growing season. The mean values of soil CO2 efflux in the growing season were 213.9±24.5 mg m-2h-1 (mean±standard deviation),216.5±18.1 mg m-2h-1,293.2±23.1 mg m-2h-1,and 349.8±25.8 mg m-2h-1 for the pine plantation, larch plantation, oak forest, and hardwood forest, respectively; those of soil CH4 efflux were-66.0±4.8μg m-2h-1 (negative values represent sink),-84.2±6.8μg m-2h-1,-81.6±5.0μg m-2h-1, and-76.0±5.4μg m-2h-1, respectively. There was a significant correlated positive relationship between soil CO2 efflux (P<0.05). The soil CH4 efflux was negatively correlated with soil temperature (P<0.05).This study illustrated that the significant contribution of soil CO2, CH4 and N2O effluxes in non-growing seasons to annual emission or consumption of these greenhouse gases in the temperate forests, and calculated the annual flux of CO2, CH4 in these four temperate forests.
引文
[1]IPCC, Climate change 2007. The scientific basis Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK:Cambridge University Press,2007:38-41.
    [2]谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展.中国农业气象,2002,23(4):47-52.
    [3]中华人民共和国林业部.全国森林资源统计(1989-1993).北京:中华人民共和国林业部出版社,1996:30-31.
    [4]王淼,姬兰柱,李秋荣,刘延秋.土壤温度和水分对长白山不同森林类型土壤呼吸的影响.应用生态学报,2003,14(8):1234-1238.
    [5]王淼,韩士杰,王跃思.影响阔叶红松林土壤C02排放的主要因素.生态学杂志,2004,23(5):24-29.
    [6]Burton D L, Beauchamp E G. Profile of nitrous oxide and carbon dioxide concentrations in a soil subject to freezing. Soil Science Society of America Journal,1994,58:115-122.
    [7]Christensen S, Christensen B T. Organic matter available for denitrification in different soil fractions:Effect of freeze/thaw cycles and straw disposal. Journal of Soil Science,1991, 42:637-647.
    [8]Teepe R, Brumme R, Beese F. Nitrous oxide emissions from soil during freezing and thawing periods. Soil Biology and Biochemistry,2001,33 (9):1269-1275.
    [9]Groffman P M, Hardy J P, Driscoll C T, Fahey T J. Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Global Change Biology,2006,12:1748-1760.
    [10]Castro M S, Steudler P A, Melillo J M. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemical Cycles,1995,9:1-10.
    [11]Sullivan B W, Kolb T E, Hart S C, Kaye J P, Dore S, Montes-Helu M. Thinning reduces soil carbon dioxide but not methane flux from southwestern USA ponderosa pine forests. Forest Ecology and Management,2008,255:4047-4055.
    [12]Wang C, Bond-Lamberty B, Gower S T. Soil surface CO2 flux in a boreal black spruce fire chronosequence. Journal of Geophysical Research,2002,108(D3):art. no.8224.
    [13]Teepe R, Brumme R, Beese F. Nitrous oxide emissions from frozen soils under agricultural, fallow and forest land. Soil Biology & Biochemistry,2000,32:1807-1810.
    [14]Brooks P D, Williams M W, Schmidt S K. Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry,1998,43 (1):1-15.
    [15]Liu C Y, Hicolas J, Bruggwmann N. Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmospheric Environment,2007,41: 5948-5958.
    [16]Holst J, Liu C, Yao Z, Bruggemann N, Zheng X, Giese M, Butterbach-Bahl K. Fluxes of nitrous oxide, methane and carbon dioxide during freezing-thawing cycles in an Inner Mongolian steppe. Plant and Soil,2008,308:105-117.
    [17]Herrmann A, Witter E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biology & Biochemistry,2002,34:1495-1505.
    [18]Grogan P, Michelsen A, Ambus P, Jonasson S. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biology & Biochemistry, 2004,36:641-654.
    [19]Schimel J P, Clein J S. Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biology & Biochemistry,1996,28:1061-1066.
    [20]DeLuca T H, Keeney D R, McCarty G W. Effect of Freeze-Thaw Events on Mineralization of Soil Nitrogen. Biology and Fertility of Soils,1992,14:116-120.
    [21]Clein J S, Schimel J P. Microbial activity of tundra and taiga soils at subzero temperatures. Soil Biology & Biochemistry,1995,27:1231-1234.
    [22]Edwards K A, McCulloch J, Kershaw G P, Jefferies R L. Soil microbial and nutrient dynamics in a wet arctic sedge meadow in late winter and early spring. Soil Biology & Biochemistry,2006,38:2843-2851.
    [23]Matzner E, Borken W. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. European Journal of Soil Science,2008,59:274-284.
    [24]Chapuis-Lardy L, Wrage N, Metay A, Chotte J L, Bernoux M. Soils, a sink for N2O? A review. Global Change Biology,2007,13:1-17.
    [25]Henry H A L. Soil freeze-thaw cycle experiments:trends methodological weaknesses and suggested improvements. Soil Biology & Biochemistry,2007,39:977-986.
    [26]李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环.地学前缘,2002,9(2):351-357.
    [27]Singh J S, GuPta S R. Plnat decomposition and soil respiration in terrestrial ecosystems. The Botanical Review,1977,43:449-528.
    [28]齐玉春,董云社,耿元波,杨小红,耿会立.我国草地生态系统碳循环研究进展.地理科学进展,2003,22(4):342-352.
    [29]Waring R H, Running S W. Forest ecosystems:analysis at multiple scales. San Diego: Academic Press,1998,1-10.
    [30]李长生,肖向明,.Frolking S.中国农田的温室气体排放,第四纪研究,2003,23(5):493-503.
    [31]Raich J W, Sehlesinger W H.The global carbon dioxide efflux in soil respiration And its relationship to vegetation and climate.Tellus,1992,44:81-90.
    [32]Chagas C I.Tillage and cropping effects on selected properties of an agriudoll in Agentina.Communications in soil Science and plant Analysis,1995,26(5-6):643-655.
    [33]Kirschbaum M U F. The temperature dependence of soil organic matter decomposition,And the effect of global wanningon soil organic C storage.Soil Biology and Biochemistry,1995,27:753-760.
    [34]Davidson E A, Verehot L V, Cattanio H, Aekerman I L. The interdependent effect of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils Biogeochemstry,2000,48:53-69.
    [35]王跃思,薛敏,黄耀等,刘广仁,王明星,纪宝明.内蒙古天然与放牧草原温室气体排放研究.应用生态学报,2003,14(3):372-376.
    [36]冯虎元,程国栋,安黎哲.微生物介导的土壤甲烷循环及全球变化研究.冰川冻土,2004,26(4):411-419.
    [37]Bubier J L, Moore T R, Roulet N T. Methane emissions from wetlands in the midboreal region of northern Ontario, Canada. Ecology,1993,74:2240-2254.
    [38]Firestone M K,Davidson E A. Microbiological basis of NO and N2O production and consumption in soil//Andreae·MO,Schimel DS,eds.Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Chichester:Wiley,1989:7-21.
    [39]张秀君.土壤N20产生的微生物过程.沈阳教育学院学报,2005,7(1):129-131.
    [40]王敬国.农业生态系统和大气间的温室效应气体交换.环境科学,1993,14(2):49-53.
    [41]郑循华,王明星,王跃思,沈壬兴,龚宴邦,骆冬梅,张文,金继生,李老土.稻麦轮作生态系统中土壤湿度对N20产生与排放的影响.应用生态学报,1996,7(3):273-279.
    [42]郑循华,王明星,王跃思.华东稻田CH4和N20排放.大气科学,1997,21(2):231-237.
    [43]Davidson E A. Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Science Society of America Journal,1992,56:95-102.
    [44]封克,殷士学.影响氧化亚氮形成与排放的土壤因素.土壤学进展,1995,23(6):35-40.
    [45]王艳芬,陈佐忠,周涌.内蒙古典型草原N20研究刍议.气候与环境研究,1997,2(3):280-285.
    [46]侯爱新,陈冠雄.不同种类氮肥对土壤释放N20的影响.应用生态学报,1998,9(2):176-180.
    [47]Yang J Y, Wang C K. Effects of soil temperature and moisture on soil surface CO2 flux of forests in northeastern China. Journal of Plant Ecology,2006,30 (2):286-294.
    [48]王绍强,周成虎,刘纪远,李克让,杨晓梅.东北地区陆地碳循环平衡模拟分析.地理学报,2001,56(4):390-400.
    [49]IPCC. Climate Change 2001:The Science of Climate Change. Cambridge:Cambridge University Press,2001:1-10.
    [50]Groffman P M, Driscoll C T, Fahey T J, Hardy J P, Fitzhugh R D, Tierney G L. Colder Soils in a Warmer World:A Snow Manipulation Study in a Northern Hardwood Forest Ecosystem. Biogeochemistry,2001,56:135-150.
    [51]Herrmann A, Witter E. Sources of C and N Contributing to the Flush in Mineralization upon Freeze-Thaw Cycles in Soils. Soil Biology & Biochemistry,2002,34:1495-1505.
    [52]Grogan P, Michelsen A, Ambus P, Jonasson S. Freeze-Thaw Regime Effects on Carbon and Nitrogen Dynamics in Sub-Arctic Heath Tundra Mesocosms. Soil Biology & Biochemistry,2004,36:641-654.
    [53]Schimel J P, Clein J S. Microbial Response to Freeze-Thaw Cycles in Tundra and Taiga Soils. Soil Biology & Biochemistry,1996,28:1061-1066.
    [54]Edwards K A, McCulloch J, Kershaw G P, Jefferies R L. Soil Microbial and Nutrient Dynamics in A Wet Arctic Sedge Meadow in Late Winter and Early Spring. Soil Biology & Biochemistry,2006,38:2843-2851.
    [55]Schmidt S K, Costello E K, Nemergut D R, Cleveland C C, Reed S C, Weintraub M N, Meyer A F, Martin A M. Biogeochemical Consequences of Rapid Microbial Turnover and Seasonal Succession in Soil. Ecology,2007,88:1379-1385.
    [56]Lipson D A, Schadt C W, Schmidt S K. Changes in Soil Microbial Community Structure and Function in An Alpine Dry Meadow Following Spring Snow Melt. Microbial Ecology, 2002,43:307-314.
    [57]Ludwig B, Teepe R, Lopes de Gerenyu V, Flessa H. CO2 and N2O Emissions from Gleyic Soils in the Russian Tundra and A German Forest during Freeze-Thaw Periods-a microcosm study. Soil Biology & Biochemistry,2006,38:3516-3519.
    [58]Henry H A L. Soil Freeze-Thaw Cycle Experiments:Trends, Methodological Weaknesses and Suggested Improvements. Soil Biology & Biochemistry,2007,39:977-986.
    [59]杨金艳,王传宽.东北东部森林生态系统土壤碳储量和碳通量.生态学报,2005,25(11):2876-2882.
    [60]Goldberg S, Muhr J, Borken W,Gebauer G. Fluxes of climate-relevant trace gases between a Norway spruce forest soil and the atmosphere during repeated freeze-thaw cycles in mesocosms. Journal of Plant Nutrition and Soil Science,2007,171:727-737.
    [61]Mast M A, Wickland K P, Striegl R T, Clow D W. Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado. Global Biogeochem Cycles, 1998,12 (4):607-620.
    [62]Winston G C, Stephens B B, Sundquist E T, Hardy J P, DavisR E. Seasonal variability in CO2 transport through snow in a boreal forest.//Tonnessen K A, Williams M W, Tranter M (Eds.). Biogeochemistry of Seasonally Snow-Covered Catchements. IAHS Publication. 1995:61-70.
    [63]Steinkamp R, Butterbach-Bahl K, Papen H. Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany. Soil Biology & Biochemistry, 2001,33:145-153.
    [64]王颖,王传宽,傅民杰,刘实,王兴昌.四种温带森林土壤氧化亚氮通量及其影响因子.应用生态学报,2009,20(5):1007-1012.
    [65]Teepe R, Vor A, Beese F, Ludwig B. Emissions of N2O from soils during cycles of freezing and thawing and the effects of soil water, texture and duration of freezing. European Journal of Soil Science,2004,55:357-365.
    [66]Mummey D L, Smith J L, Bolton H J R. Nitrous oxide flux from a shrub-steppe ecosystem: Sources and regulation. Soil Biology and Biochemistry,1994,26:279-286.
    [67]Furon A C, Wagner-Riddle C, Smith C R, Warland J S. Wavelet analysis of wintertime and spring thaw CO2 and N2O fluxes from agricultural fields. Agricultural and Forest Meteorology,2008,148:1305-1317.
    [68]肖冬梅,王淼,姬兰柱.长白山阔叶红松林土壤N20排放通量的变化特征.生态学杂志,2004,23(5):46-52.
    [69]Singurindy O, Molodovskaya M, Richards B K, Steenhuis T S. Nitrous oxide emission at low temperatures from manure-amended soils under corn (Zea mays L.). Agriculture, Ecosystems and Environment,2009 132:74-81.
    [70]Larsen K S, Jonasson S, Michelsen A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types. Applied Soil Ecology,2002,21 (3): 187-195.
    [71]Papen H, Butterbach-Bahl K. A 3-year continuous record of N-trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany 1. N2O emissions. Journal of Geophysical Research,1999,104 (D15):18487-18503.
    [72]Muller C, Martin M, Stevens R J, Laughlin R J, Kammann C, Ottow J C G, Jager H J. Processes leading to N2O emissions in grassland soil during freezing and thawing. Soil Biology and Biochemistry,2002,34:1325-1331.
    [73]Oquist M G, Nilsson M, Sorensson F, Kasimir-Klemedtsson A, Persson T, Weslien P, Klemedtsson L. Nitrous oxide production in a forest soil at low temperatures processes and environmental controls. FEMS Microbiology Ecology,2004,49:371-378.
    [74]Edwards A C, Killham K. The effect of freeze-thaw on gaseous nitrogen loss from upland soils. Soil Use and Management,1986,2(3):86-91.
    [75]Prieme A, Christensen S. Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils. Soil Biology and Biochemistry,2001,33 (15):2083-2091.
    [76]Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Global Biochemical Cycles,1995,9:23-36.
    [77]Williams M A, Rice C W, Owensby C E. Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant and Soil,2000,227(1/2):127-137.
    [78]Russell C A, Voroney R P. Carbon dioxide efflux from the floor of a boreal aspen forest I. relationship to environmental variables and estimates of C respired. Canadian Journal of Soil Science,1998,78:301-310.
    [79]Rayment M B, Jarvis P G. Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biology and Biochemistry,2000,32:35-45.
    [80]Kang S Y, Doh S, Lee D, Lee D, Jin V L, Kimball J S. Topographic and Climatic Controls on Soil Respiration in Six Temperate Mixed-Hardwood Forest Slopes, Korea. Global Change Biology,2003,9:1427-1437.
    [81]Davidson E A, Belk E, Boone R D. Soil Water Content and Temperature as Independent or Confounded Factors Controlling Soil Respiration in a Temperate Mixed Hardwood Forest. Global Change Biology,1998,4:217-227.
    [82]Savin M C, Gorres J H, Neher D A. Biogeophysical factors influencing soil respiration and mineral nitrogen content in an old field soil. Soil Biology and Biogeochemistry,2001, 33:429-438.
    [83]Nesbit S P, Breitenbeck G A. A laboratory study of factors influencing methane uptake by soils. Agriculture Environment,1992,41:39-54.
    [84]Singh J S, Singh S, Raghubanshi A S, Singh S, Kashyap A K, Reddy V S. Effect of soil nitrogen, carbon and moisture on methane uptake by dry tropical forest soils. Plant and Soil,1997,196:115-121.
    [85]Nesbit S P, Breitenbeck G A. A laboratory study of factors influencing methane uptake by soils. Agriculture Environment,1992,41:39-54.
    [86]姜丽芬,石福臣,王化田,祖元刚,小池孝良.东北地区落叶松人工林的根系呼吸.植物生理学通讯,2004,40(1):27-30.
    [87]Raich J W, Schlesinger W H. The global carbon dioxide efflux in soil respiration and its relationship to vegetation and climate. Tellus,1992,44B:81-90.
    [88]Bond-Lamberty B, Wang C, Gower S T. A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology,2004,10:1756-1766.
    [89]Raich J W, Tufekcioglu A. Vegetation soil respiration:Correlation and controls. Biogeochemistry,2000,48:71-90.
    [90]Landsberg J J, Waring R H. A Generalised Model of Forest Productivity Using Simplified Concepts of Radiation-Use Efficiency, Carbon Balance and Partitioning. Forest Ecology and Management,1997,95:209-228.
    [91]Mariko S, Nishimura N, Mo W, Matsui Y, Kibe T, Koizumi H. Winter CO2 flux from soil and snow surfaces in a cool-temperate deciduous forest, Japan. Ecological Research,2000, 15:363-372.
    [92]McDowell N G, Marshall J D, Hooker T D, Musselman R C. Estimating CO2 flux from snow packs at three sites in the Rocky Mountains. Tree Physiology,2000,20:745-753.
    [93]Mo W, Lee M, Uchida M, Inatomi M, Saigusa N, Mariko S, Koizumi H. Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agricultural And Forest Meteorology,2005,134:81-95.
    [94]Schindlbacher A, Zechmeister-Boltenstern S, Glatzel G, Jandl R. Winter soil respration from an Austrian mountain forest. Agricultural and Forest Meteorology,2007,146:205-215.
    [95]Koschorreck M, Conrad R. Oxidation of atmospheric methane in soil:measurements in the field, in soil cores and in soil samples. Global Biogeochemical Cycles 1993,7:109-121.
    [96]Castro M S, Steudler P A, Melillo J M, Aber J D, Millham S. Exchange of N2O and CH4 between the atmosphere and soils in sprucer forests in the northeastern United States.Biogeochemistry,1993,18,:119-135.
    [97]Goldman M B, Groman P M, Pouyat R V, McDonnell M J, Pickett S T A. CH4 uptake and N availability in forest soils along an urban to rural gradient. Soil Biology &Biochemistry,1995,27:281-286.
    [98]Ishizuka S,Sakata T,Ishizuka K. Methane oxidation in Japanese forest soils. Soil Biology & Biochemistry,2000,32:769-777.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700