用户名: 密码: 验证码:
石头口门水库汇水流域农业非点源污染的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,随着工业废水和城市生活污水等点源污染的有效控制,农业非点源污染已经成为导致水环境恶化的主要原因之一,对水环境及生活用水安全构成了日益严重的威胁。
     本文针对长春市重要饮用水源地石头口门水库的水质污染问题,开展了石头口门水库汇水流域农业非点源污染研究。首先采用单因子污染指数评价法和综合污染指数法对2001年-2007年研究区地表水的水质进行了评价,评价了研究区地表水环境的污染程度和环境质量现状。通过因子分析方法,分析了主要污染物的空间分布规律及其形成原因。其次,在研究区内选择具有代表性的土地利用类型区建立径流小区,在小区出口处进行地表径流水质和水量的同步监测,揭示了不同降雨事件下氮、磷随地表径流的流失特征。对比分析了不同土地利用方式下地表径流中氮、磷平均浓度的差异,揭示了不同土地利用方式对氮、磷浓度空间分布的影响特征。再次,在石头口门水库汇水流域建立农业非点源污染模拟模型,并通过单次降雨事件下农业非点源污染负荷实测值和模拟值的比较分析对模型进行率定和检验。用建立的AnnAGNPS模型对2007年研究区泥沙、氮和磷的年流失负荷进行定量估算,并分析了泥沙、总氮和总磷流失的时空分布特征。最后,通过分析模型输出量对参数变化的响应来确定研究区农业非点源污染模型的主要敏感因子,根据模拟结果识别出研究区农业非点源污染物流失的关键源区,在此基础上提出治理石头口门水库汇水流域农业非点源污染的控制管理措施,并利用AnnAGNPS模型定量分析了不同控制管理措施对研究区农业非点源污染物输出的影响程度。
At present, agriculture non-point source pollution has been one of the main reasons for causing environment deterioration with the efficient control of point source pollution. Therefore, the research of mechanism and domination for agriculture non-point source pollution should be taken special attention. The Shitoukoumen Reservoir is a significant water source for Changchun City and is related to economy development of Changchun City and citizens drinking water safety, it has an irreplaceable status for Changchun City’s water supply and the water quality appears a very outstanding rule. In resent years, in the water basin of Shitoukoumen Reservoir, it emerges many water pollution problems that have a direct pollution to water source and construct a huge threat to the further deterioration of Songhua River water quality. Therefore, the systemic research for water environment of Shitoukoumen Reservoir, especially non-point source pollution, it has a profound realistic significance for ensuring satisfy the request of water safety and agriculture production.
     The natural resource and agriculture productivity are investigated in this paper, and following several aspects which concern to simulation research of Shitoukoumen Reservoir water basin are studied which based on the methods of combination of qualitative and quantitative analysis qualitative and quantitative analysis, combination of field investigation and indoor experiment.
     At first, the water quality of Shitoukoumen catchments’surface water environment during 2001 to 2007 is assessed by single factor method and comprehensive pollution index method, and determined the main pollution source which causing the pollution of Shitoukoumen Reservoir water basin environment, discuss the changing rule in temporal and spatial and its forming reasons through principal component analysis method and factor analysis method. The statistic analysis of water environment conventional monitoring data during 2000 to 2007 shows that during 2001 to 2004, the water quality of the reservoir belongs to class 2 which has a steady and good quality, during 2005 to 2007, the water quality of the reservoir belongs to class 3 which effected by the factors that industrial waste water and domestic waste water of upstream and soil erosion, etc. the water quality has been polluted slightly and represent a tendency of increasing year by year, and the main pollution factors are the TN and TP that causing water eutrophication. During 2001 to 2007, the average quality of Shuangyang River belongs to class 4, even to class 5, and it cannot satisfy with the request of water environment function. The water quality of Chalu River belongs to class 2 or class 3, which has a best water quality. Through it is analyzed to the pollution of surface water in the study area by the factors, it shows that the non-point source pollution of Shitoukoumen Reservoir water basin is the one of the main reasons for causing study area surface water pollution.
     In the Shitoukoumen Reservoir water basin, selecting representative land for constructing monitor areas, According to the synchronization monitoring result of surface runoff quality which product in the representative land using method-use type, the precipitation is apparent positive correlation to the output of TN and TP, the more rainfall producing more runoff, and more output of total nitrogen, soluble nitrogen, total phosphorus and soluble phosphorus; thereinto, Nitrogen is loss in terms of soluble nitrogen which is consistent with the trend of TN to precipitation; Phosphorus is loss in terms of bound phosphorus, and the concentration of TP is change with precipitation, the average concentration of TN and TP has a large spatial variability with the precipitation in different land-use type. The concentration of soluble phosphorus has a little changing range which represent stable basically, and there is a large difference in the average concentration of TN and TP among different land-use tpye, view as a whole, the output of TN concentration satisfy with this relation: paddy> maize field> badlands>forest; and the output of TP concentration satisfy with this relation: maize field > paddy > badlands>forest. Therefore, under different land using methods, the output of nitrogen and phosphorus is influenced by many factors, such as precipitation, fertilization quantity, vegetation cover, topography gradient, etc.
     The hydrogeology condition, soil character, and agriculture crop condition of study area is comprehended through the data collection and field investigation in the water basin, and the land-use type and spatial distribution of study area are analyzed by remote sensing interpretation and GPS technology, combined with Jilin province land using material and field survey. The spatial data base of agriculture non-point pollution is constructed by the overlay analysis of non-point pollution spatial information which base on GIS technology.
     The simulation model of agriculture non-point source pollution in the basin of Shitoukoumen Reservoir has been constructed by the AnnAGNPS model, and the simulation model is calibrated and verified by single rainstorm event. The verification result shows that the simulation precision of the simulation models for pollution mass loading in Shitoukoumen Reservoir water basin is: TN output>TP output>soil output. The model have a good simulation precision on the TN loading simulation, and a common simulation precision on TN and soil loading simulation which caused by the coarse particle is deposit in the process of migration. View as a whole, the model-AnnAGNPS can simulation the output of pollution mass in the water basin of Shitoukoumen Reservoir commendably, its simulation result can represent the agriculture non-point pollution condition.
     The TP, TN, soil output of Shitoukoumen Reservoir water basin is simulated by the verified AnnAGNPS model, the result shows that the study area has a soil loss of 1081.01 thousand tons in 2007, and the TP loss is 320.75 tons, TN loss is 5835.17 tons. In terms of loss type, nitrogen is loss mainly by soluble nitrogen which account for 86.3% of TN loss; The loss of phosphorus is mainly absorption phosphorus which account for 55.9% of TP loss. In terms of time distribution, affected by fertilization time and precipitation, the loss of soil, TP, TN are mainly concentrated in the high water season: July and August, which emerges a peak value in July that has a largest precipitation. In terms of spatial distribution, the loss of soil, TP, TN have a comparability in some extent that represent a big difference in spatial distribution in area, the loss quantity per unit area in forest is smaller relatively than that of plantation area and agriculture area.
     The main sensitive factors are calibrated and determined by the parameters sensitivity analysis and response condition of output. Eight parameters that may produce apparent effect to the output of soil, TN, TP in water basin are selected for sensitive analysis, which are: SCS curve value-CN; soil erosion factor-K; Manning roughness coefficient-MA; water and soil conservation factor-P; crop management factor-C; gradient-L; slope distance-S; fertilization quantity-PERT. The analysis shows that the output of soil, TN, TP have a different react to those parameters: SCS curve value-CN and fertilization quantity-PERT have an apparent effect to the output of TN, topography slope factor-S is in the second place, others parameters have a few impact; SCS curve value-CN and topography slope factor-S have an apparent effect to the output of TP, fertilization quantity-PERT is in the second place, others parameters have a few impact; SCS curve value-CN and gradient distance-S have an apparent effect to the output of soil, soil erosion factor-K, crop management factor-C, water and soil conservation factor-P, slope distance-S in the second place, others parameters have a few impact.
     The key source region of agriculture non-point pollution in the study area is calibrated by the simulation result of the model. There is some comparability between the loss of TN and TP in the study area, some distributed in aged agriculture area which furrow all year, some distributed in the middle stream of Yingma River, the others distributed in the sloped cultivated land, which show that the loss of nitrogen and phosphorous is influenced by the factors of source and migration of pollution.
     The control and management measure of Shitoukoumen Reservoir water basin agriculture non-point pollution are made in local conditions through the analysis of distribution character of key source areas of nitrogen and phosphorus and the sensitive factors, and from the aspects of non-point pollution source and migration route. And the effect of cultivation management measure for the output of agriculture non-point source pollution which under the measures of reducing fertilization and conversion of cropland to forest is quantitative analyzed by adjusting the parameters of the model-AnnAGNPS.
引文
鲍全盛,王华东.1996.我国水环境非点源污染研究与展望[J].地理科学,16(1):66-71.
    陈西平,黄时达.1991.涪陵地区农田径流污染输出负荷定量化研究[J].环境科学,12(3):75-79.
    蔡崇法,丁树文,史志华,等.2000.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,14(2):19-24.
    仓恒瑾,许炼峰,李志安,等.2005.农业非点源污染控制中的最佳管理措施及其发展趋势[J].生态科学,24(2):173-177.
    曹彦龙.2006.三峡重庆库区面源污染分析及数字模拟研究[D].重庆大学.
    陈伟韦.2007.AnnAGNPS农业非点源污染模型在双阳水库汇水流域的应用研究[D].吉林大学.
    董亮,朱荫湄,王珂.1999.应用地理信息系统建立西湖流域非点源污染信息数据库[J].浙江农业大学学报,25(2): 117-120.
    董维红,林学钰.2004.浅层地下水氮污染的影响因素分析——以松嫩盆地松花江北部高平原为例[J].吉林大学学报(地球科学版),34(2):231-235.
    范晓晖,朱兆良.2002.旱地土壤中的硝化-反硝化作用[J].土壤通报,33(5):385-391.
    方子云.1993.水利建设的环境效应分析与量化[M].北京:中国环境科学出版社.
    冯孝杰出.2005.三峡库区农业面源污染环境经济分析[D].西南大学.
    国家环保局《水和废水监测分析方法》编委会.1997.《水和废水监测分析方法》第三版[M].北京:中国环境科学出版社.
    郝芳华,程红光,杨胜天.2006.非点源污染模型[M].北京:中国环境科学出版社.
    胡小韦,海米提·依米提,伊元荣,等.2008.博斯腾湖水质综合评价因子分析方法干旱区[J].资源与环境, 22(1):79-83.
    胡雪涛,陈吉宁.2002.非点源污染模型研究[J].环境科学,23(3):124-128.
    洪华生,黄金良,张格平,等.2005.AnnAGNPS模型在九龙江流域农业非点源污染模拟引用[J].环境科学,26 (4):63-69.
    洪华生,黄金良,曹文志.2008.九龙江流域农业非点源污染机理与控制研究[M].北京:科学出版社.
    何电源.1994.中国南方土壤肥力与作物栽培施肥[M].北京:科学出版社.
    贾宁凤,李旭霖,陈焕伟,等.2006. AnnAGNPS模型数据库的建立——以黄土丘陵沟壑区砖窑沟流域为例[J].农业环境科学学报,25(2):436-441.
    姜岩.1983.土壤[M].长春:吉林人民出版社.
    蒋鸿昆,高海鹰,张奇.2006.农业面源污染最佳管理措施(BMPs)在我国的应用[J].农业环境与发展,23(4):64-67.
    李怀恩.1998.透水性流域非点源产污模型的初步研究[J].水利学报,(2) :16-19.
    李怀恩.2000.估算非点源污染负荷的平均浓度法及其应用[J].环境科学学报,20 (4):397-400.
    李怀恩.1996.流域非点源污染模型研究进展与发展趋势[J].水资源保护,(2):14-18.
    李怀恩,吴晓光.1997.逆高斯分布水文频率分析模型[J].西北水电,(2):55-58.
    刘枫,王华东,刘培桐.1988.流域非点源污染的量化识别方法及其在于桥水库流域的应用[J].地理学报,43(4):329-339.
    李玉山,刘国彬,刘宝元.1993.中美小流域治理和农业的对比研究[J].水土保持通报,13(1):11-15.
    刘元波,高锡芸.1997.太湖北部梅梁湾水域水质因子聚类[J].湖泊科学,9(3):255-260.
    卢文喜. 1999.长春南湖水质成分的因子分析[J].世界地质, 18(3):61-65.
    林成谷.1996.土壤污染与防治[M].北京:中国农业出版社.
    林学钰,陈梦熊.松嫩盆地地下水资源与可持续发展研究[M].北京:地震出版社2000.
    吕耀.1998.苏南太湖流域农业非点源污染及农业持续发展战略[J].环境科学动态,(2):1-4.
    吕耀.1998.农业生态系统中氮素造成的非点源污染[J].农业环境保护,17(1):35-39.
    孟丹.2006.基于GIS的石头口门水库汇水流域农业非点源污染研究[D].东北师范大学.
    孟庆华,杨林章.2000.三峡库区不同土地利用方式的养分流失研究[J].生态学报,20(6):1028-1033.
    聂碧娟.1995.闽东南花岗岩侵蚀区C、P因子研究初报[J].福建水土保持,(4):43-46.
    全国中等职业学校种植专业教材编写组.1993.土壤肥料[M].北京:高等教育出版社.
    芮孝芳,陈洁云.1995.感潮河段设计洪水位的推求[J].水利水电技术,(11):39-42.
    司友斌,王慎强,陈怀满,等.2000.农田氮、磷的流失与水体富营养化[J] .土壤,(4):188-124.
    史志华,蔡崇法,丁树文,等.2002.基于GIS的汉江中下游农业面源氮磷负荷研究[J].环境科学学报,22(4):473-477.
    单保庆,尹澄清,于静,等.2001.降雨-径流过程中土壤表层磷迁移过程的模拟研究[J].环境科学学报,21(1):7-12.
    孙文爽,陈兰祥.1994.多元统计分析[M].北京:高等教育出版.
    史志华,蔡崇法.2002.基于GIS的汉江中下游农业面源氮磷负荷研究[J] .环境科学学报, 22(4):473-477.
    武际,郭熙盛,王文军,等.2006.磷钾肥配合施用对玉米产量及养分吸收的影响[J].玉米科学,14(3):147-150.
    王云鹏.2000.基于遥感和地理信息系统的面源信息系统及初步应用[J].科学通报,45:2763-2767.
    王少平,陈满荣,俞立中,等.2001.GIS支持下的上海畜禽业污染研究[J].农业环境保护,20(4):214-216.
    王宁,朱颜明,李顺.1999.松花湖水体营养物质动态变化及成因分析[J].环境科学研究, 12(5):27-30.
    王晓燕.2003.非点源污染及其管理[M].北京:海洋出版社.
    汪达.1994.美国的非点源水污染问题及其防治对策[J].水系污染与保护,(1):11-17.
    汪洪,李录久,王凤忠,等.2007.人工湿地技术在农业面源水体污染控制中的应用[J].第二届全国农业环境科学学术研讨会论文集,(7):624-629.
    汪忠善,等.1996.应用地理信息系统评价黄土丘陵地区小流域土壤侵蚀研究[J].水土保持研究,16(1):30-33.
    肖春华,李少昆.2005.对玉米养分吸收动态和利用效率的影响[J].土壤肥料,(2):10-13.
    夏青,廖庆宜.1985.河流DO模型研究[J].环境科学学报,5(3):266-275.
    杨金玲.2003.张甘霖等.亚热带地区土地利用对磷素径流输出的影响明[J].农业环境科学学报,22(l):16-20.
    杨爱玲.1998.地表水环境非点源污染研究[J].环境科学进展,7(5):60-67.
    杨苏才,南忠仁,牛亚萍,等.2006.因子分析在水质评价与成因分析中的应用[J].人民黄河,28(5):37-39.
    杨子生.1999.滇东北山区坡耕地土壤侵蚀的水土保持措施因子[J].山地学报,17:22-24.
    于维忠.1985.论流域产流[J].水利学报,(2):1-11.
    尹澄清,毛战坡.2002.用生态工程技术控制农村非点源水污染.应用生态学报[J].13(2):229-232.
    尹魁浩,袁弘任,徐葆华,等.2001.丹江口水库水质要素变化特征及其相互关系[J].长江流域资源与环境,10(1):75-81.
    叶飞.2006.农业非点源污染分析与控制对策研究[J].循环农业与农村建设,(3):527-529.
    张蔚文.2006.农业非点源污染控制与管理政策研究:以平湖市为例的政策模拟与设计[D].浙江大学.
    张效朴,李伟波.2000.吉林黑土上肥料施用量对玉米产量及肥料利用率的影响[J] .玉米科学,8(2):70-74.
    张玉斌,郑粉莉.2004.AGNPS模型及其应用[J] .水土保持研究,11(4):124-128.
    张雪花.2004.非点源污染量化模型中重要影响因素的研究[D].长春:东北师范大学.
    赵人俊.1983.降雨径流流域模型简述[J].人民黄河,(2):40-43.
    赵小敏.2001.土壤地质与资源环境[M].北京:地质出版社.
    周慧平,高超,朱晓东.2005.关键源区识别:农业非点源污染控制方法[J].生态学报,25(12):3368-3374.
    朱萱,鲁纪行,边金钟,等.1985.农田径流非点源污染特征及负荷定量化方法探讨[J].环境科学,6(5):6-11.
    Abbott M B, Bathurst J C., Cunge J A et al. 1986. Introduction to the European hydrological system-systeme hydrological European,“SHE”, I: History andphilosophy of a physically-based, distributed modelling system[J]. Hydrol,87(1-2):45-59
    Bicknell B R, Imhoff J C, Kittle J L et al.1996. Hydrological simulationprogram-fortran user’s manul for release 11. http://www. epa.gov/waterscience/basins/ bsnsdocs.html.
    Brown T.C., Brown D.,Binkley D.,1993.Laws and programs for controlling nonpointsource pollution in forest areas [J].Water Resources Bulletin,21(1):1-13.
    Boers, Paul C. M. 1996. Nutrient Emission from Agriculture in the Netherlands:Causes and Remedies [J]. Water Science and Technology, 33(4-5): 183-189.
    Corwin D.L.,Wagenet R.J.,1996.Applications of GIS to the modeling of nonpointce pollutants in the vadose zone: A conference overview[J]. Journal ofironmental Quality,25(3):403-411.
    Darden R,Bingner R L.2001. AGNOS2001 input data preparation model, technicalreference version2. http://www.sedlab.olemiss.edu/AGNPS/reg_download.html.Dennis R L. 1997. Using the regional acid deposition model to determine the nitrogendeposition airshed of the Chesapeake bay watershed, In: Baker J L. Atmosphericof contaminants to the Great Lakes and Coastal Waters. Pensacola:Society ofEnvirnmental Toxicology and Chemistry.393-413.
    Fedra K., Jamieson D. G. , 1996. The“WaterWare”decision-support system forriver-basin planning. 2. Planning capability [J]. Journal of Hydrology,177(3-4):177-198.
    Frederick R.E., Dressing, S.A.,1993.Technical guidance for implementing BMPs inthe coastal zone[J]. Water Science and Technology,28(3-5):129-135.
    Fairfield J,Leymarie P.,1991.Drainage networks from grid digital elevationmodels[J].Water Resources Research,27(4):29-61.
    Goldstein A.L., Ritter G.J .,1993.A performance-based regulatory program forphosphorus control to prevent the accelerated eutrophication of LakeOkeechobee, Florida [J].Water Science and Technology,28(3-5):13-26.
    Horton J.W.,VanRavenswaay M.D., 1935. Electrical impedance of the human body[J].Journal of the Franklin Institute, 220(5): 557-572.
    Heckrath G., Brookes P.C.,Poulton P.R. , et al., 1995. Phosphorus leaching from soils containing different phosphorus concentrations in the broadbalk experiment [J]. Journal of Environmental Quality,24(5):904-910.
    Hubbard R K.,Erickson A E.,Ellis B G., et al., 1982. Influence of macrophytes on nitrate removal in wetlands [J].Ambio,23(6):363-366.
    Johnson,G. L. C. Daly, G. H. Taylor and C. L. Hanson.2000. Spatial variability and interpolation of stochastic weather simulation model parameters [J]. Appl. Meteor., 39, 778-796.
    Kronvang B., Grsbll P., Larsen S.E., et al., 1996. Diffuse nutrient losses in denmark[J]. Andersen Water Science and Technology, 33(4-5): 81-88.
    Kirkby R.J., 1978.Dorsal but not ventral lesions of the caudate nucleus disrupt maze learning in the rat[J]. Physiology & Behavior,20(5): 669-671.
    McCarthy P. A., Joseph L. ,Magrath M.D., et al., 1938.The traumatized vermiform appendix [J]. The American Journal of Surgery,39(1): 148-150.
    Merkel W., Cronshey R., 2005. AnnAGNPS Version 3.5:Input File Specifications [Input_Specifications]. USDA-ARS, National Sedimentation Laboratory:1-82.
    Martz W., Garbrecht J., 1992.Numerical definition of drainage Network and subcatch ment Areas from digital elevation models[J].Computers & Geosciences,18(6):747-761.
    Miller G T.,1992.Living in the Environment: An Introduction to Environmental Science [M]. Seventh Edition.Belmont: Wadsworth Publishing Company, 602-611.
    Nash F.A., 1957.Tuberculosis contact firmssurveys[J]. British Journal of Tuberculosis and Diseases of the Chest,51(2): 151-157.
    Ng H Y F, Mayer T, Marsalek J. 1993. Phosphorus transport in runoff from a small agricultural watershed. Water Science Technology[J]. 28(3-5):451-460.
    NRCS, 1998.National handbook of conservation practices[M]. Washington ,D C: NRCS—USDA.
    Novotny V ,Olem H., 1994.Water quality: prevention, identification and management of diffuse pollution [M]. New York: Van Nostrand Reinhold Reinhold Company. O′Callaghan F, Mark D.M., 1984.The extraction of drainage networks from digitalelevation data[J].Computer Vision Graphics and Image Processing,28:323-344.
    Orlob G. T.,1983.Mathematical modeling of water quality: streams, lakes, and reservoirs[R]. IIASA.
    Perona E., Bonilla I., Mateo P., 1999. Spatial and temporal changes in water quality in a Spanish river[J]. Science of The Total Environment,241(1-3): 75-90.
    Ronald L., Bingner, Fred D., 2005.AnnAGNPS TECHNICAL PROCESSES[Technical -Documentation]. USDA-ARS, National Sedimentation Laboratory: 1-84.
    Ryden J.C, Skinner J H, Nixon D J.1987. Soil core incubation system for the field measurement of denitrification using acetylene-inhibiton[J]. Soil Biology and Biochemistry,19:753-757.
    Soil Conservation Service., 1964.“Hydrology”SCS National Engineering Handbook[M]. Washington, DC: US Department of Agriculture.
    Soil Conservation Service.1973.Computer program for project formulation hydrology[M]. Washington,DC: Technical Release20,US Derpartment of Agriculture.
    Shuyler L.R., 1993.Non-point source programs and progress in the Chesapeake Bay[J].Agriculture, Ecosystems & Environment,46(1-4): 217-222.
    Spiegelhalder, B., Eisenbrand, G., Preussmann, R., 1976. Influence of dietary nitrate on nitrite content of human saliva: Possible relevance to in vivo formation of N-nitroso compounds[J]. Food and Cosmetics Toxicology, 14(6):545-548
    US Environmental Protection Agency,1994. Chesapeake Bay: Aramework For action,Chesapeake Bay gram. Environmental Protection Agency Chesapeake Bay Liaison Office, Annapolis, Maryland.
    Vidal M., López A., Valles V., 2000. Factor analysis for the study of water resources contamination due to the use of livestock slurries as fertilizer[J]. Agricultural Water Management, 45(1):1-15.
    Wischmeier W. H,Johnson C.B., Cross B.V., 1971. Asoil erodibility nomograph for fearmland and construction sites[J].Soil Water Conser, 26:189-193.
    Wischmeier W.H.,1971. A soil erodibility nomorgraph farm land and construction sites[J]. Journal of Soil and Water Conservation,26:189-193.
    William Merkel, Roger Cronshey. 2005. AnnAGNPS Version 3.5:Input File Specifications [Input_Specifications]. USDA-ARS, National Sedimentation Laboratory, 1-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700