用户名: 密码: 验证码:
数字图像和视频修复理论及其算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字修复理论与算法是近年来数字媒体领域倍受关注的研究热点。数字修复技术通过适当的算法估计并填充图像指定区域内的缺损数据。本文主要围绕静态图像以及动态视频图像序列内指定区域的修复问题展开研究。
     1.在静态图像修复研究方面,本文概括了现有的图像修复理论与算法,对其中几种经典算法进行了详细的分析与比较,提出了一种新的基于纹理合成的图像修复算法。该算法不仅加快了修复速度,而且改善了算法的修复效果,提高了算法的鲁棒性,减少了误匹配及误差扩散的问题,尤其在针对较大尺度的区域进行修复时效果更为明显。其中:
     (1)提出了新的优先权计算方法。它通过引入全局梯度阈值,并对信心因子和数据因子规则化,使梯度较高的图像边缘得到优先修复,同时又保证了信心因子较高而梯度较弱区域的修复优先权。
     (2)提出了新的样例图像块搜索策略。通过利用当前待修复图像块内的已知像素信息,预测修复后图像块的统计属性,筛选满足限制条件的待匹配的图像块计算其匹配代价。并通过引入双射因子,改进了匹配代价函数,解决了修复结果中部分图像细节重复出现造成的不自然问题。
     2.在视频图像序列修复方面,本文提出了一种基于时间相关性的视频修复算法。其基本思想是利用时间邻域窗口内的图像信息修复当前帧内的未知像素。该算法优点是不限制摄像机的运动,不需要专门的视频前景-背景提取,便于对运动较为复杂的视频进行修复处理。
     (1)研究了视频全局运动模型及其参数优化估计的方法。提出了在自适应的快速块匹配或Harris角点匹配的基础上,通过运动矢量直方图和最大类间方差两种方法剔除外点后,利用牛顿-拉夫逊方法进行迭代求解的全局运动估计方法。
     (2)提出了在当前时间窗口内图像帧对齐操作的基础上,对当前帧中受损像素进行视频前景-背景标记,并分别修复的算法。该算法通过Poisson方程对未知像素进行预先填充,并在多分辨率Lucas-Kanade光流分析的基础上,对受损前景像素的局部运动矢量进行估计。与其它视频修复算法相比,该算法通过在当前时间窗口内进行色彩调整,使邻域图像帧与当前图像帧的色彩一致,从而解决了视频帧间差异造成的修复问题。
Research on the theory and algorithms of digital inpainting has attracted remarkable attention in recent years. The main goal of digital inpainting is to estimate and fill the pixels in some appointed image regions by proper method. This paper mainly studies on the inpainting problems of appointed regions in static images or video image sequences.
     1. In the research on the static image inpainting, the existing theory and algorithms of image inpainting are introduced in generalities, and some representative inpainting methods are analyzed and compared in details. A new image inpainting algorithm is proposed based on texture synthesis. It accelerates the inpainting process, improves the inpainting results, enhances the robustness of the algorithm, and decreases the inpainting error and error diffusion effects, especially for large image regions inpainting.
     (1) A new priority computation function is proposed in our image inpainting algorithm. By introducing a global gradient threshold, the image edges with high gradients are inpainted preferentially, and at the same time the inpainting priorities of the image regions with high confidence terms and low gradients are also ensured by regularizing the confidence term and the data term.
     (2) A new strategy to search the example image patches is proposed in our image inpainting algorithm. From the known pixels in the current inpainting patch, the statistical property of the image patch after inpainting is forecasted and only the source image patches which meet some limitation are selected to compute the matching costs. Moreover, the matching cost function is improved by introducing a bijective-mapping term, which solves the artificial problem cause by some image details repetition in the final inpainting image.
     2. In the research of video image sequence inpainting, a video inpainting algorithm based on temporal correlation is proposed in this paper. The main idea is to inpaint the unknown pixels in current frame by using the image information in the temporal neighbor frames of the video. The main advantage of new video inpainting algorithm is that it does not restrict the camera motion and can be used to inpaint the videos with complex motion without special video foreground-background extraction.
     (1) After the research on some video global motion models, a new video global motion estimation method is proposed based on adaptive rood pattern search or Harris corner matching, in which Newton-Raphson method is adopted to optimize the model parameters after removing outliers by the methods of motion vectors histogram and between-class variance maximization.
     (2) Based on frames alignments in current temporal neighbor, a new algorithm is proposed by tagging the unknown pixels with foreground or background and repairing them separately. In this algorithm, multiscale Lucas-Kanade optical flow analysis is adopted after repairing the unknown pixels by Poisson equation optimization to estimate the local motion vectors of unknown foreground pixels. Compared with other video inpainting algorithm, in this algorithm the inpainting problems caused by color difference between video frames are solved by adjusting the color of neighboring frames to make them consist with the current frame.
引文
[1] M. Bertalmio, G. Sapiro, V. Caselles, et al., Image inpainting. In: Proceedings of ACM SIGGRAPH, 2000: 417-424.
    [2] Y. Wexler, E. Shechtman, M. Irani, Space-time video completion. In: Proceedings. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, vol.1: 120-127.
    [3] Y.-T. Jia, S.-M. Hu, R. R. Martin, Video completion using tracking and fragment merging. The Visual Computer , 2005, 21(8-10): 601-610.
    [4] J. Jia, Y.-W. Tai, T.-P. Wu, et al., Video repairing under variable illumination using cyclic motions, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5): 832-839.
    [5] O. Sander, V. Caselles, M. Bertalmio, Axiomatic scalar data interpolation on manifolds. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Barcelona, Spain, September, 2003, vol.3: 681-684.
    [6] J. Verdera, V. Caselles, M. Bertalmio, et al., Inpainting surface holes. IEEE International Conference on Image Processing (ICIP), Barcelona, Spain, September, 2003, vol.2: 903-606.
    [7] L. Vese, A study in the BV space of a denoising-deblurring variational problem. Applied Mathematics Optimization, 2001, 44(2): 131-161.
    [8] C.A.Z. Barcelos and M. A. Batista, Image restoration using digital inpainting and noise removal, Image and Vision Computing, 2007, 25(1): 61-69.
    [9] M. Fornasier, Nonlinear projection recovery in digital inpainting for color image restoration. Journal of Mathematical Imaging and Vision archive, 2006, 24(3):359-373.
    [10] J.-F. Wang, H.-J. Hsu, S.-C. Liao, A novel framework for object removal from digital photograph. In: Proceedings of IEEE International Conference on Image Processing (ICIP), 2005, vol.2: 73-76.
    [11] J. Wu and Q. Ruan, Object removal by cross isophotes exemplar-based inpainting. In: Proceedings of 18th International Conference on Pattern Recognition (ICPR), 2006, vol.3: 810-813.
    [12] D. Tschumperle and R. Deriche, Vector-valued image regularization with pdes: a common framework for different applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(4): 506-517.
    [13] A. Rares, M. Reinders, J. Biemond, Edge-based image restoration. IEEE Transactions on Image Processing, 2005, 14(10): 1454-1468.
    [14] M. J. Fadili, J.-L. Starck, EM algorithm for sparse representation-based image inpainting. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Geneva, 2005, vol.2: 61-64.
    [15] T. F. Chan, J. Shen, H. Zhou, Total variation wavelet inpainting. Journal of Mathematical Imaging and Vision, 2006, 25(1): 107-125.
    [16] K.A. Patwardhan and G. Sapiro, Projection based image and video inpainting using wavelets. In: Proceedings of IEEE International Conference on Image Processing (ICIP), 2003, vol.1: 857-860.
    [17] Y.-L. Chen, C.-T. Hsieh, C.-H. Hsu, Progressive image inpainting based on wavelet transform. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2005, E88-A(10): 2826-2834.
    [18] S. Z. Li, Markov Random Field Modeling in Image Analysis. Springer: Tokyo, 2001.
    [19] M. Yasuda, J. Ohkubo, K. Tanaka, Digital image inpainting based on markov random field. In: Proceedings of International Conference on ComputationalIntelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05), 2005, vol.2: 747-752.
    [20] J. P. Cocquerez, L. Chanas, J. Blanc-Talon, Simultaneous inpainting and motion estimation of highly degraded video-sequences. In: Proceedings of 13th Scandinavian Conference on Image Analysis (SCIA), Halmstad, Sweden, LNCS 2749, 2003: 685-692.
    [21] S. Masnou, Disocclusion: a variational approach using level lines. IEEE Transactions on Image Processing, 2002, 11(2): 68-76.
    [22] H. Grossauer and O. Scherzer, Using the complex Ginzburg–Landau equation for digital inpainting in 2D and 3D, Scale Space Methods in Computer Vision, Lecture Notes in Computer Science 2695, Springer, 2003: 225-236.
    [23] D. Tschumperle and R. Dweiche, Vector-valued image regularization with PDE's: a common framework for different applications. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), 2003, vol.1: 651-656.
    [24] M.-F. Auclair-Fortier and D. Ziou, A global approach for solving evolutive heat transfer for image denoising and inpainting. IEEE Transactions on Image Processing, 2006, 15(9): 2558-2574.
    [25] M. Bertalmio, A. L. Bertozzi, G. Sapiro, Navier-stokes, fluid dynamics, and image and video inpainting. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), 2001, vol.1: 355-362.
    [26] T. Chan and J. Shen, Mathematical models for local nontexture inpainting. SIAM Journal of Applied Mathematical, 2001, 62(3):1019-1043.
    [27] T. Chan and J. Shen, Non-texture inpainting by curvature-driven diffusions (CDD). Journal of Visual Communication and Image Representation, 2001, 12(4): 436-449.
    [28] M. Bertalmio, Strong-continuation, contrast-invariant inpainting with a third-orderoptimal PDE. IEEE Transactions on Image Processing, 2006, 15(7): 1934-1938.
    [29] M. Bertalmio, Contrast invariant inpainting with a 3rd order, optimal PDE. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Sept. 2005, vol.2: 778-781.
    [30] S. Masnou and J.-M. Morel, Level lines based disocclusion, In: Proceedings of IEEE International Conference on Image Processing, 1998: 259-263.
    [31] I. Drori, D. Cohen-Or, H. Yeshurun, Fragment-based image completion, ACM Transactions on Graphics, July 2003, 22(3): 303-312.
    [32] V. Cheung, B. J. Frey, N. Jojic, Video epitomes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005, vol. 1: 42-49.
    [33] B. Li, Y. Qi, X. Shen, An image inpainting method. In: Proceedings of the Ninth International Conference on Computer Aided Design and Computer Graphics (CAD/CG 2005).
    [34] C. Liu, A. Torralba, W. T. Freeman, et al., Motion magnification. In: Proceedings of ACM SIGGRAPH, 2005: 519-526.
    [35] C. L. Zitnick, S. B. Kang, M. Uyttendaele, et al., High-quality video view interpolation using a layered representation. ACM Transactions on Graphics, 2004, 23(3): 600-608.
    [36] A. Criminisi, P Pérez, K Toyama, Object removal by exemplar-based inpainting. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Madison, USA, 2003: 721-728.
    [37] J. Jia and C. K. Tang, Image repairing: robust image synthesis by adaptive ND tensor voting. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Madison, USA, 2003: 643-650.
    [38] S. D. Rane, G. Sapiro, M. Bertalmio, Structure and texture filling-in of missing image blocks in wireless transmission and compression applications. IEEETransactions on Image Processing, 2003, 12(3): 296-303.
    [39] L. Atzori and F. De Natale, Error concealment in video transmission over packet networks by a sketch-based approach. Signal Processing: Image Communication, 1999, 15(1-2): 57-76.
    [40] L. Atzori, F. De Natale, C. Perra, A spatio-temporal concealment technique using boundary matching algorithm and mesh-based warping (BMA-MBW). IEEE Transactions on Multimedia, Sep. 2001, 3(3): 326–338.
    [41] C. Wang, X. Sun, F. Wu, et al., Image compression with structure-aware inpainting. IEEE International Symposium on Circuits and Systems (ISCAS), Island of Kos, Greece, 2006: 1816-1819.
    [42] F. Ortiz and F. Torres, A new inpainting method for highlights elimination by colour morphology. In: Proceedings of International Conference on Advances in Pattern Recognition (ICAPR), LNCS 3687, 2005: 368-376.
    [43] P. Tan, S. Lin, L. Quan, et al., Highlight removal by illumination constrained inpainting. In: Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV), 2003: 164-169.
    [44] Ji Bai, Lizhuang Ma, Li Yao, et al., Removing of metal highlight spots based on total variation inpainting with multi-sources-flashing. In: Proceedings of International Conference on Computational Intelligence and Security (CIS), Xi'an, China, LNCS 3802, 2005: II-826-831.
    [45] L. I. Rudin, S. Osher, E. Fatermi, Nonlinear Total variation based on noise removal algorithms, Physica D60, 1987, 259-268.
    [46] F. Guichard and J. M. Morel, Image iterative smoothing and P.D.E.’s, Lecture Notes, School of Mathematical Problems in Image Processing, The Abdus Salam International Centre For Theoretical Physics, September, 2000.
    [47] L. Alvarez, P. L. Lions, J. M. Morel, Image selective smoothing and edge detectionby nonlinear diffusion. SIAM Journal of Numerical Analysis, 1992, 29: 845-866.
    [48] S. Masnou and J. M. Morel, Level-lines based disocclusion. In: Proceedings of IEEE Conference on Image Processing (ICIP), Chicago, 1998, vol.3: 259-263.
    [49] C. Ballester, M. Bertalmio, V. Caselles, et al., Filling-In by joint interpolation of vector fields and gray levels. IEEE Transactions on Image Processing, 2001, 10(8): 1200-1211.
    [50] L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60(1-4): 259-268.
    [51] J. Gu, S. L. Peng, X. L. Wang, Digital image inpainting using Monte Carlo method. In: Proceedings of IEEE International Conference on Image Processing (ICIP), 2004, vol.2: 961-964
    [52] T. Chan, S. H. Kang, J. Shen, Euler's elastica and curvature based inpaintings. SIAM Journal on Applied Mathematics, 2002, 63(2): 564-592.
    [53] A. Tsai, Curve evolution and estimation-theoretic techniques for image processing. MIT, Ph.D. Thesis, August 2000.
    [54] A. Tsai, A. Yezzi, Curve evolution implementation of the Mumford-Shah functional for image segmentation, denosing, interpolation, and magnification. IEEE Transaction on Image Processing, 2001, 10(8): 1169-1186.
    [55] A. Tsai, A. Yezzi, A. Willsky, A curve evolution approach to smoothing and segmentation using the Mumford-Shah functional. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, June 2000: 1119-1124.
    [56] T. F. Chan and J. Shen, Variational image inpainting. ftp://ftp.math.ucla.edu/ pub/ camreport/cam02-63.pdf.
    [57] S. Esedoglu and J. Shen, Digital inpainting based on the Mumford-Shah-Euler image model. Euro. Journal of Applied Mathematics, 2002, vol.13: 353-370.
    [58] M. Tuceryan and A. K. Jain, Texture analysis. Handbook of Pattern Recognition andComputer Vision, C.H.Chen, et al., Eds., 1993, 235-276.
    [59] J. G. Zhang and T. Tan, Brief review of invariant texture analysis methods. Pattern Recognition, 2002, 35(3): 735-747.
    [60] E. Catmull, A subdivision algorithm for computer display of curved surfaces. Ph.D. Thesis, Dept. of Computer Science, University of Utah, 1974.
    [61] L. Bruno and J. Mallet, Non-distortion texuture mapping for sheared triangulated meshes. In: Proceedings of ACM SIGGRAPH, Florida, 1998: 343-352.
    [62] M. Jerome, H. Yahia, A verroust interactive texture mapping. In: Proceedings of ACM SIGGRAPH, Los Angeles, 1993: 27-34.
    [63] P. Dan and G. Borshukov, Seamless texture mapping of subdivision surfaces by model pelting and texture blending. In: Proceedings of ACM SIGGRAPH, New Orleans, 2000: 471-478.
    [64] H. Pedersen, Decorating implicit surfaces. In: Proceedings of ACM SIGGRAPH, Los Angeles, 1993: 291-300.
    [65] E. Praun, A. Finkelstein, H. Hoppe. Lapped Textures. In: Proceedings of ACM SIGGRAPH, Los Angeles, 2000: 465-470.
    [66] P. S. Heckber, Survey of texture mapping. IEEE Computer Graphics and Application, 1986, 11(6): 207-212.
    [67] K. Perlin, An image synthesizer. In: Proceedings of SIGGRAPH, Los Angeles, 1985: 287-296.
    [68] D. R. Peachey, Solid texturing of complex surfaces. In: Proceedings of SIGGRAPH, Los Angeles, 1985: 279-286.
    [69] A. Witkin, M. Kass, Reaction-diffusion textures. In: Proceedings of ACM SIGGRAPH, 1991: 299-308.
    [70] K. Fleischer, D. Laidlaw, B. Currin, et al., Cellular texture generation. In: Proceedings of SIGGRAPH, 1995: 239-248.
    [71] S. Worley, A cellular texture basis function. In: Proceedings of ACM SIGGRAPH, New Orleans, 1996: 291-294.
    [72] M. Walter and A. Fournier, Clonal mosaic model for the synthesis of mammalian coat patterns. In: Proceedings of Graphics Interface, Vancouver, BC Press, 1998: 82-91.
    [73] F. Neyret and M. P. Cani, Pattern-based texturing revisited. In: Proceedings of ACM SIGGRAPH, Los Angeles, 1999, 235-242.
    [74] G. Turk, Generating textures on arbitrary surfaces using reaction-diffusion. In: Proceedings of ACM SIGGRAPH, Los Angeles, 1991: 289-298.
    [75] D. J. Heeger and J. R. Bergen, Pyramid-based texture analysis/synthesis. In: Proceedings of ACM SIGGRAPH, 1995: 239-248.
    [76] S. Jeremy and D. Bonet, Multi-resolution sampling procedure for analysis and synthesis of texture images. In: Proceedings of ACM SIGGRAPH, 1997: 361-368.
    [77] E. P. Simoncelli and J. Portilla, Texture characterization via joint statistics of wavelet coefficient magnitudes. In: Proceedings of the Fifth International Conference on Image Processing, 1998, vol.1: 62-66.
    [78] J. Portilla and E. P. Simoncelli, Texture modeling and synthesis using joint statistics of complex wavelet coefficient. In: Proceedings of IEEE workshop on Statistical and Computational Theories of vision, Fort Collins, CO Press, 1999: 22-30.
    [79] A. Efros and T. Leung, Texture synthesis by non-parametric sampling. In: Proceedings of International Conference on Computer Vision (ICCV), 1999, vol.2: 1033-1038.
    [80] Li-Yi Wei and M. Levoy, Fast texture synthesis using tree-structured vector quantization. In: Proceedings of ACM SIGGRAPH, 2000: 479-488.
    [81] M. Ashikhmin, Systhesizing natural texures. In: ACM symposium on Interactive 3D Graphics, 2001: 217-226.
    [82] R. Paget and I. D. Longstaff, Texture synthesis via a noncausal nonparametric multiscale markov random field. IEEE transactions on Image Processing, 1998, 7(6): 925-931.
    [83] K. Popat and R. W. Picard, Novel cluster-based probability model for texture synthesis, classification, and compression. In: Visual Communications and Image Processing, 1993: 756–68.
    [84] S. Zhu, Y. Wu, D. Mumford, Filters random fields and maximun entropy (FRAME) - towards a unified theory for texture modeling. International Journal of Computer Vision, 1998, 27(2): 107-126.
    [85] A. Efros, W. T. Freeman, Image quilting for texture synthesis and transfer. In: Proceedings of ACM SIGGRAPH, Los Angeles, 2001: 341-347.
    [86] L. Liang, C. Liu, Y. Q. Xu, et al., Real-time texture synthesis by patch-based sampling. ACM Transactions on Graphics, July 2001, 20(3), 127-150.
    [87] Y. Liu, W. Lin, J. Hays, Near-regular texture analysis and manipulation, ACM Transactions on Graphics, 2004, 23(3): 368-376.
    [88] A. Criminisi, P. Pérez, K. Toyama, Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212.
    [89] J. Sun, L. Yuan, J. Jia, et al., Image completion with structure propagation. ACM Transactions on Graphics, July 2005, 24(3): 861-868.
    [90] L. I. Rudin, Image numerical analysis of singularities and shock filters, Ph.D Dissertation, California Ins. of Tech., 1987.
    [91] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. AMS University Lecture Series 22, 2002.
    [92] M. Bertalmio, L. Vese, G. Sapiro, et al., Simultaneous structure and texture image inpainting. IEEE Transactions on Image Processing, 2003, 12(8): 882-889.
    [93] M. Bertalmio, L. Vese, G. Sapiro, et al., Image filling-in in a decomposition space. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Barcelona, Spain, September, 2003, vol.1: 853-855.
    [94] L. Vese and S. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing. Journal of Scientific Computing, 2003, 19(1-3): 553-572.
    [95] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions. CRC Press, London, 1992.
    [96] Y. P. Tan, R. K. Sanjeen, J. R. Peter, A new method for camera motion parameter estimation. In: Proceedings of International Conference on Image Proceesing, Washington, D.C., 1995: 406-409.
    [97] S. J. Ko, S. H. Lee, S. W. Jeon, et al., Fast digital image stabilizer based on grag coded bit plane matching. IEEE Transactions on Consumer Electronics, 1999, 45(3): 589-603.
    [98] J. K. Paik, Y. C. Park, S. W. Park, An edge detection approach to digital image stabilization based on tri-state adaptive linear neurous. IEEE Transactions on Consumer Electronics, 1991, 37(3): 521-530.
    [99] S. Kappagantula and K. Rao, Motion compensated interframe image prediction, IEEE Transactions on Communications, 1985, COM-33(10): 1011-1015.
    [100] J. Jain and A. Jain, Displacement measurement and its application in interframe image coding. IEEE Transactions on Communications, 1981, COM-29: 1799-1808.
    [101] M. Ghanbari, The cross-search algorithm for motion estimation. IEEE Transactions on Communications, 1990, 38(7): 950-953.
    [102] R. Li, B. Zeng, M. Liou, A new three-step search algorithm for block motione stimation. IEEE Transactions on Circuits and Systems for Video Technology, 1994, 4(4): 438-442.
    [103] L. M. Po and W. C. Ma, A novel four-step search algorithm for fast block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(3): 313-317.
    [104] T. J. Yew, S. Ranganath, M. Ranganath, et al., A novel unrestricted center-biased diamond search algorithm for block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(4): 369-377.
    [105] S. Zhu and K. K. Ma, A new diamond search algorithm for fast block-matching motion estimation. IEEE Transactions on Image Processing, 2000, 9(2): 287-290.
    [106] J. B. Xu, L. M. Po, C. K. Cheung, Adaptive motion tracking block matching algorithms for video coding. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9(7): 1025-1029.
    [107] J. M. Jou, P. Y. Chen, J. M. Sun, The gray prediction search algorithm for block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9(6): 843-848.
    [108] J. S. Lee, Y. N. Sun, C. H. Chen, Multiscale corner detection by using wavelet transform. IEEE Transactions on Image Processing, 1995, 4(1): 100-104.
    [109] A. Quddus and M. M. Fahmy, An improved wavelet based corner detection technique. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 1999, vol.6: 3213-3216.
    [110] H. Li, B. S. Manjunath, S. K. Mitra, Contour-based approach to multisensor image registration. IEEE Transactions on Image Processing, 1995, 4(3): 320-334.
    [111] H. P. Moravec, Towards automatic visual obstacle avoidance. In: Proceeding of International Joint Conference on Artificial Intelligence, Cambrige, MA, USA, 1977: 584-590.
    [112] C. Harris and M. Stephens, A combined corner and edge detector. In: Proceedings of Fourth Alvey Vision Conference, Manchester, UK, 1988: 147-151.
    [113] M. Stephen and J. Michael, SUSAN – a new approach to low-level image processing. International Journal of Computer Vision, 1997, 23(1): 45-78.
    [114] P. R. Beaudet. Rotationally invariant image operators, In: Proceedings of the Fourth International Conference on Pattern Recognition, Tokyo, Japan, 1978: 579-583.
    [115] L. Kitchen and A. Rosenfeld, Gray-level corner detection. Pattern Recognition Letters, 1982, (1): 95-102.
    [116] J. A. Noble, Finding corners. Image and Vision Computing, 1988, vol.2: 121-128.
    [117] J. Anil, H. Lin, R. Bolle, On-line fingerprint verification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(4): 302-313.
    [118] T. Sikora, The MPEG-4 video standard verification model. IEEE Transaction on Circuits and Systems for Video Technology, 1997, 7(1): 19-31.
    [119] H. Jozawa, K. Kamikura, A. Sagata, et al., Two-stage motion estimation and its application for sprite coding, content description, and segmentation. IEEE Transaction on Circuits and Systems for Video Technology, 1997, 7(1): 75-85.
    [120] F. Dufaux and J. Konrad, Efficient, robust, and fast global motion estimation for video coding. IEEE Transaction on Image Processing, 2000, 9(3): 497-501.
    [121] Y. Keller and A. Averbuch, Fast gradient methods based on global motion estimation for video compression. IEEE Transaction on Circuits and Systems for Video Technology, 2003, 13(4): 300-309.
    [122] J. C. Huang and W. S. Hsieh, Automatic feature-based global motion estimation in video sequences, IEEE Transaction on Consumer Electronics, 2004, 50(3): 911-915.
    [123] Y. Keller and A. Averbuch, Fast motion estimation using bidirectional gradient methods. IEEE Transactions on Image Processing, 2004, 13(8): 1042-1054.
    [124] Y. P. Tan, D. D. Saur, S. R. Kulkarni, et al., Rapid estimation of camera motion from compressed video with application to video annotation. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10(1): 133-145.
    [113] M. Stephen and J. Michael, SUSAN – a new approach to low-level image processing. International Journal of Computer Vision, 1997, 23(1): 45-78.
    [114] P. R. Beaudet. Rotationally invariant image operators, In: Proceedings of the Fourth International Conference on Pattern Recognition, Tokyo, Japan, 1978: 579-583.
    [115] L. Kitchen and A. Rosenfeld, Gray-level corner detection. Pattern Recognition Letters, 1982, (1): 95-102.
    [116] J. A. Noble, Finding corners. Image and Vision Computing, 1988, vol.2: 121-128.
    [117] J. Anil, H. Lin, R. Bolle, On-line fingerprint verification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(4): 302-313.
    [118] T. Sikora, The MPEG-4 video standard verification model. IEEE Transaction on Circuits and Systems for Video Technology, 1997, 7(1): 19-31.
    [119] H. Jozawa, K. Kamikura, A. Sagata, et al., Two-stage motion estimation and its application for sprite coding, content description, and segmentation. IEEE Transaction on Circuits and Systems for Video Technology, 1997, 7(1): 75-85.
    [120] F. Dufaux and J. Konrad, Efficient, robust, and fast global motion estimation for video coding. IEEE Transaction on Image Processing, 2000, 9(3): 497-501.
    [121] Y. Keller and A. Averbuch, Fast gradient methods based on global motion estimation for video compression. IEEE Transaction on Circuits and Systems for Video Technology, 2003, 13(4): 300-309.
    [122] J. C. Huang and W. S. Hsieh, Automatic feature-based global motion estimation in video sequences, IEEE Transaction on Consumer Electronics, 2004, 50(3): 911-915.
    [123] Y. Keller and A. Averbuch, Fast motion estimation using bidirectional gradient methods. IEEE Transactions on Image Processing, 2004, 13(8): 1042-1054.
    [124] Y. P. Tan, D. D. Saur, S. R. Kulkarni, et al., Rapid estimation of camera motion from compressed video with application to video annotation. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10(1): 133-145.(ICIP), Genoa, Italy, 2005: 69-72.
    [134] K. A. Patwardhan, G. Sapiro, M. Bertalmio, Video inpainting under constrained camera motion. IEEE Transactions on Image Processing, 2007, 16(2): 545-553
    [135] J. Jia, T. Wu, Y. Tai, et al., Video repairing: Inference of foreground and background under severe occlusion. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, vol. 1: 364-371.
    [136] Y. Zhang, J. Xiao, M. Shah, Motion layer based object removal in videos. In: Proceedings of Workshop on Applications of Computer Vision, 2005: 516-521.
    [137] J. Xiao and M. Shah, Motion layer extraction in the presence of occlusion using graph cut. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1644-1659.
    [138] Y. Boykov, O. Veksler, R. Zabih, Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239.
    [139] E. Reinhard, M. Ashikhmin, B. Gooch, et al., Color transfer between images, IEEE Computer Graphics and Applications, 2001, 21(5): 34-40.
    [140] D. L. Ruderman, T. W. Cronin, C. C. Chiao, Statistics of cone responses to natural images: implications for visual coding. Journal of the Optical Society of America, 1998, 15(8): 2036-2045.
    [141] L. Y. Chen, S. C. Chan, H. Y. Shum, A joint motion-image inpainting method for error concealment in video coding. In: Proceedings of IEEE International Conference on Image Processing (ICIP), 2006: 2241-2244.
    [142] Y. Matsushita, E. Ofek, X. Tang et al., Full-frame video stabilization. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2005, vol.1: 50-57.
    [143] Y. Matsushita, E. Ofek, W. Ge, et al., Full-frame video stabilization with motioninpainting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(7): 1150-1163.
    [144] P. Perez, M. Gangnet, A. Blake, Poisson image editing. In: Proceedings of ACM SIGGRAPH, 2003: 313-318.
    [145] B. Horn and B. Schunch, Determining optical flow. Artificial Intelligence, 1981, vol.17: 185-203.
    [146] A. Verri and T. Poggio, Motion field and optical flow: qualitative properties. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989: 490-498
    [147] N. Ohta. Optical flow detection by color image. NEC Research and Development, 1990, 97: 78-84.
    [148] B. Horn. Robot Vision, MIT Press, 1986.
    [149] H. Nagel, Constrains For The estimation of displacement vector fields from image sequences. In: Proceedings of IJCAI’83, Germany, 1983: 945-951.
    [150] O. Tretiak and L. Pastor, Velocity estimation from image sequences with second order differentical opertors. In: Proceedings of International Conference on Pattern Recognition, Canada, 1984: 16-19.
    [151] B. D. Lucas and T. Kanade, An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. Proc. DARPA Image Understanding Workshop, 1981: 121-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700