用户名: 密码: 验证码:
光学薄膜中超棱镜效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄膜中的超棱镜效应为光学薄膜开拓了新的应用领域,它使得倾斜放置的光学薄膜可以从空间上将不同波长的电磁波进行分离,因此薄膜超棱镜结构可用作类如棱镜、光栅的空间色散器件。而基于超棱镜效应的光学薄膜色散器件可以获得远远超过传统色散器件的空间解复用效果,且在尺寸、集成度、稳定性、可靠性和成本等方面优势明显,被认为是新一代低成本的光通讯波分复用器件。本课题研究了多种光学薄膜中的超棱镜效应并进行了相关测试,主要涉及以下几个内容:
     1.超棱镜效应相关的模拟计算。在深入分析实现前人工作的基础上,针对其局限性,提出了几种新的超棱镜效应相关计算的方法。首先,鉴于群延迟是色散系统中的一个重要因子,提出了一种基于多镜理论计算多腔级联滤波器群延迟的方法,从而大大简化了多腔器件群延迟的计算和优化工作。接着,在以往研究者提出的超棱镜效应计算方法——时空色散正比法的基础上,首次引入了应用于其他领域的稳态位相法和高斯频谱展开法计算模拟了超棱镜效应。与时空色散正比法相比,稳态位相法更为简单、准确;而高斯频谱展开法不但可以适用于更广泛的场合:如不同分布的入射光、不同结构的膜系等,而且可以更为精确地分析薄膜内部的电磁场分布,从而方便地解释各种伴随发生的物理现象:如光斑分裂效应、波形畸变效应等。
     2.设计了几种新型的可调谐和多通道薄膜超棱镜器件,并进行了实际测试。为了适应光通信领域中密集波分复用(DWDM)系统的需求,设计并优化了几种典型的薄膜超棱镜系统,包括利用角度调谐的薄膜法布里—珀罗滤光片和液晶法布里—珀罗滤光片中的超棱镜效应,实现了可调谐的空间解复用器件;然后设计了一种在常规反射膜堆两端添加厚度递减反射膜堆的薄膜结构,实现了多通道的空间解复用效果;最后基于铌酸锶钡Gires-Tournois薄膜干涉滤光片的电光效应设计了一种新型的空间色散位移随入射波长呈台阶状分布的超棱镜结构,改善了线性空间位移的不足,得到了在信道中心附近有一定波长漂移容差的“类台阶”空间位移特性。事实证明这种结构还可以用于色散补偿系统,并举例对50GHz的薄膜滤光片进行了色散补偿。这几种薄膜结构与已有的设计相比要简单很多,制备方便,本文实际制备了其中两种器件,并搭建了薄膜超棱镜测试装置对色散效应进行了测试。
     3.提出了一种新型的薄膜窄带反射滤光片结构,并测试了其超棱镜效应。针对显示、摄像、激光等经常使用反射系统的领域设计了一种薄膜反射滤光片,可以实现高的峰值反射率、窄的带宽及高的截止深度。相对于传统透射滤光片来说,这种反射滤光片对结构对称性要求不高,制备方便,本文实际制备出的反射滤光片与理论设计极为接近。对此结构的超棱镜效应测试发现,这种结构相对于常用的高反膜、透射滤光片等,反射能量利用率可以提高到两倍以上,且基本不降低色散效果。最后将光子晶体理论引入这种结构,实现了多通道反射滤光片的设计并进行了制备。
     4.首次测试出了光学薄膜中负色散位移效应,并给出了相关的分析讨论。负的空间位移效应意味着光束产生了逆传播方向的移动,尝试了使用波形畸变和超光速两种理论对这种效应进行了解释。分析了脉冲光经过产生负位移薄膜后的分布情况,试图在空间上的色散位移正负与时间上的快慢光效应之间建立一种联系,这种联系将为快慢光效应的测试提供一条低成本的捷径。将正负空间位移效应相结合,本文还设计了一种增强的超棱镜效应,从而实现更宽的色散范围和更大的色散位移。
     5.搭建了超棱镜效应相关测试系统。为了更好地对超棱镜效应进行测试,本文先后两次搭建了微位移测试平台,尤其是最后采用的“光学薄膜光栅”超色散测试系统,采用精密可调的单色系统、小光束准直系统以及精密光斑位置检测系统,实现高灵敏度、高精度的反射光斑及透射光斑的位置检测,为超分辨色散器件的研究奠定了基础。同时,鉴于位相特性在色散系统中的重要性,本文还搭建了基于迈克尔逊的白光干涉系统进行薄膜的位相测试,并实际测试了单层薄膜的位相信息。这个装置不仅可以应用在超棱镜效应的测试中,同时在飞秒、通信、成像等多种需要位相信息的领域中都起着至关重要的作用。
     最后,本文对整个课题的工作进行了总结,提出了今后需要进一步研究和发展的方向。
Superprism effect opens new application to optical thin films, the thin film superprism can spatially separate light with different wavelengths when obliquely placed. It means the thin film superprism can be used as the spatial dispersion device, just as prisms and gratings. Moreover, compared with these conventional dispersion devices, much better spatially demultiplexing effect can be obtained by using the thin film superprism, meanwhile, their small size, integrativity, stability and low cost lead them as the precursor in wavelength demultiplexing field in optical communication system. The research is focus on simulation and corresponding measurement on superprism effect in various of optical thin films. The main contents in this paper are as follows:
     1. Simulation and calculation on superprism effect. After analyzing the limits of the works presented by predecessor, some new methods on superprism effect and relative calculation are proposed. Firstly, as group delay is a significant ingredient in dispersion system, a novel method based on multi-mirror theory for calculating group delay of multi-cavities filters is presented to simplify the calculation and optimization. Besides the calculation on superprism effect (proportionality technique between temporal and spatial dispersion) proposed by previous works, introducing stationary-phase theory and Gaussian angular spectrum method, which usually used in other fields, to simulate the superprism effect in thin films. Compared with the proportionality technique between temporal and spatial dispersion, the stationary-phase theory is simpler and more accurate. While Gaussian angular spectrum method can not only apply to more situation, such as different profiles of incident light, different thin film structure, but also explain some complex physical phenomena, just as beam splitting effect, beam distortion effect an so on.
     2. Design and measurement on some novel tunable and multichannel thin film superprism devices. To adapt to the requirement of dense wavelength demultiplexing (DWDM) system in optical communication field, design and optimize some typical superprism thin film systems, including utilizing the superprism effect in Fabry-Perot filter with tunable incident angle and liquid crystal Fabry-Perot filter to realize the tunable spatially demultiplexing effect; then a novel struture of conventional high reflectance (HR) coating sandwiched between two thickness-tapered period thin film stacks is designed to be used as the multichannel spatial demultiplexer; At last, based on the electro-optic property in strontium barium niobate Gires- Tournois interferometer, a novel superprism structure is designed to obtain the step-like spatially dispersive shift with the incident wavelengths. The step-like shift can overcome the limits of linear shift and allow some drifts in the central wavelength of the output channel. This sturcture can also be used in dispersion compenesation system, a compensator to the 50GHz thin film filter is designed as the example. Compared with the prior work, these thin film structures are much simpler for depostion, we fabrication two structures of them, and establish the measurement setup to test the spatial dispersion effect in thin film superprism.
     3. A novel narrow-band thin film reflection filter is designed and fabricated, and its superprism effect is also studied. A novel thin film reflection filter with hight peak reflectance, narrow bandwidth and deep cutoff is designed for display, colorful, special photography, laser and some other fields which are inclined to reflection system. The requirement on symmetry for reflection filter is not as strict as the conventional transmission filter, so it is much easier for fabrication, and we get approximate agreement between design and depostion. Moreover, we also measure the superprism effect in this filter, compared to the high reflectance coatings and transmission filter, it demonstrate that this structure can double the reflective energy efficiency without decreasing dispersive ability. Ultimately, photonic crystal theroy is introduced to design multichannel reflection filters.
     4. A dramatic negative spatial shift effect is tested in optical thin film for the first time, analysis and discussion are given on this phenomenon. Negative spatial shift means the beam shift against the propagation direction. We introduce the theroy of beam distortion and superluminal effect to explain this phenomenon. The distribution of the pulse propagate through thin film superprism is analyzed, the relationship between spatially positive/ negative dispersive shift phenomena and temporally fast/ slow light effect is tried to estabilished. This relation may supply a short cut for fast and slow light measurement. Combining the negative and positive shift phenomena, we also frame an enhanced superprism effect to get wider dispersive band and larger dispersive shift.
     5. Relative measurement setups are built. We establish measurement twice on micro shift for testing superprism effect. And the "thin film gratings" measurement, which we adopt finally, has critically tunable monochroic system, collimated system and exact system for spot detection, realizing detect the micrometer-level shift of reflective and transmissive spots with high sensitivity and precision, and is useful for studies on dispersive device with high resolution. Moreover, owing to the importance of phase properties in dispersion system, we also build a white-light Michelson interferometer to measure the phase properties of thin films. Phase information of single layer is tested in this research. This setup can be not only used to measure superprism effect, but also useful for femtosecond, communication, imaging and some other fields.
     At last, a summary of this paper is included and the prospect of this research is also given.
引文
1.唐晋发,顾培夫.《薄膜光学与技术》,北京,机械工业出版社,1987
    2.李正中.《薄膜光学与镀膜技术》,北京,艺轩图书出版社,2001
    3.Sh.A.Furman,A.V.Tikhonravov.《Optics of Multilayer System》,adagp,Paris,1992
    4.H.A.Macleod.《Thin film Optical filters》(Third Edition),Institute of Physics Publishing,Bristol and Philadelphia,2001
    5.林永昌,卢维强.《光学薄膜原理》,北京,国防工业出版社,1990
    6.唐晋发,顾培夫,刘旭,李海峰.《现代光学薄膜技术》,杭州,浙江大学出版社,2006
    7.M.V.Kiibanov,P.E.Sacks and A.V.Tikhonravov.The phase retrieval problem,Inverse Problems (Topical Review),1995,11,1-28
    8.A.V.Tikhonravov,P.W.Baumeister and K.V.Popov.Phase properties of multilayers,Appl.Opt.,1997,36(19),4382-4392
    9.R.Szipocs,A.KohaziKis.Theory and design of chirped dielectric laser mirrors,Appl.Phys B:Lasers and Optics,1997,65(2),115-135
    10.A.Belardini,A.Bosco,G.Leahu et al,R.Szipocs.Femtosecond pulses chirping compensation by using one-dimensional compact multiple-defect photonic crystals,Appl.Phys.Lett.2006,89,031111
    11.J.M.Senior,M.R,Handley and M.S.Leeson.Developments in wavelength division multiple access networking,IEEE.Commun.Magazine,1998,36(12),28-36
    12.李辉,光传送网技术及趋势,飞达光学网,2004
    13.R.Faber,K.Zhang and A.Zoeller.Design and manufacturing WDM narrow band interference filters,Proc.of SPIE,2000,4094,58-64
    14.A.Frenkel and C.Lin,Angle-tuned etaion filters for optical channel selection in high density wavelength division multiplexer systems,J.Light.Technol.1989,7(4),615-624
    15.黄章勇.《光纤通信用新型光无源器件》,北京,北京邮电大学出版社,2003,140-145
    16.Haxing Chen,Peifu Gu et al.Optical interleaver based on multi-cavity Fabry-Perot thin film filter,Proc. of SPIE,2002,4906,561-566
    17.陈海星,顾培夫等.多腔薄膜梳状滤波器中心波长温度稳定性分析,2005,25(1),105-108
    18.Martina Gerken and David A.B.Miller.Multilayer thin-film structures with high spatial dispersion,Appl.Opt.2003,42(7),1330-1345
    19.陆巍,顾培夫,刘旭.密集波分复用薄膜滤光片的群延迟补偿设计,光学学报,2003,23(9),1123-1126
    20.G.Steinmeyer.Brewster-angled chirped mirrors for high-fidelity dispersion compensation and bandwidths exceeding one optical octave,Opt.Express.2003,11(19),2385-2396
    21.Lasse Orsila,Robert Herda,Tommi Hakulinen,and Oleg G.Okhotnikov.Thin-Film Fabry-Perot Dispersion Compensator for Mode-Locked Fiber Lasers,IEEE.Photo.Technol.Lett.2007,19(1),6-8
    22.李佳玲,光纖通讯中薄膜色散補償之研究,硕士论文,国立中央大学,2002
    23.陈君萍,光学薄膜於光纖通讯中色散補償之设计,硕士论文,国立中央大学,2003
    24.E.Yablonovitch.Inhibited spontaneous emission in Solid-state physics and electronics,Phys.Rev.Lett.1987,58(20),2059-2062
    25.S.John.Strong localization of photons in certain disordered dielectric supedattices,Phys.Rev.Lett.1987,58(23),2486-2489
    26.E.Yablonovitch.Photonic crystals:Semiconductors of light,Scintific American,2001,285(6),46-55
    27.S.John.Localization of light,Physics Today,1991,44(5),32-40
    28.S.G.Johnson and J.D.Joannopoulos.Introduction to Photonic Crystals:Bloch's Theorem,Band Diagrams,and Gaps(But No Defects),MIT,3rd February 2003
    29.J.D.Joannopoulos,R.D.Meade and J.N.Winn.《Photonic Crystals》,Princeton,Princeton University Press,1995
    30.H.Kosaka,T.Kawashima,A.Tomita et al.Superprism phenomena in photonic crystals,Phys.Rev.B,1998,58(16),R10096-10099
    31.H.Kosaka,T.Kawashima,A.Tomita et al.Superprism Phenomena in Photonic Crystals:Toward Microscale Lightwave Circuits,J.Light.Technol.1999,17(11),2032-2038
    32.B.Gralak,S.Enoch and G.Tayeb.Anomalous refractive properties of photonic crystals,J.Opt.Soc.Am.A,2000,17(6),1012-1020
    33.K.B.Chung and S.W.Hong.Wavelength demultiplexers based on the superprism phenomena in photonic crystals,Appl.Phys.Lett.2002,81(9),1549-1551
    34.Lijun Wu,M.Mazilu,T.Karle and T.F.Krauss.Superprism Phenomena in Planar Photonic Crystals,IEEE J.Quantum.Electron.2002,38(7),915-918
    35.S.Enoch,G.Tayeb,D.Maystre.Numerical evidence of ultrarefractive optics in photonic crystals,Opt.Communs.1999,161,171-176
    36.Toshihiko Baba and Masanori Nakamura.Photonic Crystal Light Deflection Devices Using the Superprism Effect,IEEE J.Quantum.Electron.2002,38(7),909-914
    37.A.Bakhtazad and A.G.Kirk.Superprism effect with planar I-D photonic crystal,Proc.of SPIE.2004,5360,364-372
    38.T.Matsumoto and T.Baba.Photonic Crystal k-Vector Superprism,J.Light.Technol.2004,22(3),917-922
    39.T.Baba and T.Matsumoto.Resolution of photonic crystal superprism,Appl.Phys.Lett.2002,81(13),2325-2327
    40.LijunWu,M.Mazilu and T.F.Krauss.Beam Steering in Planar-Photonic Crystals:From Superprism to Supercollimator,J.Light.Technol,2003,21(2),561-566
    41.M.Notomi.Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap,Phys.Rev.B.2000,62(16),10696-10705
    42.M.Gerken.Wavelength multiplexing by spatial beam shifting in multiplayer thin-film structures,Ph.D.dissertation,Stanford University,2003
    43.M.Gerken and D.A.B.Miller.The relationship between the superprism effect,group delay,and stored energy in 1-D photonic crystals and photonic nanostructures,MRS Spring meeting,2003,Paper J2.7,San Francisco,CA
    44.M.Gerken and D.A.B.Miller.Wavelength Demuitiplexer Using the Spatial Dispersion of Multilayer Thin-Film Structures.IEEE.Photo.Technol.Lett.2003,15(8),1097-1099
    45.M.Gerken and D.A.B.Miller.Multilayer thin-film structures with high spatial dispersion,Appl.Opt.2003,42(7),1330-1345
    46.M.Gerken and D.A.B.Miller.Multilayer Thin-Film Stacks With Steplike Spatial Beam Shifting,J.Light.Technol,2004,22(2),612-618
    47.M.Gerken and D.A.B.Miller.Limits on the performance of dispersive thin-film stacks,Appl.Opt.2005,44(16),3349-3357
    48.M.Gerken and D.A.B.Miller.Relationship between the superprism effect in one-dimensional photonic crystals and spatial dispersion in nonperiodic thin-film stacks,Opt.Lett.2005,30(18),2475-2477
    49.D.I.Babic and S.W.Corzine.Analytic expressions for the reflection delay,penetration depth,and absorptance of quarter-wave dielectric mirrors,IEEE J.Quantum.Electron.1992,28(2),514-524
    50.J.M.Bendickson and J.P.Dowling.Analytic expressions for the electromagnetic mode density in finite,one-dimensional,photonic band-gap structures,Phys.Rev.E.1996,53(4),4107-4121
    51.B.E.Nelson,M.Gerken,D.A.B.Miller et al.Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting,Opt.Lett.2000,25(20),1502-1504
    52.陈海星,顾培夫,吕玮阁等.薄膜法布里-珀罗滤光片中的超棱镜效应,光学学报,2006,26(1),157-160
    53.陈海星.波分复用系统中基于法布里-珀罗腔的光学薄膜滤波器研究,博士论文,浙江大学,2005
    54.李明宇,基于薄膜技术的光子晶体理论与器件研究,博士论文,浙江大学,2006
    55.M.Gerken and D.A.B.Miller.Apparatus and method employing multilayer thin-film stacks for spatially shifting light,United States Patent,2006,No.US 7,088,884 B2
    1.J.B.Pendry and P.J.Roberts.Transfer matrices and the glory,Waves in random media,1993,3(3),221-241
    2.Ruitao Zheng,Nam Quoc Ngo,Ping Shum et al.Tabu search algorithm to optimize the design of fiber Bragg gratings,Proc.of SPIE,2002,4904,206-214
    3.葛德彪,闫玉波.《电磁波时域有限差分方法》,西安,西安电子科技大学出版社,2003
    4.K.Yee.Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media,IEEE.Trans.Antennas.Proga,1966,14(3),302-307
    5.C.M.Soukoulis.《Photonic band gap materials》,Kluwer,Dordrecht,NATO,ASI,1996
    6.C.M.Soukoulis.《Photonic band gaps and localization》,Plenum,New York,NATO ARW,1993
    7.K.M.Leung and Y.Qiu.Multiple-scattering calculation of the two-dimensional photonic band structure,Phys.Rev.B.1993,48(11),7767-7771
    8.L.M.Li,Z.Q.Zhang and X.D.Zhang.Transmission and absorption properties of two-dimensional metallic photonic-band-gap materials,Phys.Rev.B.1998,58(23),15589-15594
    9.P.Yeh,A.Yariv and C.S.Hong.Electromagnetic propagation in periodic stratified media.Ⅰ.General theory,J.Opt.Soc.Am.1977,67(4),423-438
    10.R.S.Chu and T.Tamir.Group velocity in space-time periodic media,Electron.Lett.1971,7(14),410-412
    11.H.A.Macleod.《Thin film Optical filters》(Third Edition),Institute of Physics Publishing,Bristol and Philadelphia,2001
    12.唐晋发,顾培夫,刘旭,李海峰.《现代光学薄膜技术》,杭州,浙江大学出版社,2006
    13.唐晋发,顾培夫.《薄膜光学与技术》,北京,机械工业出版社,1987
    14.J.F.Mulligan.Who were Fabry and Perot?,Am.J.Phys.1998,66(9),797-802
    15.F.Gires and P.Tournois.An active interferometer for translation or frequency modulation of laser pulses,Comptes Rendus Hebdomadaires des Seances de L Academic des sciences serie B,1969,268(4),313-316
    16.孙虹,张志刚,柴路等.用于飞秒脉冲锁模激光器中的优化Gires-Toumois反射镜,光学学报,2001,21(11),1384-1387
    17.吴祖斌,王专,廖春艳等.钛宝石激光器中用优化Gires-Tournois镜产生15fs脉冲,光学学报,2005,25(2),216-219
    18.M.Beck,I.A.Walmsley and J.D.Kafka.Group Delay Measurements of Optical Components Near 800 nm,IEEE.J.Quan.Electron.1991,27(8),2074-2081
    19.G.Lenz,B.J.Eggleton,C.K.Madsen,and R.E.Slusher.Optical Delay Lines Based on Optical Filters,IEEE.J.Quan.Electron.2001,37(4),525-532
    20.R.Szipocs,A.Kohazi-Kis,S.Lako et al.Negative dispersionmirrors for dispersion control in femtosecond lasers:chirped dielectricmirrors and multi-cavity Gires-Tournois interferometers,Appl. Phys.B:Lasers and Optics,2000,70,S51-S57
    21.J.Liu and S.Chao.Simple design method for third-order dispersion compensation with a thin-film dispersion compensator,Appl.Opt.2004,53(17),3442-3448
    22.齐永兴,陈树强,刘元安等.多腔FP滤波器实现Butterworth滤波的数学模型,北京邮电大学学报,2005,28(2),16-20
    23.孟义朝,黄肇明,王陆唐.薄膜干涉型光学全通滤波器的设计与分析,光电子·激光,2002,13(9),908-912
    24.Herman van de Stadt,Johan M.Muller.Multimirror Fabry-Perot interferometers.J.Opt.Soc.Am.A,1985,2(8),1363-1370
    25.M.Lang.Allpass filter design and applications.IEEE.Trans.Signal Processing,1998,46(9),2505-2514
    26.M.Lang,T.Laakso.Simple and robust method for the design of allpass filters using least-squares phase error criterion,IEEE Trans.Circ.and Syst.Ⅱ,1994,41(40),40-48
    27.K.Rajamani,Y.S.Lai.A novel method for designing allpass digital filters,IEEE Signal Proc.Lett,1999,6(207),207-209
    28.耿烜,谢志远.一种数字全通滤波器的改进设计方法,华北电力大学学报,2004,3(89),89-92
    29.Eugene Hecht and Alfred Zajac.《Optics》,Addison-Wesley Publishing Company,1974,91-93
    30.Martina Gerken.Wavelength multiplexing by spatial beam shifting in multiplayer thin-film structures,doctor dissertation,Stanford University,2003
    31.M.Gerken and D.A.B.Miller.Multilayer thin-film structures with high spatial dispersion,Appl.Opt.2003,42(7),1330-1345
    32.R.Shankar.《Principles of Quantum Mechanics》,New York,Plenum Press,1980
    33.N.Matuschek,F.X.Kartner,and U.Keller.Theory of Double-Chirped Mirrors,IEEE J.Select.Topics Quantum Electron.1998,4(2),197-208
    34.A.Yariv and P.Yeh,Electromagnetic propagation in periodic stratified media.ⅡI.Birefrigence,phase mathcing and x-ray lasers,J.Opt.Soc.Am,1977,67(4),438-448
    35.A.M.Steinberg and R.Y.Chiao.Tunneling delay times in one and two dimensions,Phys.Rev.A,1994,49(5),3283-3295
    36.C.F.Li.Comment on "Photonic tunneling time in frustrated total internal reflection",Phys.Rev.A,2002,65(6),066101
    37.A.E.Bernardini.The stationary phase vondition applicability to the study of tunnel effect,Mod.Phys.Lett.B,2005,19(18),883-888
    38.朱绮彪,李春芳,陈玺.双棱镜结构中透射光束的古斯汉欣位移,光学学报,2005,25(5),673-677
    39.J.Broe and O.Keller.Quantum-well enhancement of the Goos-Hanchen shift for p-polarized beams in a two-prism configuration,J.Opt.Soc.Am.A.2002,19(6),1212-1222
    40.C.F.Li.Negative Lateral Shift of a Light Beam Transmitted through a Dielectric Slab and Interaction of Boundary Effects,Phys.Rev.Lett.2003,91(13),133903
    41.J.A.Kong,B.L.Wu,and Y.Zhang,A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability, Microwave Opt. Technol. Lett. 2002, 33(2), 136-139
    42. M. Y. Li, X. Liu, J. L. Zhang et al. Rigorous analysis of the spatial dispersion effect in multilayer thin-film coatings, J. Opt. Soc. Am. A. 2007,24(8), 2328-2333
    1.顾畹仪,李国瑞.《光纤通信系统》,北京,北京邮电大学出版社,1999
    2.G.R Agrawal.《Fiber-optic communication systems》,New York,Wiley publishing,1997
    3.C.K.Madsen,J.H.Zhao.《Optical filter design and analysis:A signal processing approach》,New York,John Wiley& Sons,Inc.1999
    4.M.C.Larson,B.Pezeshki,Memberand J.S.Harris.Vertical Coupled-Cavity Microinterferometer on GaAs with Deformable-Membrane Top Mirror,IEEE.Photon.Technol.Lett.1995,7(4),382-384
    5.P.K.Petrov and N.M.Alford.Tunable dielectric resonator with ferroelectric element,Electron.Lett.2001,37(17),1066-1067
    6.C.Vandenbem,J.P.Vigneron and J.M.Vigoureux.Tunable band structures in uniaxial multilayer stacks,J.Opt.Soc.Am.B,2006,23(11),2366-2376
    7.L.M.Lunardi,D.J.Moss,S.Chandrasekhar et al.Tunable Dispersion Compensation at 40-Gb/s Using a Multicavity Etalon All-Pass Filter With NRZ,RZ,and CS-RZ Modulation,J.Light.Technol.2002,20(12),2136-2144
    8.N.M.B.Perney,J.J.Baumberg,F.Cattaneo et al.Broadband angular measurement of rectangular Photonic Crystal Superprisms,Porc.of SPIE,2005,5733,67-73
    9.顾培夫.《薄膜技术》,杭州,浙江大学出版社,1990
    10.J.C.Manifacier,J.Gasiot and J.P.Fillard.A simple method for the determination of the optical constants n,k and the thickness of a weakly absorbing thin film,J.Phys.E:Sci.Instrum.1976,9(11),1002-1004
    11.沈伟东,基于MOEMS的光学调制器的设计和制作,博士论文,浙江大学,2006
    12.李晓彤,岑兆丰.《几何光学·像差·光学设计》,杭州,浙江大学出版社,2003
    13.DAM.Khalil.Advances in optical filters,2nd Workshop on Teaching Photonics at Egyptian Engineering Faculties and Institutes,2000,1-24,New York
    14.D.Sadot and E.Boimovich.Tunable optical filters for dense WDM networks,IEEE.Commun.Magazine,1998,36(12),50-55
    15.E.Verluise,P.Tournois,V.Laude et al.Acousto-optic filter for femtosecond laser pulse shaping,gain narrowing and phase distortion compensation,CLEO,2000,442-443(Thursday morning)
    16.M.Kuznetsov,Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-divisionmultiplexed optical systems,J.Light.Technoi.1994,12(2),226-230
    17.Jianyu Liu,K.M.Johnson.Analog smectic C~* ferroelectric liquid crystal Fabry-Perot optical tunable filter,IEEE.Photon.Technol.Lett.1995,7(11),1309-1311
    18.吕玮阁.基于液晶法—珀腔和超棱镜色散的WDM薄膜器件的研究,硕士论文,浙江大学,2005
    19.谢毓章.《液晶物理学》,北京,科学出版社,1988
    20.B.Witzigmann,P.Regli and W.Fichtner.Rigorous electromagnetic simulation of liquid crystal displays,J.Opt.Soc.Am.A,1998,15(3),756-757
    21.王谦,何赛灵.液晶指向矢分布的模拟和比较研究,物理学报,2001,50(5),926-934
    22.鲁法珂.液晶显示器件的应用与宽视角膜的研究,硕士论文,浙江大学,2006
    23.D.W.Berreman.Optics in stratified and anisotropic media:4~* 4-matrix formulation,J.Opt.Soc.Am.1972,26(4),502-510
    24.D.W.Berreman.Optics in smoothly varying anisotropic planar structures- Application to liquid-crystal twist cells,J.Opt.Soc.Am.1973,63(11),1374-1380
    25.程实平,张凤山.用掩模分离法制备微型红外滤光片列阵的工艺研究,红外与毫米波学报,1994,13(2),109-112
    26.金波,多通道薄膜滤光片的设计、制备与测试,硕士论文,浙江大学,2005
    27.欧阳征标,朱骏,李景镇.两端有慢变结构的光于晶体的能带特性研究,光学学报,2002,22(5),612-615
    28.M.Gerken and D.A.B.Miller.Multilayer Thin-Film Stacks With Steplike Spatial Beam Shifting,J.Light.Technol.2004,22(2),612-618
    29.秦小芸,黄弼勤,陈海星等.多周期双啁啾镜结构的空间解波分复用器,物理学报,2004,53(11),3794-3799
    30.张福学.《现代压电学》,北京,科学出版社,2001
    31.R.Y.Guo,J.F.Wang and J.M.Povoa.Electrooptic properties and their temperature dependence in single crystals of lead barium niobate and strontium barium niobate,Materials Letters.2000,42(1-2),130-135
    32.康祥喆,叶辉.铁电钾钠铌酸锶钡薄膜电光性能的研究,物理学报,2006,55(9),4928-4933
    33.Z.R.Shen,H.Ye and C.L.Mak.Measurement of transverse electro-optic coefficient of Sr0.6Ba0.4Nb2O6 thin film grown on MgO substrate with different content of potassium ions,Thin solid films,2005,488(1-2),40-44
    34.陈军.《现代光学及技术(电磁篇)》,杭州,浙江大学出版社,1996
    35.C.K.Madsen,G.Lenz.Optical all-pass filters for phase response design with applications for dispersion compensation,IEEE.Photon.Technol.Lett.1998,10(7),994-996
    36.G.Lenz,B.J.Eggleton et al.Dispersive properties of optical filters for WDM systems,IEEE.J.Quan.Electron.1998,34(8),1390-1402
    37.陆巍,顾培夫,刘旭.密集波分复用薄膜滤光片的群延迟补偿设计,光学学报,2003,23(9),1123-1126
    1.R.Gamble and P.H.Lissberger.Reflection filter multilayers of metallic and dielectric thin films,Appl.Opt.1989,28(14),2838-2846
    2.J.S.Sheng and J.T.Lue.Ultraviolet narrow-band rejection filters composed of multiple metal and dielectric layers,Appl.Opt,1992,31(28),6117-6121
    3.X.Wang,H.Masumoto,Y.Someno,L.D.Chen and T.Hirai.Design and preparation of a 33-layer optical reflection filter of TiO2-SiO2 system,J.Vac.Sci.Technol.A.2000,18(3),933-937
    4.唐晋发,顾培夫,刘旭,李海峰.《现代光学薄膜技术》,杭州,浙江大学出版社,2006
    5.T.Augustsson.Proposal of a DMUX with a Fabry-Perot All-Reflection Filter-Based MMIMI Configuration,IEEE Photon.Technol.Lett.13(3),215-217
    6.J.S.Sheng,J.T.Lue and J.H.Tyan.Design criteria for band rejection filters made from multilayer of dielectric and ultrathin metal films,Appl.Opt.1991,30(13),1746-1748
    7.J.Szczyrbowski,K.Schmalzbauer and H.Haffmann.Optical Transmittance and Reflectance and Dynamic Current Density for Thin Metallic Films,Phys.Rev.B.1985,32(2),763-770
    8.M.Q.Tan,Y.C.Lin and D.Z.Zhao.Reflection filter with high reflectivity and narrow bandwidth,Appl.Opt.1997,36(4),827-830
    9.A.Thelen.Design of optical minus filters,J.Opt.Soc.Am.1971,61(3),365-369
    10.陈海星.波分复用系统中基于法布里-珀罗腔的光学薄膜滤波器研究,博士论文,浙江大学,2005
    11.李琳,赵岭等.用于多信道色散补偿的Gires-Tournois干涉仪的特性分析,光学学报,2002,22(12),1442-1446
    12.秦小芸.一维薄膜光子晶体理论与应用研究,硕士论文,浙江大学,2005
    13.N.Matuschek,F.X.Kartner,and U.Keller.Analytical Design of Double-Chirped Mirrors with Custom-Tailored Dispersion Characteristics,IEEE.J.Quan.Electron.1999,35(2),129-137
    14.Pelletier E,Macleod H A,"Interference filters with multiple peaks",J.Opt.Soc.Am.1982,72(6),683-687
    15.顾培大,杨毓铭,陈海星等.用于波分复用系统的多峰干涉滤光片,光子学报,2003,32(7),837-839
    16.Q.Qin,H.Lu,S.N.Zhu et al.Resonance transmission modes in dual-periodical dielectric multilayer films,Appl.Phys.Lett.2003,82(26),4654-4656
    17.顾培夫,秦小芸,黄弼勤.用薄膜光子晶体超晶格概念设计多峰滤光片,光学仪器,2004,26(2),27-32
    18.E.Ozbay,M.Bayindir,I.Bulu.Investigation of Localized Coupled-Cavity Modes in Two- Dimensional Photonic Bandgap Structures, IEEE. J. Quan. Electron. 2002,38(7), 837-843
    19. J. Zi, J. Wan and C. Zhang. Large frequency range of negligible transmission in one-dimensional photonic quantum well structures, Appl. Phys. Lett. 1998, 73(15), 2084-2086
    1.A.M.Steinberg and R.Y.Chiao.Tunneling delay times in one and two dimensions,Phys.Rev.A,1994,49(5),3283-3295
    2.S.Longhi.Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps,Phys.Rev.E,2001,64(3),037601
    3.L.Poirier,R.I.Thompson and A.Hache.Impossibility of negative group velocities in a periodic layer structure with or without loss,Opt.Communs.2005,250,258-265
    4.J.M.Bendickson,J.P.Dowling and M.Scalora.Analytic expressions for the electromagnetic mode density in finite,one-dimensional,photonic band-gap structures,Phys.Rev.E.1996,53(4),4107-4121
    5.C.W.Hsue and T.Tamir.Lateral displacement and distortion of beams incident upon a transmitting-layer configuration,J.Opt.Soc.Am.A,1985,2(6),978-988
    6.C.F.Li.Negative Lateral Shift of a Light Beam Transmitted through a Dielectric Slab and Interaction of Boundary Effects,Phys.Rev.Lett.2003,91(13),133903
    7.L.A.A.Read,M.Wong and G.E.Reesor.Displacement of an electromagnetic beam upon reflection from a dielectic slab,J.Opt.Soc.Am.1978,68(3),319-322
    8.M.V.Klibanov,P.E.Sacks and A.V.Tikhonravov.The phase retrieval problem(Topic Review),Inverse Problems,1995,11,1-28
    9.A.V.Tikhonravov,P.W.Baumeister and K.V.Popov.Phase properties of multilayers,Appl.Opt.1997,36(19),4382-4392
    10.D.R.Solli,C.F.McCormick,and R.Y.Chiao.Fast Light,Slow Light,and Phase Singularities:A Connection to Generalized Weak Values,Phys.Rev.Lett.2004,92(4),043601
    11.M.Kitano,T.Nakanishi and K.Sugiyama.Negative Group Delay and Superluminal Propagation:An Electronic Circuit Approach,IEEE.J.Select.Topics in Quan.Electron.2003,9(1),43-51
    12.M.A.Porras,R.Borghi and M.Santarsiero.Superluminality in Gaussian beams,Opt.Communs.2002,203,183-189
    13.G.Nimtz.Superluminal Signaling by Photonic Tunneling,IEEE.J.Select.Topics in Quan.Electron.2003,9(1),79-85
    14.C.Fietz and G.Shvets.Simultaneous fast and slow light in microring resonators,Opt.Lett.2007,32(24),3480-3482
    15.R.W.Boyd and P.Narum.Slow- and fast-light:fundamental limitations,J.Mod.Opt.2007,54(16-18),2403-2411
    16.L.G.Wang,N.H.Liu,Q.Lin and S.Y.Zhu.Superluminal propagation of light pulses:A result of interference,Phys.Rev.E.2003,68(6),066606
    17.L.G.Wang,N.H.Liu,Q.Lin and S.Y.Zhu.Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals,Phys.Rev.E.2004,70(1),016601
    18.M.W.Mitchell and R.Y.Chiao.Negative group delay and "fronts" in a causal system:An experiment with very low frequency bandpass amplifiers,Phys.Lett.A.1997,230,133-138
    19.K.Wynne.Causality and the nature of information,Opt.Communs.2002,209,85-100
    20.S.Y.Zhu and L.G.Wang.What causes the superluminal propagation of light pulses,Chinese Optics Letters.2003,1(1),47-49
    21.G.Nimtz.On supeduminal tunneling,Progr.Quan.Electron.2003,27,417-450
    22.A.Ranfagni,P.Fabeni,G.P.Pazzi et al.The question of the superluminal speed of information,Phys.Lett.A.2006,352,473-477
    23.H.Altug and J.Vuckovic.Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,Appl.Phys.Lett.2005,86,111102
    24.C.F.Li,Q.B.Zhu,G.Nimtz et al.Experimental observation of negative lateral displacements of microwave beams transmitting through dielectric slabs,Opt.Communs.2006,259,470-473
    25.卜涛.一维光子晶体光学特性的理论研究,硕士论文,西北大学,2003
    26.N.H.Liu,S.Y.Zhu,H.Chen and X.Wu.Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,Phys.Rev.E.2002,65(4),046607
    1.R.J.Barron.Path difference measurement using phase stepping with white light.J.Mod.Opt.2002,49(10),1717-1730
    2.官伟,孙伟民,苑立波.白光迈克尔逊干涉仪的产生、发展及应用,光电子技术与信息,2004,17(6),102
    3.唐锋.白光干涉法保偏光纤偏振耦合测试及其应用,博士论文,天津大学,2005
    4.张聪跃.光纤寄生偏振耦合白光干涉仪光学系统设计,硕士论文,天津大学,2004
    5.K.N.Joo and S.W.Kim.Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,Opt.Express.2006,14(13),5954-5960
    6.J.Schwider and L.Zhou.Dispersive interferometric profilometer.Opt.Lett.1994,19,995-997
    7.K.N.Joo and S.W.Kim.Refractive index measurement by spectrally resolved interferometry using a femtosecond pulse laser,Opt.Lett.2007,32(6),647-649
    8.C.Delisle and P.Cieio.Application de la modulation spectrale a la transmission de l'information,Can. J.Phys.1975,53,1047-1053
    9.S A.A.Chalabi,B.Culshaw and D.David.Partially coherent sources in interferometric sensors,Proc.1st Int.Conf.on optical fiber sensors,1983,132-135,London
    10.T.Bosselmann and R.Ulrich.High-accuracy position-sensing with fibre-coupled white-light interferometers,Proc.2nd Int Confon optical fiber sensors,1984,361-364,Berlin
    11.I.Gurov,P.Hlubina and V.Chugunov.Evaluation of spectral modulated interferograms using a Fourier transform and the iterative phase-locked loop method,Meas.Sci.Technol.2003,14,122-130
    12.R.Chlebus,P.Hlubina,D.Ciprian et al.Measurement of thin films using slightly dispersive spectral intefferometry,Proc.of SPIE,2007,6582,65821D
    13.P.Hlubina.White-light spectral interferometry to measure the effective thickness of optical elements of known dispersion,Acta Physica SIovaca,2005,55(4),387-393
    14.P.Hlubina,D.Ciprian,J.Lunacek et al.Thickness of SiO2 thin film on silicon wafer measured by dispersive white-light spectral interferometry,Appl.Phys.B.2006,84,511-516
    15.唐晋发,顾培夫,刘旭,李海峰.《现代光学薄膜技术》,杭州,浙江大学出版社,2006
    16.J.C.Manifacier,J.Gasiot and J.P.Fillard.A simple method for the determination of the optical constants n,k and the thickness of a weakly absorbing thin film,J.Phys.E:Sci.lnstrum.1976,9(11),1002-1004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700