用户名: 密码: 验证码:
大鼠前额叶皮层对应激状态下胃机能的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大鼠束缚-浸水应激致急性胃粘膜损伤的外周神经机制,众多文献获得的结果表明,胃运动机能亢进、胃酸分泌增多是2个主要因素。而胃运动机能亢进、胃酸分泌增多主要是由于应激过程中支配胃肠道的副交感神经活动加强导致的。支配胃肠道的副交感神经起源于延髓的迷走背核、疑核,而胃肠道的感觉神经直接投射到延髓的孤束核、最后区。因此,迷走背核、孤束核、最后区(这3个部位合称迷走复合体)和疑核便构成了调控胃肠机能的主要初级中枢。众所周知,在延髓以上调控胃肠机能的较高级中枢是下丘脑、杏仁复合体等部位。这些部位与胃肠之间的功能联系、纤维联系,以及在束缚-浸水应激过程中对胃肠机能的调控作用问题,已有较多文献报道,有些问题已基本研究清楚。哺乳动物调控胃肠机能的最高级中枢是大脑皮层,尤其是前额叶皮层。有文献报道,前额叶是唯一向下丘脑有直接投射的新皮层。我们研究室的研究结果显示,大鼠束缚-浸水应激过程中内侧前额叶皮层(主要是边缘前皮层PL和边缘下皮层IL)神经元的活动加强(Fos蛋白表达显著增多)。那么,边缘前皮层PL和边缘下皮层IL对胃运动机能、胃酸分泌机能有无调控作用?损伤这2个部位,束缚-浸水应激过程中胃运动机能和胃酸分泌机能有何变化?这些问题均未见文献报道。因此,设计了本研究方案,对这些问题进行了初步探讨。
     本研究分急性实验和慢性实验2部分。
     急性实验又包括:
     1)分别电刺激左侧PL和IL,观察胃运动的变化情况。刺激参数为:频率30Hz,强度0.2mA,波宽0.5ms,刺激持续时间5min。本实验共分为2组:PL组和IL组,用水囊法+BL-420E生物机能实验系统记录大鼠的胃运动曲线,以收缩波的频率、总时程、平均时程、总幅度、平均幅度、胃运动指数(5min内所有胃运动的(幅度×时程)之和)及收缩分数(总时程/5min×100%)为指标评估胃的运动机能,分别统计电刺激PL或IL前后胃运动的变化情况。结果显示:电刺激左侧PL或IL后,与刺激前相比,胃运动均无显著性变化。提示:正常大鼠麻醉状态下PL和IL对胃运动无调节作用。
     2)分别电刺激左侧PL和IL,观察胃酸分泌量的变化,同时记录呼吸频率和心率。刺激参数同1)小组,但刺激持续时间为10min。实验同样分为PL组和IL组,用灌流法收集胃液并用酸碱滴定法检测胃酸分泌量,以H+分泌量作为统计指标。灌流液的收集,以15min的收集液为1个样品。刺激前收集3个样品,取其平均值作为刺激前的胃酸分泌量,刺激后收集3个样品,分别与刺激前的结果进行比较,观察统计刺激前后胃酸分泌量的变化。结果显示:电刺激PL或IL后,与刺激前相比,胃酸分泌量均没有显著性差异。这一结果提示:正常大鼠麻醉状态下PL和IL对胃酸分泌无调节作用。
     上述2项结果表明:在正常生理状态下,大鼠内侧前额叶(mPFC)与延髓胃肠基本中枢之间可能不存在直接的调控关系,但也可能是麻醉掩盖了PL和IL的作用。
     慢性实验也包括2部分:
     1)电损毁大鼠PL、IL,观察束缚-浸水应激前及应激4h过程中胃运动的变化。损毁参数:阳极直流电,1.5mA,4s,2次。实验分四组:一组为假手术组,二组为损毁双侧PL和IL组,三组为单纯损毁双侧PL组,四组为单纯损毁双侧IL组。损毁后饲养96h,然后束缚-浸水应激并记录胃运动。统计指标同急性实验1)。结果显示:①束缚-浸水应激前,在清醒状态下,损毁组大鼠的胃运动各指标与假手术组相比均无显著性差异。提示:大鼠mPFC在正常生理状态下不参与胃功能活动的调控,与是否麻醉无关;②损毁双侧PL和IL组的大鼠在应激过程中的胃运动,无论是与自身应激前相比,还是与假手术组应激过程中相比,胃运动机能均受到显著抑制;单纯损毁双侧IL组大鼠在应激第4h的胃运动总幅度,与假手术组相比显著降低,而单纯损毁双侧PL组则无显著性变化。提示:大鼠PL和IL对束缚-浸水应激过程中的胃运动具有一定的调控作用。
     2)电损毁大鼠PL和IL,观察束缚-浸水应激4h后大鼠胃酸分泌量的变化。损毁参数与1)相同。实验分2组:一组为假手术组,二组为损毁双侧PL和IL组。采用幽门结扎法收集胃液,并检测胃酸分泌量。以胃液量、H+分泌量和H+浓度作为统计指标,比较假手术组和损毁组大鼠在束缚-浸水应激4h后胃液分泌量的差异。结果:两组之间各指标均无显著性差异。提示:大鼠PL和IL对束缚-浸水应激状态下的胃酸分泌无明显的调节作用。
     上述2项结果表明:PL和IL都在一定程度上参与调节束缚-浸水应激过程中的胃运动,IL对胃运动的调控作用更显著一些,且二者协同的作用更大一些,从而在应激过程中引起胃运动亢进,而对胃壁腺细胞的活动无明显调节作用。
Numerous studies showed that, gastric motility hyperfunction and gastric acid over-secretionwere two key factors of gastric mucosal injury induced by the restraint water-immersion stressin peripheral in rats. The two factors were incited by the parasympathetic hyperactivity in stress.The parasympathetic nerves innervating the gastrointestinal tract are mainly originated from thedorsal motor nucleus of the vagus (DMV) and the nucleus ambiguous (NA) in the medullaoblongata, and the gastrointestinal sensory nerves are mostly projected to the nucleus of solitarytract (NTS) and area postrema (AP). So, the DMV, NTS, AP (the three parts are called thedorsal vagal complex, DVC) and NA constitute the primary center of the gastrointestinalfunction. As well we know, the senior center regulating the gastrointestinal function is in thehypothalamus and amygdaloid complex. Large number of papers reported the fibers linkbetween the two centers and gastrointestinal tract, and the regulatory mechanism in the restraintwater-immersion stress. But the most senior central pathway is not clear. The prefrontal cortexis the only cortex projecting directly to hypothalamus, and activities of the prefrontal cortex(especially PL and IL) neurons were increased during the restraint water-immersion stress in therat (the results from our lab). Therefore it can be surmised that the prefrontal cortex mayberegulate gastric function during the restrain water-immersion stress in rats. In this study, it isplaned to explore the function of the prefrontal cortex from the point of gastric motility andgastric acid secretion.
     The article was composed of acute experiments and chronic experiments.
     The acute experiments:
     1) The left PL and IL were electrically stimulated respectively to monitor the changes ofgastric motility. The parameters of stimulation were square-wave pulses of 30Hz, 0.2mA, 0.5msand the stimulating time lasted 5min. To do this, two groups of experiments were performed:PL group and IL group. Gastric motility curves were recorded with intraluminal balloons andthe Physiological Signal Recording System(BL-420E). The frequency, average duration, total duration, average amplitude, total amplitude, index of motility and contraction fraction of thegastric contraction waves were taken as the indexes to estimate the gastric motility function.The above indexes within 5min before and after stimulation were analyzed. The results showedthere was no significant effect on gastric motility no matter PL or Il was electrically stimulated.It prompted us that PL and IL have no regulation on gastric motility in normal rats underanesthesia.
     2) PL and IL were electrically stimulated respectively to monitor the changes of gastric acidsecretion, respiratory rate and heart rate. The parameters of stimulation and the groups ofexperiments were the same as 1), but the stimulating time lasted 10min. Gastric acid in whichthe amounts of H+was taken as index was collected with perfusion technique and was detectedby acid-base titration. Gastric juice was collected every 15min for three times before and afterstimulation respectively. The average amounts of H+before stimulation was compared with thedata after stimulation. The results showed that gastric acid secretion had no significant changesbefore and after stimulation. It was supposed that PL and IL have no regulation on gastric acidsecretion in normal rats under anesthesia
     The upper two results showed that there were no relationships between mPFC andgastrointestinal primary center, but anesthesia might obscure the role of the PL and IL under thenormal physiological state.
     The chronic experiment:
     1) Electrolytic lesions were placed in PL, and IL. Changes of gastric motility before andduring 4h restraint water-immersion stress were monitored. PL and IL were destroyed with DCcurrent (1.5mA, 4s) two times. Four groups of experiments, including group of control, groupof bilateral PL and IL lesions, group of bilateral PL lesions and group of bilateral IL lesions,were performed. Four days later, the rats were restrained, and were immersed in cold water(21±1℃) for 4h. Gastric motility was recorded at the same time. Statistical indexes were thesame as the acute experiments 1). The results showed that:①Before the restraintwater-immersion stress, there were no significant differences in all gastric motility indexesbetween the control group and the experimental groups under the awake state. It could beconcluded that mPFC did not participate in the regulation of functional activity of the stomach under normal physiological conditions, and anesthesia had no influence.②The gastric motilityof the bilateral PL and IL lesions group was significantly inhibited during the restraintwater-immersion stress, compared no matter with before stress or with the control group.Comparing with the control group, the bilateral IL lesions group had a significant reduction ofthe total amplitude in the fourth hour, but there were no significant changes in the group ofbilateral PL lesions. It was supposed that PL and IL regulate gastric motility under the restraintwater-immersion stress in rats.
     2) Electrolytic lesions were placed in PL and IL, and changes of gastric acid secretion weremonitored also under the restraint water-immersion stress. The parameters of stimulation werethe same as 1). Two groups of experiments, including group of bilateral PL and IL lesions,group of its control. Pylorus ligation method was used to collect gastric juice, and thesupernatant after centrifugation was got for acid-base titration. Gastric juice volume, amountsof H+and concentration of H+were taken as the statistical indexes. The results showed thatthere were no significant differences between the tow groups. It was supposed that PL and ILhave no regulation on gastric acid secretion under the restraint water-immersion stress.
     It could be concluded that PL and IL, to some extent, were involved in regulating the gastricmotility during the restraint water-immersion stress, and the function of IL is prior and therewere synergistic effects between PL and IL. PL and IL have no regulatory effect on gastricgland cells.
引文
[1] Rose J E, Woolsey C N. The orbitofrontal cortex and its connections with the mediodorsal nucleus inrabbit, sheep and cat[J]. Res Publ Assoc Nerv Ment Dis, 1948, 27: 210-232.
    [2] Akert K, Orth O S, Harlow H F, et al. Learned behavior of Rhesus monkeys following neonatal bilateralprefrontal lobotomy[J]. Science, 1960, 132(3444): 1944-1945.
    [3] Leonard C M. The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II.Efferent connections[J]. Brain Res, 1969, 12(2): 321-343.
    [4] Uylings H B, Groenewegen H J, Kolb B. Do rats have a prefrontal cortex?[J]. Behav Brain Res, 2003,146(1-2): 3-17.
    [5] Preuss T M, Kaas J H. TM, Kaas JH. Human brain evolution. In: Zigmond MJ, Bloom FE, Landis SC,Roberts JL, Squire LR, editors[J]. Funda-mental of neuroscience. San Diego, CA: Academic Press,1999(p): 1283–1311.
    [6] Beckstead R M. An autoradiographic examination of corticocortical and subcortical projections of themediodorsal-projection (prefrontal) cortex in the rat[J]. J Comp Neurol, 1979, 184(1): 43-62.
    [7]任惠民,胡海涛,张可仁.扣带区的传入纤维联系[J].解剖学报,1985(02):151-154+230.
    [8]包新民,邝国陶.大鼠大脑皮质到前额叶皮质的传入联系——WGA-HRP法研究[J].解剖学报,1986(04):374-379+451.
    [9]延鹏翔,郭连魁,王绍坤,等.大鼠额前皮质的皮质-皮质传入纤维联系——CB-HRP及HRP法研究[J].山西医学院学报,1992(01):3-7+97.
    [10]张跃明,黄绍明,潘曦东,等.大鼠端脑皮质到前额叶皮质的传入投射(FG逆行追踪法研究)[J].广西医科大学学报,1998(03):25-28.
    [11]Krushel L A, van der Kooy D. Visceral cortex: integration of the mucosal senses with limbic informationin the rat agranular insular cortex[J]. J Comp Neurol, 1988, 270(1): 39-54, 62-33.
    [12]Divac I, Kosmal A, Bjorklund A, et al. Subcortical projections to the prefrontal cortex in the rat asrevealed by the horseradish peroxidase technique[J]. Neuroscience, 1978, 3(9): 785-796.
    [13]Saper C B. Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basalnucleus[J]. J Comp Neurol, 1984, 222(3): 313-342.
    [14]包新民,邝国陶.大鼠间脑和皮质下端脑到前额叶皮质的传入投射——WGA-HRP法研究[J].解剖学报,1986(02):143-149+226.
    [15]张跃明,黄绍明,刘淑芬,等.大鼠皮质下端脑到前额叶皮质的传入投射(FG逆行追踪法)[J].广西医科大学学报,1998(02):34-36.
    [16]Sarter M, Markowitsch H J. Collateral innervation of the medial and lateral prefrontal cortex byamygdaloid, thalamic, and brain-stem neurons[J]. J Comp Neurol, 1984, 224(3): 445-460.
    [17]Krettek J E, Price J L. Projections from the amygdaloid complex to the cerebral cortex and thalamus inthe rat and cat[J]. J Comp Neurol, 1977, 172(4): 687-722.
    [18]Porrino L J, Crane A M, Goldman-Rakic P S. Direct and indirect pathways from the amygdala to thefrontal lobe in rhesus monkeys[J]. J Comp Neurol, 1981, 198(1): 121-136.
    [19]Pearson R C, Gatter K C, Brodal P, et al. The projection of the basal nucleus of Meynert upon theneocortex in the monkey[J]. Brain Res, 1983, 259(1): 132-136.
    [20]宋岳涛,郭连魁.大鼠下边缘皮质的皮质下端脑、间脑、脑干的传入投射[J].解剖学杂志,1998(03):224-228.
    [21]陈峡,黄绍明,陈婷婷,等.荧光金逆行追踪法研究大鼠屏状核的传入投射纤维联系[J].广西医学,2009(05):633-635.
    [22]Crick F C, Koch C. What is the function of the claustrum?[J]. Philos Trans R Soc Lond B Biol Sci, 2005,360(1458): 1271-1279.
    [23]熊克仁,郑培敏,熊克品.大鼠屏状核的传入联系[J].四川解剖学杂志,1996(01):9-11.
    [24]Laroche S, Davis S, Jay T M. Plasticity at hippocampal to prefrontal cortex synapses: dual roles inworking memory and consolidation[J]. Hippocampus, 2000, 10(4): 438-446.
    [25]Thierry A M, Gioanni Y, Degenetais E, et al. Hippocampo-prefrontal cortex pathway: anatomical andelectrophysiological characteristics[J]. Hippocampus, 2000, 10(4): 411-419.
    [26]Swanson L W. A direct projection from Ammon's horn to prefrontal cortex in the rat[J]. Brain Res, 1981,217(1): 150-154.
    [27]Jay T M, Glowinski J, Thierry A M. Selectivity of the hippocampal projection to the prelimbic area of theprefrontal cortex in the rat[J]. Brain Res, 1989, 505(2): 337-340.
    [28]Verwer R W, Meijer R J, Van Uum H F, et al. Collateral projections from the rat hippocampal formationto the lateral and medial prefrontal cortex[J]. Hippocampus, 1997, 7(4): 397-402.
    [29]包新民,邝国陶.大鼠丘脑背内侧核的传出联系——WGA-HRP法研究[J].解剖学报,1985(03):259-263.
    [30]延鹏翔,郭连魁.大鼠额前皮质的丘脑传入纤维联系[J].解剖学杂志,1994(04):353-357.
    [31]Berendse H W, Groenewegen H J. Restricted cortical termination fields of the midline and intralaminarthalamic nuclei in the rat[J]. Neuroscience, 1991, 42(1): 73-102.
    [32]Groenewegen H J, Berendse H W. The specificity of the 'nonspecific' midline and intralaminar thalamicnuclei[J]. Trends Neurosci, 1994, 17(2): 52-57.
    [33]Jones E G, Leavitt R Y. Retrograde axonal transport and the demonstration of non-specific projections tothe cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey[J]. J CompNeurol, 1974, 154(4): 349-377.
    [34]Shibata H. Topographic organization of subcortical projections to the anterior thalamic nuclei in the rat[J].J Comp Neurol, 1992, 323(1): 117-127.
    [35]张跃明,黄绍时,潘曦东,等.大鼠间脑到前额叶皮质的传入投射——FG逆行追踪法[J].广东解剖学通报,1998(01):21-26+57.
    [36]张凤真,徐铁军,刘露霞.大鼠中脑中央灰质与前脑结构的联系——HRP逆、顺行追踪研究[J].徐州医学院学报,1992(02):79-84+157-158.
    [37]延鹏翔,郭连魁.大鼠脑干中缝核群向额前皮质的传入投射──HRP法研究[J].神经解剖学杂志,1995(01):56-60+107.
    [38]李刚,纪蒙蒙,刘慧,等.氯胺酮对大鼠蓝斑核和内侧前额叶皮质c-Fos蛋白表达的影响[J].中国疼痛医学杂志,2012(02):99-103.
    [39]包新民,邝国陶.大鼠蓝斑到前额叶皮质、海马、丘脑、小脑和脊髓的分支投射——荧光素双标记法研究[J].解剖学报,1985(04):359-366+449.
    [40]包新民,邝国陶.大鼠脑干到前额叶皮质的传入投射——WGA-HRP法研究[J].解剖学报,1986(01):40-47+116.
    [41]延鹏翔,郭连魁,阎八一.大鼠额前皮质的脑干传入纤维联系[J].解剖学杂志,1993(05):405-409.
    [42]Vertes R P. Differential projections of the infralimbic and prelimbic cortex in the rat[J]. Synapse, 2004,51(1): 32-58.
    [43]Groenewegen H J, Uylings H B. The prefrontal cortex and the integration of sensory, limbic andautonomic information[J]. Prog Brain Res, 2000, 126: 3-28.
    [44]Barbas H. Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontalcortices[J]. Brain Res Bull, 2000, 52(5): 319-330.
    [45]Goldman-Rakic P S. Circuitry of the frontal association cortex and its relevance to dementia[J]. ArchGerontol Geriatr, 1987, 6(3): 299-309.
    [46]Takagishi M, Chiba T. Efferent projections of the infralimbic (area 25) region of the medial prefrontalcortex in the rat: an anterograde tracer PHA-L study[J]. Brain Res, 1991, 566(1-2): 26-39.
    [47]Sesack S R, Deutch A Y, Roth R H, et al. Topographical organization of the efferent projections of themedial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgarisleucoagglutinin[J]. J Comp Neurol, 1989, 290(2): 213-242.
    [48]Hurley K M, Herbert H, Moga M M, et al. Efferent projections of the infralimbic cortex of the rat[J]. JComp Neurol, 1991, 308(2): 249-276.
    [49]Berendse H W, Galis-de Graaf Y, Groenewegen H J. Topographical organization and relationship withventral striatal compartments of prefrontal corticostriatal projections in the rat[J]. J Comp Neurol, 1992,316(3): 314-347.
    [50]Room P, Russchen F T, Groenewegen H J, et al. Efferent connections of the prelimbic (area 32) and theinfralimbic (area 25) cortices: an anterograde tracing study in the cat[J]. J Comp Neurol, 1985, 242(1):40-55.
    [51]Vertes R P. Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, withemphasis on nucleus reuniens[J]. J Comp Neurol, 2002, 442(2): 163-187.
    [52]Fuster J M. Network memory[J]. Trends Neurosci, 1997, 20(10): 451-459.
    [53]Goldman-Rakic P S, Selemon L D, Schwartz M L. Dual pathways connecting the dorsolateral prefrontalcortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey[J].Neuroscience, 1984, 12(3): 719-743.
    [54]Vertes R P, Hoover W B, Szigeti-Buck K, et al. Nucleus reuniens of the midline thalamus: link betweenthe medial prefrontal cortex and the hippocampus[J]. Brain Res Bull, 2007, 71(6): 601-609.
    [55]唐晓伟,孟庆元.大鼠下丘脑室旁核与终纹床核及前额叶皮质间纤维联系的研究[J].生物学杂志,2010(05):43-45.
    [56]Ross C A, Ruggiero D A, Reis D J. Afferent projections to cardiovascular portions of the nucleus of thetractus solitarius in the rat[J]. Brain Res, 1981, 223(2): 402-408.
    [57]Saper C B. Convergence of autonomic and limbic connections in the insular cortex of the rat[J]. J CompNeurol, 1982, 210(2): 163-173.
    [58]Terreberry R R, Neafsey E J. Rat medial frontal cortex: a visceral motor region with a direct projection tothe solitary nucleus[J]. Brain Res, 1983, 278(1-2): 245-249.
    [59]Terreberry R R, Neafsey E J. The rat medial frontal cortex projects directly to autonomic regions of thebrainstem[J]. Brain Res Bull, 1987, 19(6): 639-649.
    [60]van der Kooy D, Koda L Y, McGinty J F, et al. The organization of projections from the cortex, amygdala,and hypothalamus to the nucleus of the solitary tract in rat[J]. J Comp Neurol, 1984, 224(1): 1-24.
    [61]Van Bockstaele E J, Pieribone V A, Aston-Jones G. Diverse afferents converge on the nucleusparagigantocellularis in the rat ventrolateral medulla: retrograde and anterograde tracing studies[J]. JComp Neurol, 1989, 290(4): 561-584.
    [62]Moga M M, Herbert H, Hurley K M, et al. Organization of cortical, basal forebrain, and hypothalamicafferents to the parabrachial nucleus in the rat[J]. J Comp Neurol, 1990, 295(4): 624-661.
    [63]Floyd N S, Price J L, Ferry A T, et al. Orbitomedial prefrontal cortical projections to distinct longitudinalcolumns of the periaqueductal gray in the rat[J]. J Comp Neurol, 2000, 422(4): 556-578.
    [64]Au-Young S M, Shen H, Yang C R. Medial prefrontal cortical output neurons to the ventral tegmentalarea (VTA) and their responses to burst-patterned stimulation of the VTA: neuroanatomical and in vivoelectrophysiological analyses[J]. Synapse, 1999, 34(4): 245-255.
    [65]Carr D B, Sesack S R. Projections from the rat prefrontal cortex to the ventral tegmental area: targetspecificity in the synaptic associations with mesoaccumbens and mesocortical neurons[J]. J Neurosci,2000, 20(10): 3864-3873.
    [1]寿天德主编.神经生物学(第2版)[M].北京:高等教育出版社,2006.
    [2] Floyd N S, Price J L, Ferry A T, et al. Orbitomedial prefrontal cortical projections tohypothalamus in the rat[J]. J Comp Neurol, 2001, 432(3): 307-328.
    [3] Fernandes K B, Tavares R F, Pelosi G G, et al. The paraventricular nucleus ofhypothalamus mediates the pressor response to noradrenergic stimulation of the medialprefrontal cortex in unanesthetized rats[J]. Neurosci Lett, 2007, 426(2): 101-105.
    [4] Terreberry R R, Neafsey E J. The rat medial frontal cortex projects directly toautonomic regions of the brainstem[J]. Brain Res Bull, 1987, 19(6): 639-649.
    [5] Terreberry R R, Neafsey E J. Rat medial frontal cortex: a visceral motor region with adirect projection to the solitary nucleus[J]. Brain Res, 1983, 278(1-2): 245-249.
    [6] Neafsey E J, Hurley-Gius K M, Arvanitis D. The topographical organization of neuronsin the rat medial frontal, insular and olfactory cortex projecting to the solitary nucleus,olfactory bulb, periaqueductal gray and superior colliculus[J]. Brain Res, 1986, 377(2):261-270.
    [7] Heidbreder C A, Groenewegen H J. The medial prefrontal cortex in the rat: evidence fora dorso-ventral distinction based upon functional and anatomical characteristics[J].Neurosci Biobehav Rev, 2003, 27(6): 555-579.
    [8] Berendse H W, Groenewegen H J. Restricted cortical termination fields of the midlineand intralaminar thalamic nuclei in the rat[J]. Neuroscience, 1991, 42(1): 73-102.
    [9] Ongur D, Price J L. The organization of networks within the orbital and medialprefrontal cortex of rats, monkeys and humans[J]. Cereb Cortex, 2000, 10(3): 206-219.
    [10] Ray J P, Price J L. The organization of the thalamocortical connections of themediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortextopography[J]. J Comp Neurol, 1992, 323(2): 167-197.
    [11] Zhang Y Y, Zhu W X, Cao G H, et al. c-Fos expression in the supraoptic nucleus is themost intense during different durations of restraint water-immersion stress in the rat[J].Journal of Physiological Sciences, 2009, 59(5): 367-375.
    [12] Zimmermann M. Ethical considerations in relation to pain in animal experimentation[J].Acta Physiol Scand Suppl, 1986, 554: 221-233.
    [13] Schilling J, Nurnberger F. Dynamic changes in the immunoreactivity of neuropeptidesystems of the suprachiasmatic nuclei in golden hamsters during the sleep-wake cycle[J].Cell Tissue Res, 1998, 294(2): 233-241.
    [14] Tache Y, Yang H, Kaneko H. Caudal raphe-dorsal vagal complex peptidergic projections:role in gastric vagal control[J]. Peptides, 1995, 16(3): 431-435.
    [15] Rogers R C, McTigue D M, Hermann G E. Vagal control of digestion: modulation bycentral neural and peripheral endocrine factors[J]. Neurosci Biobehav Rev, 1996, 20(1):57-66.
    [16]程世斌,卢光启.迷走神经背核的研究进展[J].生理科学进展,1996(01):13-18.
    [17] Fu R G, Yuan H Z, Wang L, et al. [Expression of ghrelin and its receptor GHS-R in thehypothalamus and gastrointestinal tract in rats with chronic renal failure][J]. Nan FangYi Ke Da Xue Xue Bao, 2011, 31(1): 96-99.
    [18] Jia Y D, Liu C Q, Tang M, et al. Expression of motilin in the hypothalamus and theeffect of central erythromycin on gastric motility in diabetic rats[J]. Neurosci Bull, 2007,23(2): 75-82.
    [19] Zhang J, Liu S, Tang M, et al. Optimal locations and parameters of gastric electricalstimulation in altering ghrelin and oxytocin in the hypothalamus of rats[J]. Neurosci Res,2008, 62(4): 262-269.
    [20] Asakawa A, Fujimiya M, Niijima A, et al. Parathyroid hormone-related protein has ananorexigenic activity via activation of hypothalamic urocortins 2 and 3[J].Psychoneuroendocrinology, 2010, 35(8): 1178-1186.
    [21] Banihashemi L, Rinaman L. Repeated brief postnatal maternal separation enhanceshypothalamic gastric autonomic circuits in juvenile rats[J]. Neuroscience, 2010, 165(1):265-277.
    [22]陆长亮.大鼠视上核对胃机能的调控作用及其机制的研究[D].山东师范大学,2011.
    [23] Fernandes K B, Tavares R F, Pelosi G G, et al. The paraventricular nucleus ofhypothalamus mediates the pressor response to noradrenergic stimulation of the medialprefrontal cortex in unanesthetized rats[J]. Neuroscience Letters, 2007, 426(2): 101-105.
    [24] Uylings H B, Groenewegen H J, Kolb B. Do rats have a prefrontal cortex?[J]. BehavBrain Res, 2003, 146(1-2): 3-17.
    [25] Hurley K M, Herbert H, Moga M M, et al. Efferent projections of the infralimbic cortexof the rat[J]. Journal of Comparative Neurology, 1991, 308(2): 249-276.
    [26] Powell D A, Watson K, Maxwell B. Involvement of subdivisions of the medialprefrontal cortex in learned cardiac adjustments in rabbits[J]. Behavioral Neuroscience,1994, 108(2): 294-307.
    [27] Tavares R F, Antunes-Rodrigues J, de Aguiar Correa F M. Pressor effects of electricalstimulation of medial prefrontal cortex in unanesthetized rats[J]. Journal ofNeuroscience Research, 2004, 77(4): 613-620.
    [28] Vertes R P. Interactions among the medial prefrontal cortex, hippocampus and midlinethalamus in emotional and cognitive processing in the rat[J]. Neuroscience, 2006,142(1): 1-20.
    [29] Hurley-Gius K M, Neafsey E J. The medial frontal cortex and gastric motility:microstimulation results and their possible significance for the overall pattern oforganization of rat frontal and parietal cortex[J]. Brain Research, 1986, 365(2): 241-248.
    [30] Powell D A, Watson K, Maxwell B. Involvement of subdivisions of the medialprefrontal cortex in learned cardiac adjustments in rabbits[J]. Behav Neurosci, 1994,108(2): 294-307.
    [31] Tavares R F, Antunes-Rodrigues J, de Aguiar Correa F M. Pressor effects of electricalstimulation of medial prefrontal cortex in unanesthetized rats[J]. J Neurosci Res, 2004,77(4): 613-620.
    [32] Burns S M, Wyss J M. The involvement of the anterior cingulate cortex in bloodpressure control[J]. Brain Res, 1985, 340(1): 71-77.
    [33] Owens N C, Sartor D M, Verberne A J. Medial prefrontal cortex depressor response: roleof the solitary tract nucleus in the rat[J]. Neuroscience, 1999, 89(4): 1331-1346.
    [34] Verberne A J. Medullary sympathoexcitatory neurons are inhibited by activation of themedial prefrontal cortex in the rat[J]. Am J Physiol, 1996, 270(4 Pt 2): R713-719.
    [35] Owens N C, Verberne A J. Regional haemodynamic responses to activation of themedial prefrontal cortex depressor region[J]. Brain Res, 2001, 919(2): 221-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700