用户名: 密码: 验证码:
钢筋混凝土受弯构件动力参数识别和损伤诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提出本研究的意图是系统的动力性能研究及其应用,该研究可以概括为系统仿真和系统动力测试两部分,前者主要是理论研究,比如系统的动力模型、运动方程和解答,后者主要围绕实验展开,比如结构动力测试技术,系统参数识别方法。文章结合这两方面的问题展开,并着重在信号处理原理,参数识别方法上进行了深入探讨,对钢筋混凝土受弯构件进行了动力测试,依据测试数据识别得到结构的动力参数,总结测试技术和结构动力性能两方面的规律。研究的主要工作简述如下:
     对钢筋混凝土受弯构件的分级静力加卸载性能进行了细致测试,得到构件随荷载增加刚度下降的真实变化曲线,结合相关研究推测构件弯曲刚度函数的主要特征,为理论研究和实际应用提供基本事实依据。首先只要当前荷载不大于结构经历过的最大荷载,受弯构件的荷载-挠度关系基本符合线性特征,依据动力测试数据识别结构动力参数,一般构件在荷载-挠度曲线上的非线性都比较弱,假设的结构模型与测试数据不符合时,多考虑其以外的其他因素,其次构件开裂截面上刚度下降所影响的区域也往往较小。
     从傅立叶级数推导出离散傅立叶变换(DFT)表达式,对DFT物理意义进行了清晰完整的解释,采用不同的DFT表达式计算信号频谱时,只需相应调整频谱系数和频域坐标。在原理上澄清了频谱的对称性质,尽管有效谱线数N/2这个笼统的数字一般不会遗漏关键谱线,但有可能影响到对其他相关问题的理解,比如在频域计算过程中,会混淆数量关系;在讨论DFT物理意义的基础上进一步讨论了定频的改进方法:细化频谱分析。同时由理论推导发现了细化频谱与连续矩形窗频谱有极大相似之处,以连续矩形窗频谱曲线为样板,提出了一般保守信号细化频谱的量化特征,并在解决密集频率频谱的判定和分离的问题中得到应用。
     通过细化频谱分析识别信号的频率和初相位,利用DFT的重要性质:离散卷积和反卷积原理。提出一种从自由衰减响应(FDR)中提取阻尼特性的新方法,本方法在对阻尼特性进行提取之前不需要对阻尼模型进行假设,提取FDR中各频率谐波的振幅随时间变化的时域序列,能够更加真实的揭示系统的阻尼特性,该方法主要对独立频率频谱比较适用。对于密集频率频谱,参考离散反卷积方法得到的识别结果,设定谐波参数范围和步长,把这些参数循环代入指定理论信号表达式中,寻找能使理论信号与实验信号的频域曲线最相近的参数组合确定为最优结果,实现了只用结构的响应信号识别系统模态参数的预想。
     对钢筋混凝土框架、普通钢筋混凝土简支梁和组合梁进行了动力实验,依据对实验测试数据的计算结果,讨论了不同测试条件对测试结果的影响,总结了动力测试技术和结构的动力性能两方面的规律;在用动力方法对结构进行损伤诊断时,得到了模态参数随结构损伤的变化规律:各频率随损伤增加不断下降,其中高频的下降量较大,阻尼的指数衰减系数,在正常使用阶段也有随损伤增加而增加的趋势,高阶模态的趋势更大。频率和阻尼对判断结构的状态都有一定指示作用,而模态振型可以帮助判断重复模态。
The purpose of this dissertation is to solve the problems associated with dynamic performance of the system and its application. This study can be summarized as two parts:system simulation and system tests. The former part is mainly concerned with theoretical research, such as the dynamic model of the system, the establishment and the solution of the equation of motion. The latter part is mainly concerned with the experimentation, such as the test of structural dynamic characteristics, the system identification of structures. Two aspects are all discussed in the dissertation. Such as: the principle of digital signal processing (DSP) and the methods of parameters identification. Dynamic tests were carried out on reinforced concrete (RC) flexural members. According to the dynamic parameters of the members obtained from measured vibration responses, two aspects of the laws, as dynamic testing technique and structural dynamic performance, were summed up. The main works of the dissertation are presented as follows:
     The loading-unloading performances were tested in detail on RC flexural member. The curves were gotten that described the changed trend of flexural stiffness with increasing load. The main features of flexural stiffness function were speculated as basic facts to support theoretical research and practical application. Firstly, as long as the current load is not greater than the maximum value of load that the member has been subjected to, load-deflection relationship of bending member will be in line with linear characteristics. While to identify the structural dynamic parameters based on dynamic measured data, it should be aware that non-linear of the load-deflection curve is very weak, the other factors will be considered in the case of conflict between the assumed structure model and the test data. Secondly, the area where the stiffness reduces due to cracking cross-section of member also tend to be smaller.
     The discrete Fourier transform (DFT) was deduced from the Fourier series expression. And then the physical significance of DFT was explained clearly and completely. When the signal spectrum is calculated using the type of DFT expression, the spectral coefficients and the frequency domain coordinates need be adjusted correspondingly only. The symmetrical property of the spectrum was described in principle. Key spectral lines would not be missed generally in according to the general number N/2be considered as effective spectral lines. But the understanding of the related issues is likely to be affected. Such as the quantity relations might be confused in the process of calculation in frequency domain. Base on the discussion of DFT, the improved method that would visually extract the frequency as better peak of the spectrum, zoom spectrum analysis, was further discussed here. While it was discovered that a single frequency harmonic zoom spectrum and a rectangle window spectrum was very similar. Based on this law, the digital signal included several close frequency harmonics can be identified. Furthermore, Harmonic parameters can be extracted from the most close frequency digital signal.
     Based on the identification of frequency and the initial phase using zoom spectral analysis and the important properties of the DFT. Discrete convolution and deconvolution principle, a new method was proposed for identifying the damping from free decay response (FDR) without dependency on a prior knowledge of damping model. The time sequence can be identified by discrete deconvolution technique which can be employed to reflect the changes of harmonic amplitude. The method is an excellent tool for the first estimation attempts. However, frequency resolution, leakage, coherence dropout at resonance, and the other factors make the peak amplitude susceptible to error and do not calculate the most accurate data. In that case, in according to the first results the appropriate parameter range and step size were selected for loop calculation. Next, in turn, these parameters would be substituted into the specified theoretical signal expression, the optimal results were determined on the principle to make spectrum curve of theoretical signal fit best with that of the experimental signal. As the original expectation, it is implemented that system parameters are identified using output data only.
     Dynamic tests on RC frame, RC simply supported beam and composite beam have been performed to identify the system parameters using these measurements. The influences of test conditions were discussed. And the laws of dynamic testing techniques and the structural dynamic performance were summed up. When a structure is done by a damage diagnosis with the modal method, it can be listed below that Modal parameters change the rules:the frequencies will reduce while the damage of structure increases, meanwhile exponential decay coefficients is on the trend of increasing. The two parameters all have a larger trend in the high frequency harmonic. The frequency and damping are likely to be useful for detecting damage in RC structure. However modal shapes only can be used to determine the repetitive mode.
引文
[1]沃德·海伦,斯蒂芬·拉门兹,波尔·萨斯.模态分析理论与实验.白化同,郭继忠译.北京:北京理工大学出版社.2001
    [2]李德葆,陆秋海.实验模态分析及其应用.北京:科学出版社,2001
    [3]易伟建.工程结构损伤诊断的动力学方法研究综述.湖南城建高等专科学校学报,1999,8(3):1-6
    [4]周奎,王琦,刘卫东等.土木工程结构健康监测的研究进展综述.工业建筑,2009,39(3):96-102
    [5]谢献忠,易伟建,王修勇等.结构损伤诊断与系统时域辨识研究综述.中国安全科学学报,2008,18(6):110-115
    [6]大久保信行(日).机械模态分析.尹传家译。上海:上海交通大学出版社.1985
    [7]中华人民共和国住房和城乡建设部.混凝土结构设计规范(GB 50010-2010).北京:中国建筑工业出版社,2010
    [8]中交公路规划设计院.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTGD62-2004).北京:人民交通出版社,2004
    [9]刘慕广.两类大长细比桥梁构件的风振特性研究:[湖南大学博士学位论文].长沙:湖南大学,2008
    [10]陈龙珠,梁发云,宋春雨等.防灾工程学导论.北京:中国建筑工业出版社,2006
    [11]李偉翔.超高層建築結構之振勤特性識別:[淡江大學硕士学位论文].台北:淡江大學,2010
    [12]倪振华.振动力学.西安:西安交通大学出版社,1989
    [13]Chopra a K. Dynamics of Structures Theory and Applications to Earthquake Engineering.3 ed. London:Prentice Hall,2006
    [14]戴旦前.δ函数和卷积及在电工中的应用.北京:高等教育出版社,1986
    [15]艾利斯哥尔兹(苏联).变分法.李士晋译.北京:人民教育出版社.1981
    [16]Dems K, Mroz Z. Damage identification using modal, static and thermographic analysis with additional control parameters. Computers and Structures,2010, 88(21-22):1254-1264
    [17]Zembaty Z, Kowalski M, Pospisil S. Dynamic identification of a reinforced concrete frame in progressive states of damage. Engineering Structures,2006, 28(5):668-681
    [18]Ge M, Lui E M. Structural damage identification using system dynamic properties. Computers and Structures,2005,83(27):2185-2196
    [19]Lu Z R, Liu J K. Identification of both structural damages in bridge deck and vehicular parameters using measured dynamic responses. Computers and Structures,2011,89(13-14):1397-1405
    [20]Salawu O S. Detection of structural damage through changes in frequency:a review. Engineering Structures,1997,19(9):718-723
    [21]Kim J T, Ryu Y S, Cho H M, et al. Damage Identification in Beam-type Structures:Frequency-based Method vs Mode-shape-based Method. Engineering Structures,2003,25(57-67
    [22]Pandey a K, Biswas M, Samman M M. Damage Detection From Changes in Curvature Mode Shapes. Journal of Sound and Vibration,1991,145(2):321-332
    [23]Curadelli R O, Riera J D, Ambrosini D, et al. Damage detection by means of structural damping identification. Engineering Structures,2008,30(12): 3497-3504
    [24]Abdo M a-B. Parametric study of using only static response in structural damage detection. Engineering Structures,2012,34(2012):124-131
    [25]Sung S H, Jung H J, Jung H Y. Damage detection for beam-like structures using the normalized curvature of a uniform load surface. Journal of Sound and Vibration,2013,332(6):1501-1519
    [26]Cao M, Su Z, Cheng L, et al. A multi-scale pseudo-force model for characterization of damage in beam components with unknown material and structural parameters. Journal of Sound and Vibration,2013,332(21): 5566-5583
    [27]刘玉明.钢筋混凝土梁的动力损伤诊断研究:[湖南大学硕士学位论文].长沙:湖南大学,1999
    [28]谢献忠.结构动力学系统时域辨识理论与试验研究:[湖南大学博士学位论文].长沙:湖南大学,2005
    [29]周云.地基板与混凝土框架结构参数识别的实验与研究:[湖南大学博士学位论文].长沙:湖南大学,2008
    [30]Ren W X, Roeck G D. Structural Damage Identification using Modal Data.I: Simulation Verification. Journal of Structural Engineering, ASCE,2002,128(1): 87-95
    [31]Ren W X, Roeck G D. Structural Damage Identification using Modal Data. II: Test Verification. Journal of Structural Engineering, ASCE,2002,128(1): 96-104
    [32]Unger J F, Teughels A, Roeck G D. System Identification and Damage Detection of a Prestressed Concrete Beam. Journal of Structural Engineering, ASCE,2006, 132(11):1691-1698
    [33]Unger J F, Teughels A, Roeck G D. Damage Detection of a Prestressed Concrete Beam Using Modal Strains. Journal of Structural Engineering, ASCE,2005, 131(9):1456-1463
    [34]Huth O, Feltrin G, Maeck J. Damage Identification Using Modal Data: Experiences on a Prestressed Concrete Bridge. Journal of Structural Engineering, ASCE,2005,131(12):1898-1910
    [35]Wu N, Wang Q. Experimental studies on damage detection of beam structures with wavelet transform. International Journal of Engineering Science,2011, 49(3):253-261
    [36]方圣恩.基于有限元模型修正的结构损伤识别方法研究 [中南大学博士学位论文].长沙:中南大学,2010
    [37]Doebling S W, Farrar C R, Prime M B, et al., Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics:A Literature Review. LA-13070-MS, New mexico USA:Los Alamos National Laboratory,1996,
    [38]Doebling S W, Farrar C R, Prime M B, et al. A Review of Damage Identification Methods that Examine Changes in Dynamic Properties. Shock and Vibration Digest,1998,30(2):91-105
    [39]Sohn H, Farrar C R, Hemez F M, A Review of Structural Health Monitoring Literature 1996-2001. Los Alamos National Laboratory Report:LA-13976-MS, New mexico USA:Los Alamos National Laboratory,2003,1-7
    [40]Gimena F N, Gonzaga P, Gimena L.3D-curved beam element with varying cross-sectional area under generalized loads Engineering Structures,2008,30(2): 404-411
    [41]Tang Y. Numerical Evaluation of Uniform Beam Modes. Journal of Engineering Mechanics ASCE,2003,129(12):1475-1477
    [42]Zheng T X, Ji T J. Equivalent representations of beams with periodically variable cross-sections. Engineering Structures,2011,33(3):706-719
    [43]Carneiro J O, Demelo F J Q, Jalali S, et al. The use of pseudo-dynamic method in the evaluation of damping characteristics in reinforced concrete beams having variable bending stiffness. Mechanics Research Communications,2006,33(5): 601-613
    [44]Katsikadelis J T, Tsiatas G C. Non-linear dynamic analysis of beams with variable stiffness. Journal of Sound and Vibration,2004,270(4-5):847-863
    [45]Gillich G-R, Praisach Z-I. Modal identification and damage detection in beam-like structures using the power spectrum and time-frequency analysis. Signal Processing,2014,96, Part A(0):29-44
    [46]M D, Siringoringo, Fujino Y. System identification of suspension bridge from ambient vibration response. Engineering Structures,2008,30(2):462-477
    [47]Gomeza H C, Fanning P J, Feng M Q, et al. Testing and long-term monitoring of a curved concrete box girder bridge. Engineering Structures,2011,33(10): 2861-2869
    [48]Ramosa L F, Roeckb G D, Lourenco P B, et al. Damage identification on arched masonry structures using ambient and random impact vibrations. Engineering Structures,2010,32(1):146-162
    [49]Avitabile P. Part 5:101 Ways to extract modal parameters--which one is for me? Experimental Techniques,2006,30(5):48-56
    [50]张义民,张守元,李鹤等.运行模态分析中固有模态和谐波模态区分方法研究.振动与冲击,2009,28(1):64-67
    [5 1]陈东弟,向家伟.运行模态分析方法综述.桂林电子科技大学学报,2010,30(2):163-167
    [52]Pintelon R, Peeters B, Guillaume P. Continuous-time operational modal analysis in the presence of harmonic disturbances. Mechanical Systems and Signal Processing,2008,22(5):1017-1035
    [53]Qi K, He Z, Li Z, et al. Vibration based operational modal analysis of rotor systems. Measurement,2008,41(7):810-816
    [54]Reynders E, Roeck G D. Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis. Mechanical Systems and Signal Processing,2008,22(3):617-637
    [55]Modak S V, Rawal C, Kundra T K. Harmonics elimination algorithm for operational modal analysis using random decrement technique. Mechanical Systems and Signal Processing,2010,24(4):922-944
    [56]Dion J L, Tawfiq I, Chevallier G. Harmonic component detection:Optimized Spectral Kurtosis for operational modal analysis. Mechanical Systems and Signal Processing,2012,26(0):24-33
    [57]Ubertini F, Gentile C, Materazzi a L. Automated modal identification in operational conditions and its application to bridges. Engineering Structures, 2013,46(0):264-278
    [58]续秀忠,华宏星,陈兆能.基于环境激励的模态参数辨识方法综述.振动与冲击,2002,21(3):1-5
    [59]沈蒲生,梁兴文.混凝土结构设计原理.3 ed.北京:高等教育出版社,2007
    [60]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社2006
    [61]过镇海.混凝土的强度和变形—试验基础和本构关系.北京:清华大学出版社,1997
    [62]Beton C E-I D. CEB-FIP Model Code 1990(Concrete Structures). London: Thomas Telford,1993
    [63]Code a C S B. Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05). ACI,2005
    [64]王传志,腾智明.钢筋混凝土结构理论.北京:中国建筑工业出版社,1985
    [65]帕克,波利.钢筋混凝土结构.秦文钺 译.重庆:重庆大学出版社.1985
    [66]王时越,张立翔,徐人平等.混凝土疲劳刚度衰减规律试验研究.力学与实践,2003,25(5):55-57
    [67]王政,倪玉山,曹菊珍等.冲击载荷下混凝土本构模型构建研究.高压物理学报,2006,20(4):337-344
    [68]肖诗云,林皋,逯静洲等.应变率对混凝土抗压特性的影晌.哈尔滨建筑大学学报,2002,35(5):35-39
    [69]肖诗云,林皋,王哲等.应变率对混凝土抗拉特性影响.大连理工大学学报,2001,41(6):721-725
    [70]Aci C. A Guide of the Determination of Bond Strength in Beam Speciments. ACI Journal,1964,
    [71]徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究:[清华大学博士学位论文].北京:清华大学,1990
    [72]蒋德稳,邱洪兴.重复荷载下裂缝间黏结性能研究.土木工程学报,2012,45(2):35-42
    [73]铁摩辛柯S,盖尔J.材料力学.胡人礼译.北京:科学出版社.1978
    [74]李琼.HRB500级钢筋混凝土足尺梁裂缝宽度的试验与理论研究:[湖南大学硕士学位论文].长沙:湖南大学,2009
    [75]司徒达南.我国20MnSi热轧带肋钢筋的质量现状.冶金丛刊,1998,21(2):33-36
    [76]徐有邻。我国混凝土结构用钢筋的现状及发展.土木工程学报,1999,32(5):3-9
    [77]胡超.锈蚀钢筋混凝土梁低周疲劳试验研究:[湖南大学硕士学位论文].长沙:湖南大学,2010
    [78]《数学手册》编写组.数学手册.北京:人民教育出版社,1979
    [79]马明建,周长城.数据采集与处理技术.西安:西安交通大学出版社,1998
    [80]曹树谦,张文德,萧龙翔.振动结构模态分析——理论、实验与应用.天津:天津大学出版社,2002
    [81]钟佑明,秦树人,汤宝平.关于DFT中的延拓原理及计算结果物理意义的—些讨论.振动与冲击,2001,20(4):1-3
    [82]程佩青.数字信号处理教程.3 ed.北京:清华大学出版社,2008
    [83]李庆扬,王能超,易大义.数值分析.5 ed.北京:清华大学出版社,2008
    [84]Kraniauskas P. Transforms in signals and systems. The Great Britain: Addison-Wesley,1992
    [85]Oppenheim a V, Schafer R W. Discrete-Time Signal Processing.3. London: Prentice Hall,2009
    [86]Lee E A, P. Varaiya. Structure and Interpretation of Signals and Systems.2 ed, LeeVaraiya.org,2011
    [87]维基百科.傅里叶级数.//zh.wikipedia.org/wiki/傅里叶级数.2012
    [88]Hoyer E A, Stork R F. The zoom FFT using complex modulation. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP 77 1977,78-81
    [89]罗利春.Zoom-FFT的改进、频谱反演与时-频局部化特性.电子学报,2006,34(1):77-82
    [90]南京工学院数学教研组.积分变换.北京:高等教育出版社,1989
    [91]Chen G D, Wang Z C. A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components. Mechanical Systems and Signal Processing,2011,25(2):1-22
    [92]Lin R M, Lim M K. Modal analysis of close modes using perturbative sensitivity approach. Engineering Structures,1997,19(6):397-406
    [93]Mottershead J E, Mares C, James S. Fictitious Modifications for the Separation of Close Modes. Mechanical Systems and Signal Processing,2002,16(5): 741-755
    [94]段虎明,秦树人,李宁.离散频谱的校正方法综述.振动与冲击,2007,26(11):138-145
    [95]何永勇,褚福磊,王庆禹,et a1.小波分析在应用中的两个问题研究.振动工程学报,2002,15(2):228-232
    [96]谢明,丁康,莫克斌.频谱校正时谱线干涉的影响及判定方法.振动工程学报,1998,11(01):52-57
    [97]谢明,丁康,莫克斌.两个密集频率成分重叠频谱的校正方法.振动工程学报,1999,12(01):109-114
    [98]徐培民,杨积东,闻邦椿.离散频谱分析中两邻近谱峰参数的识别.振动工程学报,2001,14(3):254-258
    [99]刘进明,应怀樵.FFT谱连续细化分析的傅里叶变换法.振动工程学报,1995,8(2):162-166
    [100]Melhem H, Kim H. Damage Detection in Concrete by Fourier and Wavelet Analyses. Journal of Engineering Mechanics, ASCE,2003,129(8):571-577
    [101]Neild S A, Williams M S, Mcfadden P D. Nonlinear Vibration Characteristics of Damaged Concrete Beams. Journal of Structural Engineering, ASCE,2003, 129(2):260-268
    [102]Yi W J, Zhou Y, Kunnath S, et al. Identification of localized frame parameters using higher natural modes. Engineering Structures,2008,30(11):3082-3094
    [103]Maas S, Zurbes A, Waldmann D, et al. Damage assessment of concrete structures through dynamic testing methods. Engineering Structures,2012,34(1): 351-362
    [104]Lo Iacono F, Navarra G, Pirrotta A. A damage identification procedure based on Hilbert transform:Experimental validation. Structural Control and Health Monitoring,2012,19(1):146-160
    [105]Kareem A, Gurley K. Damping in structures:its evaluation and treatment of uncertainty. Journal of Wind Engineering and Industrial Aerodynamics,1996, 59(2-3):131-157
    [106]Ruzzene M, Fasana A, Garibaldi L, et al. Natural frequencies and dampings identification using wavelet transform:application to real data. Mechanical Systems and Signal Processing,1997,11(2):207-218
    [107]Slavic J, Simonovski I, Boltezar M. Damping identification using a continuous wavelet transform:application to real data. Journal of Sound and Vibration, 2003,262(2):291-307
    [108]Antonacci E, De Stefano A, Gattulli V, et al. Comparative study of vibration-based parametric identification techniques for a three-dimensional frame structure. Structural Control and Health Monitoring,2012,19(5):579-608
    [109]Kijewski T, Kareem A. Wavelet Transforms for System Identification in Civil Engineering. Computer-Aided Civil and Infrastructure Engineering,2003,18(5): 339-355
    [110]Yumoto E, Gould W J, Baer T. Harmonics-to-noise ratio as an index of the degree of hoarseness. The Journal of the Acoustical Society of America,1982, 71(6):1544-1550
    [111]Bonilha H S, Dawson a E. Creating a Mastery Experience During the Voice Evaluation. Journal of Voice,2012,1-7
    [112]Papagiannopoulos G A, Beskos D E. On a modal damping identification model for non-classically damped linear building structures subjected to earthquakes. Soil Dynamics and Earthquake Engineering,2009,29(3):583-589
    [113]Sultan C. Proportional damping approximation using the energy gain and simultaneous perturbation stochastic approximation. Mechanical Systems and Signal Processing,2010,24(7):2210-2224
    [114]Adhikari S. Damping Models for Structural Vibration:[Trinity College, Cambridgethe Degree of Doctor of Philosophy]. Cambridge:Trinity College, Cambridge,2000
    [115]Woodhouse J. Linear Damping Models for Structural Vibration. Journal of Sound and Vibration,1998,215(3):547-569
    [116]Mevel L, Benveniste A, Basseville M, et al. Input/output versus output-only data processing for structural identification-Application to in-flight data analysis. Journal of Sound and Vibration,2006,295(3-5):531-552
    [117]Deraemaeker A, Reynders E, Roeck G D, et al. Vibration-based structural health monitoring using output-only measurements under changing environment. Mechanical Systems and Signal Processing,2008,22(1):34-56
    [118]Rainieri C, Fabbrocino G. Automated output-only dynamic identification of civil engineering structures. Mechanical Systems and Signal Processing,2010, 24(3):678-695
    [119]Porras J A, Sebastian J D, Casado C M, et al. Modal mass estimation from output-only data using oscillator assembly. Mechanical Systems and Signal Processing,2012,26(15-23
    [120]Ling X, Haldar A. Element Level System Identification with Unknown Input with Rayleigh Damping. Journal of Engineering Mechanics,2004,130(8): 877-885
    [121]Lardies J, Ngi T M. Modal parameter identification of stay cables from output-only measurements. Mechanical Systems and Signal Processing,2011, 25(1):133-150
    [122]Fasana A, Piombo B a D. IDENTIFICATION OF LINEAR MECHANICAL SYSTEMS BY DECONVOLUTION TECHNIQUES. Mechanical Systems and Signal Processing,1997,11(3):351-373
    [123]Slavic J, Boltezar M. Damping identification with the Morlet-wave. Mechanical Systems and Signal Processing,2011,26(5):1632-1645
    [124]Staszewski W J. Identification of Damping in MDOF Systems Using Time-scale Decomposition. Journal of Sound and Vibration,1997,203(2):283-305
    [125]张志涌.精通MATLAB 6.5版.北京:北京航空航天大学出版社,2003
    [126]Jacobson N. Pseudo-Linear Transformations. The Annals of Mathematics, Second Series,1937,38(2):484-507
    [127]Huang Q, Gardoni P, Hurlebaus S. Probabilistic Capacity Models and Fragility Estimates for Reinforced Concrete Columns Incorporating NDT Data. Journal of Engineering Mechanics,2009,135(12):1384-1392
    [128]Chen K T, Chang S H, Chou C H, et al. Active control by using optical sensors on the acoustic radiation from square plates. Applied Acoustics,2008,69(4): 367-377
    [129]Fan W, Qiao P. A 2-D continuous wavelet transform of mode shape data for damage detection of plate structures. International Journal of Solids and Structures,2009,46(25-26):4379-4395
    [130]Kusculuoglu Z K, Royston T J. Nonlinear modeling of composite plates with piezoceramic layers using finite element analysis. Journal of Sound and Vibration,2008,315(4-5):911-926
    [131]Mojtahedi A, Lotfollahi Yaghin M A, Hassanzadeh Y, et al. Developing a robust SHM method for offshore jacket platform using model updating and fuzzy logic system. Applied Ocean Research,2011,33(4):398-411
    [132]Monnet G. Spectrography at high spatial resolution. Comptes Rendus de l'Academie des Sciences Series IIB Mechanics Physics Chemistry Astronomy,1997,325(2):115-118
    [133]Roy S, Chakraborty S, Sarkar S K. Damage detection of coupled bridge deck-girder system. Finite Elements in Analysis and Design,2006,42(11): 942-949
    [134]易伟建,张望喜.建筑结构试验.北京:中国建筑工业出版社,2005
    [135]Cto. SignalCalc Dynamic Signal Analyzers-manual. Data Physics Corporation, CA USA,2007
    [136]胡岚,马克俭.U形钢板-混凝土高强螺栓连接组合空腹夹层板楼盖结构研究与应用.建筑结构学报,2012,33(7):61-69
    [137]中华人民共和国建设部.建筑结构荷载规范(GB 50009—2001).北京:中国建筑工业出版社,2002
    [138]潘芹,袁贤讯.静、动力刚度关系在RC简支梁动力损伤诊断中的应用.广西民族学院学报,2002,8(4):22-25
    [139]王迪薇.钢筋混凝土梁动力刚度与破损评估研究:[湖南大学硕士学位论文]。长沙:湖南大学,1991
    [140]那丽岩.HRB400级钢筋混凝土构件受弯性能试验研究:[湖南大学硕士学位论文].长沙:湖南大学,2006
    [141]孙晓东.主筋锈蚀钢筋混凝土梁疲劳试验研究:[湖南大学硕士学位论文].长沙:湖南大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700