用户名: 密码: 验证码:
玻璃海鞘(Ciona intestinalis)实验养殖、血细胞的分类及其免疫应答研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻璃海鞘属于尾索动物亚门,在进化上处于无脊椎动物向脊椎动物过渡的地位,也是研究无脊椎动物进化免疫学和比较免疫学的最好的实验动物之一。本文报道了玻璃海鞘的人工繁殖和养殖方法,并以之为材料,对玻璃海鞘的血细胞的分类和功能以及感染细菌后血细胞的免疫应答进行了研究,得到以下结果:
    将野生玻璃海鞘的受精卵孵化的幼体,采用螺旋藻干粉、虾蟹开口料、鸡蛋黄、叉鞭金藻、食用酵母等多种饵料的组合,经过60d左右的养殖,玻璃海鞘的成活率可达85%,体高平均达59mm且性腺发育成熟。将实验室养殖成熟的玻璃海鞘进行人工授精,得到了发育正常的幼体,从而完成了玻璃海鞘整个生活史的实验室周期养殖。
    通过细胞化学,细胞酶学,免疫组化,超微结构分析和吞噬实验等方法,将玻璃海鞘的血细胞分为干细胞样血细胞、透明变形细胞、颗粒变形细胞、折光细胞、指环细胞、色素细胞、桑椹细胞和小室细胞。玻璃海鞘的干细胞样血细胞、透明变形细胞、颗粒变形细胞与脊椎动物的造血干细胞、巨嗜细胞、粒细胞在形态和先天性免疫的功能上有一定的相似性,具有脊椎动物淋巴细胞的原始特征。但由于玻璃海鞘没有适应性免疫所必需的基本条件,最终在细胞免疫功能和形式上与脊椎动物存在质的差别。
    绿色荧光蛋白能在大肠杆菌内稳定表达且荧光不易淬灭,便于观察,是研究细菌感染实验的一种很好的工具。本研究首次以表达绿色荧光蛋白的大肠杆菌感染玻璃海鞘,发现其总血细胞数量(THC)有明显变化,5min后,血细胞总数下降约36.6%, 3h后下降至最低, 24h后显著升高,至96h恢复到正常水平。参与吞噬大肠杆菌的主要是透明变形细胞,这种吞噬作用在感染5min内即已开始; 透明变形细胞还分泌溶菌酶颗粒黏附到大肠杆菌表面。颗粒变形细胞则分泌大量颗粒,参与体液免疫。干细胞样血细胞表面不见有明显的形态学改变,也不表现吞噬活性。免疫组化结果显示,干细胞样血细胞在注射大肠杆菌后变化显著。注射大肠杆菌后,干细胞样血细胞数量开始升高,在24h达最高,然后开始下降,96h后,干细胞样血细胞恢复到正常水平。同时,在血细胞增长的高峰期,可以见到干细胞样血细胞正进行分裂,表现出明显的增殖功能,这解释了大肠杆菌体内刺激后导致血细胞在12-96h内数量迅速恢复的原因。这也预示玻璃海鞘的血细胞可
Ciona intestinalis, the representative species of Urochordata, belongs to a critical taxonomic position between invertebrates and vertebrates. It was regarded as a “biology’s rising star” and was also one of the best experimental system for evolutionary and comparative immunology. In this paper, methodology for artificial reproduction and whole-life-span cultivation of Ciona intestinalis was presented. Taking this animal as material, morpho-functinal characterization of haemocytes and immune responses of haemocytes to bacterial challenge was studied. The results showed that:
    C. intestinalis larvae were cultured with the diet combination of dry spirulina, egg yolk,Dicrateria sp., edible yeast and weaning diet for shrimp and grew up to average 59mm and matured with a surviving rate of 85% after 2 months. A whole-life-expansion laboratory culture of C. intestinalis under controlled conditions was accomplished.
    8 types of blood cells, i.e. stem cell like haemocytes, hyaline amoebocytes, granular amoebocytes, refractile cells, signet ring cells, pigment cells, morula cells and compartment cells were characterized using cytochemical assay, cytoenzymatic assay, immunocytochemical assay, ultrastructural assay and phagocytosis methods. There are some similar morphological and functional traits between: Ciona stem cell like haemocytes and vertebrate hematopoietic stem cell, Ciona hyaline amoebocytes and vertebrate macrophage cells, Ciona granular amoebocytes and vertebrate granular
    cells, which may indicate that haemocytes of C.intestinalis have some primordial traits of vertebrate lymphocytes. However, absence of some fundamental elements of adaptive immunity made them differ from vertebrate lymphocytes. Enhanced-green-fluorescence-protein (EGFP)-expressing Escherichia coli is a good tool for studies of host-bacteria bilateral effect. Taking EGFP-expressing E.coli as infectious source, we found total haemocytes counts(THC) of Ciona intestinalis changed significantly. At 5min after infection, THC decreased 36.6% and at 3h THC reached the minimum. At 24h, THC climbed notably and at 96h recovered to normal level. Hyaline amoebocytes could phagocytose E.coli 5min post infection and excrete lysosome particles that attached to the surface of the bacteria. Granular amoebocytes released lots of particles for humoural immunity while stem cell like haemocytes remained intact during infection. After bacteria injection, the amount of stem cell like haemocytes increased firstly till peaked at 24h and then decreased till resumed at 96h; with the THC increasing, stem cell like haemocytes could be witnessed division and proliferation under microscope, which explained why the THC could recover in 12-96h. Thus, it was proved that haemocytes of C. intestinalis could proliferate and mature in circulating system. In this study, a small portion of hyaline amoebocytes and granular amoebocytes died through apoptosis due to bacteria infection. Some hyaline amoebocytes exhibited at early apoptosis stage 1h after infection. Granular amoebocytes degranulated and many vesicles presented inside the cytoplasm and typical apoptosis body emerged. A few of the infected haemocytes were witnessed undergoing DNA damage after V.anguillarum infection disclosed using single cell gel electrophoresis method. It was also revealed that haemocytes experienced apoptosis to various extents both infected by E.coli and V.anuillarum at 1h, 3h, 6h and 12h by terminal-deoxynucleotidyl transferase mediated nick end labeling assay. An obvious apoptosis peak was also observed in infected haemocytes samples using flow ctometry. In conclusion, apoptosis was an important immune response of ascidian haemocytes to bacterial infection, which was the first time that validated apoptosis existing in invertebrate
    haemocytes after bacteria challenge to our best knowledge.
引文
A. Kunkl, M. Paola Terranova, C. Ferlini, G. Astegiano, G. Mazzarello,G. Scambia, A. Fattorossi, Detection of apoptotic T lymphocytes in peripheral blood of human immunodeficiency virus (HIV)–infected subjects by apostain, Cytometry. 2000,42: 67–73.
    Aballay A,Drenkard E,Hilbun L R, et al.Caenorhabditis elegans innate immune response triggered by Salmonella enterica requires intact LPS and is mediated by a MAPK signaling pathway. Curr.Biol.2003,13:47-52
    Adachi K.,Hirata T.,Nagai K. et al.. Purification and characterization of prophenoloxidase from kuruma prawn Penaeus japonicus. Fisheries Science,1999,65 (6):919-925
    Adams A, 1991. Response of penaeid shrimp to exposed to Vibrio Species. Fish and Shellfish Immunology, 1:59-70.
    Alegado RA,Campbell MC,Chen WC,Slutz SS,Tan MW. Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host-pathogen model.Cell Microbiol 2003.5:435-444
    Andreas K?nig, Claudia H?mme, B?rbel Haur?der, Alexandra Dietrich, Manfred H.Wolff. The varicella-zoster virus induces apoptosis in vitro in subpopulations of primary human peripheral blood mononuclear cells Microbes and Infection 2003, 5:879–889
    Arizza, V., Cammarata, M., Tomasino, M.C., Parrinello, N., 1995. Phenoloxidase characterization in vacuolar haemocytes from the solitary ascidians Styela plicata. J. Inv. Pathol. 66, 297–302.
    Ashida M, Ashida M, Yamasaki H I, 1990. Biochemistry of the phenoloxidase system in insects: with special reference to its activation. In: Ohnishi, E., Ishizaki, H. (Eds.), Molting and Metamorphosis. Japan Scientific Societies Press/ Springer-Verlag, Tokyo/ Berlin.
    Azumi K, De Santis R, De Tomaso A, et al, 2003. Genomic analysis of immunity in a Urochordate and the emergence of the vertebrate immune system: “waiting for Godot”. Immunogenetics, 55: 570-581.
    Azumi K, Satoh N, Yokosawa H, 1993. Functional and structural characterization of haemocytes of the solitary ascidian, H. roretzi. J Exp Zool 265: 309-316
    Bertrand V., Hudson C., Caillol D., et al. Neural tissue in ascidian embryosis induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell, 2003,115: 615–627
    Brown,D.G., Sun, X.M., and Cohen, G.M.(1993) Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J. Biol.Chem. 268, 3037-3039
    Burighel, P., Milanesi, C. and Sabbadin, A. 1983. Blood cell ultrastructure of the ascidian Botryllus schlosseri. II. Pigment cells. – Acta Zoologica (Stockholm) 64: 15–23. C.Leopold Kurz and Man-Wah Tan. Regulation of aging and innate immunity in C.elegans. Aging cell.2004,185-193
    Cárdenas W, Jenkins J A, Dankerrt J R, 2000. A flow cytometric approach to the study of crustacean cellular immunigy. J Invert Path, 76: 112-119.
    Charles and Gretchen Lambert. Ascidian News. NO 31-39.2003. In homepage: http://nsm.fullerton.edu/~lamberts/ascidian/
    Charles and Gretchen Lambert. ASCIDIAN NEWS. NO55.In homepage: 2004. http://depts.washington.edu/ascidian/
    Charles and Gretchen Lambert.1996. Ascidian News. NO40. In homepage: http://nsm.fullerton.edu/~lamberts/ascidian/
    Charles and Gretchen Lambert.2003. Ascidian News. NO54. In homepage: http://nsm.fullerton.edu/~lamberts/ascidian/
    Cheng, W.T., Chen , J.C.,2001. Effects of intrinsic ad extrinsic factors on the haemocyte profile of the prawn, Macrobrachium rosenbergii. Fish & Shellfish Immunol. 11:53-63.
    Chengquan Zhao, Lilian Liaw, In Hee Lee, Robert I. Lehrer. cDNA cloning of Clavanins: antimicrobial peptides of tunicate haemocytes. FEBS Letters 410 (1997) 490-492
    Chiholm J R, Smith V J, 1995. Comparison of antibacterial activity in the haemocytes of different crustacean species. Comp Biochem Physio. A. Physiol, 110:39-45.
    Choe KM,Werner T,Stoven S,Hultmark D,et al.Requirement for a peptidoglycan recognition protein,(PGRP)in relish activation and antibacterial immune responses in Drosophila.Science 2002.296:359-362
    Christophides C K,Zdobnov E,Rarillas Mury C, et al. Immunity-related genes and gene families in Anopheles gambiae. Science,2002,298(5591):159-165
    Cicero, R., Sciuto, S., Chillemi, R., Sichel, G., 1982. Melanosynthesis in the Kupffer cells of amphibia. Comp. Biochem. Physiol. Part A 73, 477–479.
    Cima ,F.,Matozzo,V.,Martin,M.G. and Ballarin,L. Haemocytes of the clam Tapes philippinarum (Adams &Reeve,1850):morpho-functional characterization. Fish and Shellfish Immunology 2000,10:677-693
    Clare M. Peddie and Valerie J. Smith. ‘Lymphocyte-like’ cells in ascidians: Precursors for vertebrate lymphocytes? Fish & Shellfish Immunology. 1995, 5(8):613-629
    Clare M. Peddie, Andrew C. Riches and Valerie J. Smith. Proliferation of undifferentiated blood cells from the solitary ascidian, Ciona intestinalis in vitro. Developmental & Comparative
    Immunology,1995,19(5): 377-387
    Cohen, J.J., Duke, R.C., Fadok, V.A., Sellins, K.S., 1992. Apoptosis and programmed cell death in immunity. Annual Review of Immunology 10, 267–293.
    Conklin, E.G. The organization and cell-lineage of the ascidian egg[J]. J. Acad. Nat. Sci. Philadelphia, ser. 2, 1905, 13: 1-119.
    Corbo J.C., Levine M., and Zeller R. W. Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian , Ciona intestinalis[J]. Development. 1997,124:589-602
    Corbo, J.C. Di Gregorio, A., Levine M. The ascidian as a model organism in developmental and evolutionary biology[J]. Cell 2001, 106, 535-538
    Couillault C, Pujol N, Reboul J, Sabatier L, Guichou JF, Kohara Y, Ewbank JJ (2004) TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat. Immunol. 5, 488–494.
    Dan-Sohkawa, M., Morimoto, M., Mishima, H. and Kaneko, H. 1995. Characterization of coelomocytes of the ascidian Halocynthia roretzi based on phase-contrast, time-lapse video and scanning electron microscopic observations. – Zoological Science 12: 289–301.
    De Gregorio E,Spellman PT,Rubin GM, et al.Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays.Proc Natl Acad Sci USA 2001.98:12590-12595
    De Leo,G..Ascidian haemocytes and their involvement in defense reactions. Bollettino Di Zoologia,1992,59:195-213
    Dehal, P. et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science,2002,298, 2157-2167
    Destoumieux D, bullet D, Loew D, et al.,1997. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). The Journal of Biological Chemistry, 272:28398-28406.
    Destoumieux D, Munoz M, Bulet P, et al., 2000. Penaeidins a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cellular and molecular Life Sciences, 57: 1260-1271.
    Di Gregorio, A. and Levine, M. Analyzing gene regulation in ascidian embryos: new tools for new perspectives. Differentiation 2002,70, 132-139
    Di Gregorio, A. and Levine, M. Regulation of Ci-tropomyosinlike, a Brachyury target gene in the ascidian, Ciona intestinalis. Development.1999,126, 5599-6609
    Di Gregorio, A., and M. Levine. Ascidian embryogenesis and the origins of the chordate body plan[J]. Curr. Opin. Genet. Dev. 1998,8: 457-463.
    Dillin A, Crawford DK, Kenyon C (2002) Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298, 830–834.
    Dubchak, I. et al. (2000) Active conservation of noncoding sequences revealed by 3-way species comparisons. Genome Res. 10, 1304-1306
    Edds, K. T. 1985. Morphological and cytoskeletal transformations in sea urchin coelomocytes. In: Cohen, W. D. (Ed.): Blood Cells of Marine Invertebrates: Experimental Systems in Cells, Vol. 4, pp. 53–74. A. R. Liss, New York.
    Ellis, R.E., Yuan, J., Horvitz, R., 1991. Mechanisms and functions of cell death. Annual Review of Cell Biology 7, 663–698.
    enhancers in the Ciona tadpole. Proc. Natl. Acad. Sci. U. S. A. 99, 6802?805 364, 582?83 Eric S. Loker, Coen M.Adema, Si-Ming Zhang,et al. Invertebrate immune systems-not homogeneous, not simple, not well understood.Immunological Reviews.2004,198: 10-24
    Eva Candal, Ramón Anadón,et al. Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout. Developmental Brain Research. 2005.154:101-119 expression and function of developmental genes. Differentiation 68, 1-2
    F Cima, A Perin, P Burighel and L Ballarin, 2001. Morpho-functional characterization of haemocytes of the compound ascidian Botrylloides leachi (Tunicata, Ascidiacea). Acta Zoologica (Stockholm), 82: 261–274
    F. Petit, D. Arnoult, J.D. Lelievre, L. Moutouh-de-Parseval, A.J. Hance, P. Schneider, J. Corbeil, J.C. Ameisen, J. Estaquier, Productive HIV-1 infection of primary CD4+ T cells induces mitochondrial membrane permeabilization leading to a caspasein dependent cell death, J. Biol. Chem. 277 (2002) 1477–1487.
    Factor, J. R. & Beekman, J. (1990). The digestive system of the lobster, Homarus amaricanus: III. Removal of foreign particles from the blood by fixed phagocytes of the digestive gland. Journal of Morphology 206, 293–302.
    Fontaine C.T.,Brlss R.G.,Sanderson I.A. et al. Histopathological response to turpentine in white shrimp, Penaeus setiferus. J. Invertebr. Pathol.,1975,25:321-330
    Fontaine, C. T. & Lightner, D. V. Observations on the phagocytosis and elimination of carmine particles into the abdominal musculature of the white shrimp, Penaeus setiferus. Journal of Inverterbrate Pathology.1974, 24, 141–148.
    Franceschi,C., Cossarizza,A., Monti,D. and Ottaviani,E. Cytoxicity and immunocyte markers in cells from the freshwater snail Planorbarius corneus(L.)(Gastropoda: Pulmonata):implications
    for the evolution of natural killer cells. European Journal of Immunology. 1991,21:489-493
    Friedman R,Hughes AL.Molecular evolution of the NF-kB signaling system. Immunogenetics
    2002.53:964-974
    Fujita T, Matsushita M, Endo Y, 2004. The lectin-complement pathway-its role in innate immunity and evolution. Immunological Reviews, 198:185-202.
    Fujiwara S., Maeda Y., Shin-I T., et al. Gene expression profiles in Ciona intestinalis cleavage-stage embryos[J]. Mechanisms of Development. 2002, 112:115-127
    Furukawa,Y. Cell cycle regulation of the hematopoietic stem cells. Human cell. 1998,11:81-92 Garsin DA, Villanueva JM, Begun J, Kim DH, Sifri CD, Calderwood SB, Ruvkun G, Ausubel FM (2003) Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300, 1921.
    Glinski Z, Jarosz J, 1997. Molluscan immune defenses. Arch Immunol Ther Exp., 45:149-155.
    Gollasgalvan T.,Hernandezlopez J.,Vargasalbores F.. Prophenoloxidase from brown shrimp(Penaeus californiensis)hemocytes. Comparative biochemistry and physiology biochemistry & molecular biology,1999,122(1):77-82
    Gubb, D. et al. (1999) The balance between isoforms of the prickle LIM domain protein is critical for planar polarity in Drosophila imaginal discs. Genes Dev. 13, 2315-2327
    Harafuji, N. et al. Genome-wide identification of tissue-specific enhancers in the Ciona tadpole. Proc. Natl. Acad. Sci. U. S. A.2002,99, 6802-6805 364, 582-583
    Hillyer J F, Christensen B M, 2002. Characterization of haemocytes from the yellow fever mosquito, Aedes aegypti. Histochem Cell Biol., 117: 431-440.
    Hoffmann J A., Kafatos F C., Janeway C A.,et al.Phylogenetic perspectives in innate immunity. Science 1999,284,1313-1318
    Hoffmann JA (2003) The immune response of Drosophila. Nature 426, 33–38.
    Hoffmann JA,Reichhart JM.Drosophila innate immunity:an evolutionary perspective. Nat Immunol 2002.3:121-126
    Hose J E, Martin G G, Tiu S, et al., 1992. Patterns of hemocyte production and release throughout the moult cycle in the penaeid shrimp Sicyonia ingentis. Biological Bulletin, 183: 185-189.
    Hose J E, Martin G G,Nguyen V A, 1987. Cytochemical features of shrimp haemocytes. Biol Bull., 173: 178-187.
    Hotta, K. et al. (2000) Characterization of Brachyury-downstream notochord genes in the Ciona intestinalis embryo. Dev. Biol. 224, 69-80 http://www.bioon.com
    http://www.biox.cn
    http://www.dxy.cn.bbs
    http://www.xyxy.net/
    Imai, K.S. et al. (2002) An essential role of a FoxD gene in notochord induction in Ciona embryos. Development 129, 3441-3453
    Imai, K.S. et al. (2002) Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos. Development 129, 1729-1738
    Inaba K., Potturi P., Satouh Y., et al. EST analysis of gene expression in testis of the ascidian Ciona intestinalis[J]. Molecular Reproduction and Development. 2002, 62:431-445
    Inaba, K. et al. 2002. EST analysis of gene expression in testis of the ascidian Ciona intestinalis. Mol. Reprod. Dev. 62, 431-445
    Inada K., Takeo Horie, Takehiro Kusakabe, Motoyuki Tsuda. Targeted knockdown of an opsin gene inhibits the swimming behaviour photoresponse of ascidian larvae[J]. Neuroscience Letters. 2003, 347:167–170
    Iwanaga S, Kawabata S, 1998. Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. Front Biosci., 3: 973-984.
    Jeffery,W.R. (2001) Determinants of cell and positional fate in ascidian embryos. Int. Rev. Cytol. 203, 3-12
    Jiraporn Rojtinnakorn, Ikuo Hirono, Toshiaki Itami, et al. Gene expression in haemocytes of kuruma prawn,Penaeus japonicus, in response to infection with WSSV by EST approach. Fish & Shellfish Immunology.2002,13, 69–83
    Johansson, M.W., Soderhall, K., 1989. Cellular immunity in crustaceans and proPO system. Parasitol. Today 5, 171–176.
    Johnson, P. T. (1976). Bacterial infection in the blue crab, Callinectes sapidus: course of infection and histopathology. Journal of Invertebrate Pathology 28, 25–36.
    Jon D. Reuter.Cytomegalovirus induces T-cell independent apoptosis in brain during immunodeficiency. Journal of Clinical Virology 2005 32:218–223
    Joseph C. Corbo, Anna Di Gregorio, and Michael Levine. The Ascidian as a Model Organism in Developmental and Evolutionary Biology. Cell, 2001, 106:535–538
    K. Muthumani, D.S. Hwang, B.M. Desai, D. Zhang, N.S. Dayes,D.R. Green, D.B. Weiner, HIV-1 induces apoptosis through caspase9 in T cells and PBMC’s, J. Biol. Chem. 2 (2002) 2.
    Kallaya Sritunyalucksana, Kenneth Soderhall 2000 The proPO and clotting system in crustaceans. Aquaculture, 2000:19153-69
    Kano, S., S. Chiba, and N. Satoh. Genetic relatedness and variability in inbred and wild populations of the solitary ascidian Ciona intestinalis revealed by arbitrarily primed polymerase chain reaction[J]. Mar. Biotechnol. 2001,3: 58-67.
    Kaoru Azumi,Rosaria De Santis,Anthony De Tomaso et al..Genomic analysis of immunity in a Urochordate and the emergence of the vertevrate immune system: “ waiting for Godot”.Immunogenetics.2003,55:570-581
    Kasumi Yagi, Nori Satoh, Yutaka Satou. Identification of downstream genes of the ascidian muscle determinant gene Ci-macho1[J] Developmental Biology. 2004,274:478–489
    Kato Y, Aizawa T, Hoshino H, Kawano K, Nitta K, Zhang H (2002) abf-1 and abf-2, ASABF-type antimicrobial peptide genes in Caenorhabditis elegans. Biochem. J. 361, 221–230.
    Kazuhito Shida, Daichi Terajima, Ryuji Uchino, et al. Hemocytes of Ciona intestinalis express multiple genes involved in innate immune host defense Biochemical and Biophysical Research Communications,2003:302:207–218
    Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-Hino M, Hisamoto N, Matsumoto K, Tan MW, Ausubel FM A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science ,2002:297, 623–626.
    Kopp E,Medzhitov R.Recognition of microbial infection by Toll-like receptors.Curr Opin Immunol 2003.15:396-401
    Krzyzowska M., Schollenberger A., Niemialtowski M.G., How human immunodeficiency viruses and herpesviruses affect apoptosis, Acta Virol. 2000, 44:203–210.
    Kurtz J, Franz K. Evidence for memory in invertebrate immunology. Nature,2003,425:37-38 Kurz CL,Ewbank JJ.Caenorhabditis elegans:an emerging genetic model for the study of innate immunity. Nat Rev Genet 2003.4:380-390
    Kusakabe T., Yoshida R., Kawakami et al. Gene expression profiles in tadpole larvae of Ciona intestinalis. Developmental Biology.2002,242:188-203
    Le Moullac G., Haffner P., Environmental factors affecting immune response in crustacea. Aquaculture, 2000, 191:121-131.
    Leippe M. Antimicrobial and cytolytic polypeptides of amoeboid protozoa – effector molecules of primitive phagocytes. Dev. Comp. Immunol. 1999,23, 267–279.
    Leong W.F., Tan H.C., Ooi E.E., et al.Microarray and real-time RT-PCR analyses of differential human gene expression patterns induced by severe acute respiratory syndrome (SARS) coronavirus infection of Vero cells.Microbes and Infection 2005,7: 248–259
    Liberati NT, Fitzgerald KA, Kim DH, Feinbaum R, Golenbock DT, Ausubel FM (2004) Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc. Natl Acad. Sci. USA 101, 6593–6598.
    Lim J Y, Lee B H, Kang S W, et al., 2004. Association of reticular cells with CD34+/Sca-1+ apoptotic cells in the hemopoietic organ of grasshopper, Euprepocnemis shirakii. J Insect Physiology, 50: 657-665.
    Loots, G.G. et al. rVista for comparative sequence-based discovery of functional transcription factor binding sites. Genome Res. 2002,12, 832-839
    Lorenzon S., De Guarrini S., Smith V.J., Ferrero E.A.. E ffects of LPS injection on circulating haemocytes in crustacean in vivo. Fish Shellfish Immunol., 1999,9:31-50.
    Louis Du Pasquier.Innate immunity in early chordates and the appearance of adaptive immunity.Comptes Rendus Biologies.2004,327:591-601
    M.L. Gougeon, E. Ledru, H. Lecoeur, S. Garcia, T cell apoptosis in HIV infection: mechanisms and relevance for AIDS pathogenesis,Results Probl. Cell. Differ. 1998:24 233–248.
    M.Yasukawa,Y. Inoue, H. Ohminami, K. Terada, S. Fujita, Apoptosis of CD4+ T lymphocytes in human herpesvirus-6 infection, J. Gen.Virol.1998:79143–147.
    Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa–Caenorhabditis elegans pathogenesis model. Cell 96, 47–56.
    Mallo GV. Inducible antibacterial defense system in C.elegans. Curr Biol 2002.12:1209-1214
    Marques M.R.F.,Barracco M.A.. Lectin,as non-self-recognition factors,in crustaceans. Aquaculture,2000:191:23-44
    Martin G G, Pool, D, Hose J E, et al.. Clearance of bacteria injected into the haemolymph of the panaeid shrimp, Sicyobnia ingentis. J Invert Path . 1993,62: 308-315
    Martin G.G., Kay J., Poole D. & Poole C., In vitro nodule formation in the ridgeback prawn, Sycionia ingentis, and the American lobster, Homarus americanus. Invertebrate Biology, 1998,117: 155-168.
    Martina Schobesberger, Artur Summerfield, Marcus G. Doherr,Andreas Zurbriggen, Christian Griot..Canine distemper virus-induced depletion of uninfected lymphocytes is associated with apoptosis Veterinary Immunology and Immunopathology. 2005:104:33–44
    Medzhitov R,Preston-Hurlburt P,Janeway CA.A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.Nature1997.388:394-397
    Meister M,Hetru C,Hoffmann J A.The antimicrobial host defense of Drosophila.In:Du Pasquier L.Litman G W,eds.Current topics in microbiology and immunity.Origin and evolution of the vertebrate immune system.2000,248:17-36
    Miki Tokuoka, Kaoru S. Imai, Yutaka Satou, Nori Satoh. Three distinct lineages of mesenchymal cells in Ciona intestinalis embryos demonstrated by specific gene expression[J]. Developmental Biology. 2004,274:211 – 224
    Millar D A, Ratcliffe N A, 1994. Invertebrate. In: Turner R J.Ed. Immunology, a comparative approach. John Wiley & Sons Ltd, England, pp.29-68.
    Monack D M, Raupach B, Hromockyj A E et al. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci USA,1996,93(18): 9833-9838
    Moody, R., Davis, S.W.,Cubas, F. and W.C. Smith. Isolation of developmental mutants of the ascidian Ciona intestinalis[J]. Mol. Gen. Genet. 1999, 262: 199-206.
    Morgan, T. H. The conditions that lead to normal or abnormal development of Ciona[J]. Biol. Bull., 1945, 88: 50-62.
    Morgan, T.H. An interim report on cross and self fertilization in Ciona[J]. J. Exp. Zool. 1940,85: 1-32.
    Motoyuki Tsuda, Takehiro Kusakabe, Hideo Iwamoto, Takeo Horie, Yuki Nakashima, Masashi Nakagawa, Kiyotaka Okunou. Origin of the vertebrate visual cycle: II. Visual cycle proteins are localized in whole brain including photoreceptor cells of a primitive chordate[J]. Vision Research. 2003,43:3045–3053
    Moullac G.,Soyez C.,Sallnier D. et al.. Effect of hypoxic stress on the immune response and the resistance to vibriosis of shrimp Penaeus stylirostris. Fish and shellfish immunology,1998,8(8):621-629
    Nakatami, Y., R. Moody, and W.C. Smith. Mutation affecting tail and notochord development in the ascidian Ciona intestinalis[J]. Development. 1999,126: 3293-3301.
    Narudo Kawai, Hiroki Takahashi, Hiroki Nishida, et al., Regulation of NF-?B/Rel by I?B is essential for ascidian notochord formation[J]. Developmental Biology.2005, 277:80–91
    Nichols J E, Niles J A, Roberts N J Jr. Human lymphocyte apoptosis after exposure to influenza A virus. J. Virol. 2001,75:5921–5929
    Nicolo Parrinello, Vincenzo Arizza, Cinzia Chinnici, Daniela Parrinello, Matteo Cammarata. Phenoloxidases in ascidian hemocytes: characterization of the prophenoloxidase activating system Comparative Biochemistry and Physiology Part B xx (2003) xxx–xxx
    Nishida H,1987a,. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. Ⅲ. Up to the tissue restricted stage. Developmental Biology. 121:526--541
    Nishida, H. Patterning the marginal zone of early ascidian embryos: localized maternal mRNA and inductive interactions. BioEssays 2002,24, 613-624
    Nishida, H. 1987b. Cell lineage analysis in ascidian embryos by egg. J. Acad. Nat. Sci. 13, 1-19 Nishikata T., Yamada L., Mochizuki Y., et al. Profiles of maternally expressed genes in fertilized eggs of Ciona intestinalis[J]. Developmental Biology.2001, 238:315-331
    Nomaguchi T A, Nishijima C, Fujisawa H, In vitro allogeneic cytotoxicity assay in the solitary asidian,Coina Sarignyi. Devolopmental & Comparative immunology, 1996,20(1): 8
    Ogasawara, M. et al. Gene expression profiles in young adult Ciona intestinalis. Dev. Genes Evol. 2002,212:173-185
    Omori S.A., Martin G.G. & Hose J. E., Morphology of haemocyte lysis and clotting in the ridgeback prawn, Sicyonia ingentis, Cell Tissue Research 1989, 255: 117-123.
    Paillot R., Richard S., Bloas F., et al. Toward a detailed characterization of feline immunodeficiency virus-specific T cell immune responses and mediated immune disorders. Veterinary Immunology and Immunopathology. 2005.In press.
    Paramvir Dehal, Yutaka Satou, Robert K. Campbell, et al., The Draft Genome of Ciona intestinalis: Insights into Chordate and Vertebrate Origins[J]. Science. 2002,298: 2157-2167
    Parrinello, N., Cammarata, M., Arizza, V., Univacuolar hemocytes from the tunicate Ciona intestinalis are cytotoxic for mammalian erythrocytes in vitro. Biol. Bull. 1996. 190, 418–425.
    Pasquier L D, Innate immunity in early chordates and the appearance of adaptive immunity. C.R.Biologies, 2004,327: 591-601.
    Paul WE, Fundamental Immunology 4th ed 1999,575-650
    Pennisi, E. Comparative biology joins the molecular age[J]. Science,2002, 296: 1792-1795.
    Person M., Cerenius L., S?derh?ll K., The influence of haemocyte number on the resistance of the freshwater crayfish, Pacifastacus leniusculus Dana, to the parasitic fungus Aphanomyces astaci. J Fish Dis., 1987,10:471-477.
    Pica,A.,Cristino,L.,Sasso,F.S. and Guerriero,P. Haemopoietic regeneration after autohaemotransplant in sublethal X-irradiated marbled electric rays. Camparative Haematology international. 2000,10:33-39
    Pujol N,et al.Reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans.Curr Biol 2001.11:809-821
    Raff M.C., 1992. Social controls on cell survival and cell death. Nature 356, 397–400.
    Reeve, R.M., 1951. Histochemical tests for polyphenols in plant tissue. Stain Technol. 26, 91–96.
    Robb, D.A., 1984. Tyrosinase. In: Lontie, R. (Ed.), Copper Protein 2. CRC Press, Boca Raton, FL, pp. 207–241.
    Roitt, et al, Immunology, 4th ed, 1996, 2.7-2.13, 10.2-10.14, 15.1-15.18
    Sasakura, Y. et al. (2003) Application of Minos, one of the Tc1/mariner superfamily transposable elements, to ascidian embryos as a tool for insertional mutagenesis. Gene 308, 11-20
    Satoh, N. (2001) Ascidian embryos as a model system to analyze Trends Genet. 11, 354-59
    Satoh, N. (2003) The ascidian tadpole larva: comparative molecular development and genomics. Nat. Rev. Genet. 4, 285-95
    Satoh, N. Developmental Biology of Ascidians[M]. 1994.Cambridge University Press, Cambridge, United Kingdom.
    Satoh, N. and Jeffery, W.R. Chasing tails in ascidians: developmental insights into the origin and evolution of chordates[J]. Trends in Genetics , 1995,11:354-359
    Satoh, N., Satou Y., Davidson., et al. Ciona intestinalis: an emerging model for whole-genome analyses[J]. Trends in Genetics. 2003, 19(7):376-381
    Satoko Awazu, Akane Sasaki, Terumi Matsuoka, Nori Satoh, Yasunori Sasakura. An enhancer trap in the ascidian Ciona intestinalis identifies enhancers of its Musashi orthologous gene[J]. Developmental Biology. 2004,275:459– 472
    Satou Y., et al. Gene expression profiles in Ciona intestinalis tailbud embryos[J]. Development. 2001,128:2893-2904
    Satou Y., Yamada L., Mochizuki Y., et al. A cDNA resource from the basal chordate Ciona intestinalis[J]. Genesis 2002, 33:153-154
    Satou, Y. and Satoh, N. (1996) Two cis-regulatory elements are essential for the muscle-specific expression of an actin gene in the ascidian embryo. Dev. Growth Differ. 38, 565-573
    Satou, Y. et al. (2001) Action of morpholinos in Ciona embryos. Genesis 30, 103-106
    Satou, Y. et al. (2001) Early embryonic expression of a LIM-homeobox gene Cs-lhx3 is downstream of b-catenin and responsible for the endoderm differentiation in Ciona savignyi embryos. Development 128, 3559-3570
    Satou, Y. et al. (2001) Gene expression profiles in Ciona intestinalis tailbud embryos. Development 128, 2893-2904
    Satou, Y. et al. 2002a. A cDNA resource from the basal chordate Ciona intestinalis. Genesis 33, 153-154
    Satou, Y. et al. 2002b. Ciona intestinalis cDNA projects: expressed sequence tag analyses and gene expression profiles during embryogenesis. Gene 287, 83-86
    Satou, Y. et al. 2002c. Fgf genes in the basal chordate Ciona intestinalis. Dev. Genes Evol. 212, 432-438
    Satou, Y. et al. A genomewide survey of developmentally relevant genes in Ciona intestinalis: (I) Genes for bHLH transcription factors. Dev. Genes Evol. (in press)
    Sawada T, Zhang J, Cooper E L, 1993. Classification and characterization of haemocytes in Styela clava. Biol bull(Woods Hole), 184: 87-96
    Sawada, T., Fujikura, Y., Tomonaga, S. and Fukumoto, T. 1991. Classification and characterization of ten hemocyte types in the tunicate Halocynthia roretzi. – Zoological Science 8: 939–950.
    Schlumpberger, J. M., Weissman, I. L. and Scofield, V. L. Separation and labeling of specific subpopulations of Botryllus blood cells. – Journal of Experimental Zoology.1984.229: 401–411.
    Schnare M, Barton GM, Holt AC, Takeda K et al. Toll-like receptors control activation of adaptive immune responses.Nat Immunol 2001,2:947-950
    Scippa, S., Botte, L. and De Vincentiis, M. Ultrastructure and X-ray microanalysis of blood cells of Ascidia malaca. – Acta Zoologica (Stockholm) 1982. 63:121–131.
    Shiao S H, Higgs S, Adelman Z, et al., Effects pf prophenoloxidase expression knockout on the melanization of microfilariae in the mosquito Armigeris subalbatus. Insect Mol Biol.. 2001,10: 315-321.
    Shida K.,Terajima D., Uchino R., et al. Hemocytes of Ciona intestinalis express multiple genes involved in innate immune host defense. Biochemical and Biophysical Research Communications.2003, 302:207-218
    Shino Hata, Kaoru Azumi, Hideyoshi Yokosawa.Ascidian phenoloxidase: its release from hemocytes, isolation, characterization and physiological roles .Comparative Biochemistry and Physiology Part B 1998:119:769–776
    Silva Jr.P.I., Daffres S. and Bulet P.. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana haemocytes with sequence similatities to horseshoe crab antimictobial peptides of the tachyplesin family. J Biol Chem.,2000:275:33464-33470.
    Simmen, M.W., S. Leitgeb, V.H. Clark, S.J.M. Jones, and A. Bird. Gene number in an invertebrate chordate, Ciona intestinalis[J]. Proc. Natl. Acad. Sci. USA. 1995, 95:4437-4440.
    Simth V J, S?derh?ll K. β-1,3-glucan activation of crustacean haemocytes in vitro and in vitro. Biol. Bull., 1983.164:59-79.
    Smith, J. V. & S?derh?ll, K. (1983). Induction of degranulation and lysis of haemocytes in the freshwater crayfish, Astacus astacus, by components of the prophenoloxidase activating system in vitro. Cell and Tissue Research 233, 295–303.
    Smith, V. J. & Ratcliffe, N. A.. Cellular defence reactions of the shore crab,Carcinus maenas (L); in vivo hemocytic and histopathological responses to injected bacteria. Journal of Invertebrate Pathology.1980:35, 65–74.
    Soderhall K, Cerenius L, Johansson MW. The prophenoloxidase activating system in invertebrates. In: Soderhall K, Iwanaga S,Vasta G, editors. New Directions in Invertebrate Immunology.Fair Haven: SOS Publications, 1996:229–253.
    Soderhall K, Cerenius L., Crustacean immunity. Annu. Rev. Fish Dis., 1992. 2:3-23.
    Soderhall K, Wingren A., Johansson M W, Bertheussen K. The cytotoxic reaction of haemocytes from the freshwater crayfish, Astacus astacus. Cell Immunol., 1985.94:326-332.
    Soderhall K.,Smith V J,Johansson M W et al. Exocytosis and uptake of bacteria by isolated haemocytes population of two crustaceans: evidence for cellular cooperation in the defense reactions of arthropods. Cell Tissue Research,1986,245:43-49
    Sordino, P., L. Belluzzi, R. De Santis, and W.C. Smith. Developmental genetics in primitive chordates[J]. Philos. Trans. R. Soc. Lond. B 2001,356:1573-1582.
    Sumio Tojo, Fumihiko Naganuma, Kenryo Arakawa et al. Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. Journal of Insect Physiology 2000,46:1129–1135
    Sung H H, Hwang S F and Tasi F M,. Response of giant freshwater prawn (Macrobrachium rosenbergii) to challenge by two strains of Aromonas spp. J Invertibr pathol., 2000. 76:278-284.
    Takahashi, H. Notochord differentiation in the ascidian embryo. Genes Dev. 1999,13, downstream 1519-1523
    Takahashi, H. et al. (1999) Evolutionary alterations of the minimal promoter for notochord-specific Brachyury expression in ascidian embryos. Development 126, 3725-3734
    Takeda K,Akia S.Toll receptors and pathogen resistance.Cell Microbiol 2003,5:143-153
    Tan MW. Genetic and genomic dissection of host–pathogen interactions using a P. aeruginosa–C. elegans pathogenesis model. Pediatric Pulmonol. 2001, 32, 96–97.
    Tan MW, Mahajan-Miklos S, Ausubel FM Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl Acad. Sci.
    USA.1999a,96, 715–720.
    Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM (1999b) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl Acad. Sci. USA 96, 2408–2413.
    Teizo Fujita,Misao Matsushita,Yuichi Endo. The lectin-complement pathway-its role in innate immunity and evolution. Immunological Revies.2004,198:185-202
    Tetsuya Mizutani, Shuetsu Fukushi, Masayuki Saijo, et al.Importance of Akt signaling pathway for apoptosis in SARS-CoV-infected Vero E6 cells.Virology 2004,327:169-174
    Tojo S, Naganuma F, Arakawa K, Yokoo S, 2000. Involvement of both granular cells and plasmatocytes in phagocytic reaction in the greater wax moth, Galleria mellonella. J Insect Physiology, 46: 1129-1135.
    Tung TC.,Ku,S.,&Yung Y. The development of the ascidian egg centrifuged before fertilization. Biol.Bull. 1941,80:153-68
    Tung T.C., Wu S.C., Yeh Y.F., Li K.S., Hsu M.C.. Cell differentiation in ascidian studied by nuclear transplantation[J]. Scientia Sinica.1977, 22:222-233
    Tzou P,Meister M,Lemaitre B. Methods for studying infection and immunity in Drosophila. Mol Cell Microbiol.2002.31:507-529
    Van de Braak C B T, Botterblom M H A, Liu W, et al.. The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp penaeus monodon. Fish & Shellfish Immunology, 2002,12:253-272.
    Van de Braak C B T, Botterlom M H A, Taverne N, et al.. The role of haemocytes and the lymphoid organ in the clearance of injected Vibrio bacteria in Penaeus monodon shrimp. Fish & Shellfish Immunology, 2003. 13:293-309.
    Wada, H. and Satoh,N. Details of the evolutionary history from invertebrates to vertebrates as deduced from the sequences of 18srDNA. Proceedings of the National Academy of .Sciences. 1994, 91,1801-1804
    Watson R W, Redmond H P,Wang J H,et al..Neutrophils undergo apoptosis following ingestion of Escherichia coli. J Immunol.1996,156(10):3986-3992
    Wei Chen, Zhonghua Tang, Paolo Fortina, et al. Ethanol potentiates HIV-1 gp120-induced apoptosis in human neurons via both the death receptor and NMDA receptor pathways.Virology. 2005,334:59– 73
    Weinrauch Y, Zychlinsky A. The induction of apoptosis by bacterial pathogens. Ann Rev Microbiol,1999.153:155
    Winder, J., Harris, H. New assays for tyrosine hydroxylase and dopa oxidase activities of tyrosinase. Eur. J.Biochem. 1991,198, 317–326.
    Y.J. Zhang, B. Fadeel,V. Hodara, E.M. Fenyo, Induction of apoptosis by primary HIV-1 isolates correlates with productive infection in peripheral blood mononuclear cells, AIDS, 1997, 11:1219–1225.
    Z. Humlova, M. Vokurka, M. Esteban, Z. Melkova, Vaccinia virus induces apoptosis of infected macrophages, J. Gen. Virol. 2002, 83:2821–2832
    Zhang H, Kato Y Common structural properties specifically found in the CSalphabeta-type antimicrobial peptides in nematodes and mollusks: evidence for the same evolutionary origin? Dev. Comp.Immunol. 2003,27, 499–503.
    Zhang, H., Sawada, T., Cooper, E. L. and Tomonaga, S. Electron microscopic analysis of tunicate (Halocynthia roretzi) hemocytes. – Zoological Science.1992,9: 551–562.
    陈慰峰,医学免疫学,2000,35-45,79-86
    邓欢,陈俅,刘卫东等。中国对虾血细胞包掩作用和超微结构的组织化学观察。应用与环境生物学报,1999,5(3):296-299
    管华诗。海水养殖动物的免疫、细胞培养和病害研究。济南:山东科学技术出版社。1999
    贺诗水,成永旭。海鞘的药用价值及其研究进展。上海水产大学学报。2002, 11(2):167-170
    黄 英, 柯才焕, 冯丹青,等。冠瘤海鞘胚胎和幼体发育的形态观察。海洋学报
    黄行许,黄有国。巨嗜细胞凋亡及其调控。生物化学与生物物理进展,2000,27 (2):139-142
    蒋静,华修国。细胞感染与抗凋亡。动物科学与动物医学,2002.19(8):20-23
    李光友。中国对虾疾病与免役机制。海洋科学,1995,4:1-3
    李光友和王青。中国对虾血细胞及其免疫研究。海洋与湖沼,1995,26(6):591-597
    李雷,王金星,康翠洁等。对虾免疫防御中的阳离子和阴离子抗菌肽。海洋与湖沼,2003,34(2):217-223
    刘凌云,郑光美。普通动物学。第三版,北京:高等教育出版社,1997
    裴雪涛。干细胞生物学。北京:科学出版社,2003。
    王金星,赵小凡。无脊椎动物先天免疫模式识别受体研究进展。生物化学与生物物理进展,2004,31(2):112-117
    相建海。海洋生物学。北京:科学出版社,2003
    鄢然,沈超,雷磊,等。SARS-Cov感染Vero E6细胞诱导细胞凋亡。中国病毒学。2003,18(6):541-543
    叶属峰,陈樟福。昆虫的血细胞研究及其进展。杭州师范学院学报(自然科学版),1998,3:80-85
    余传霖,现代医学免疫学 1998,13-32
    张卓然,周正任,陈绪林。细胞计数。见:张卓然主编。实用细胞培养技术。第 1 版。北京:人民卫生出版社,1999,p30
    郑成兴。中国沿海海鞘的物种多样性。生物多样性,1995,3(4):201-205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700