用户名: 密码: 验证码:
内分泌干扰物——双酚A的高效光催化降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内分泌干扰物,又称环境激素,主要是指可通过影响生物体和人类体内自身天然激素的合成、分泌、代谢等,从而破坏生物体和人类正常的代谢、分泌和生殖等功能的外源性化学物质。双酚A作为一种重要的有机化工原料,是一种普遍存在于环境中的内分泌干扰物,对生物体和人类有着极大的危害。
     TiO2多相光催化技术因为安全、反应速率快、氧化彻底、能耗低、无二次污染等特点,而被应用于内分泌干扰物的处理。本研究着重从光催化反应器的角度,来建立一种高效处理双酚A的体系,设计出了一种新型的光源内置气-液-固循环流动的浆态光催化反应器。并通过光量子效率、能耗、反应速率等指标,对比研究了所设计的新型反应器与传统的气体提升式和环隙式浆态光催化反应器对偶氮染料降解脱氮的性能,研究发现新型反应器具有较优的综合性能。
     采用自行制备的稀土钆掺杂的Gd-TiO2为光催化剂,在新设计的气-液-固浆态光催化反应器中对模拟内分泌干扰物废水——双酚A水溶液进行光催化降解研究。实验考查了催化剂浓度、表观气速、表观液速对降解速率的影响,处理体积为1800 ml,初始浓度为10 mg/L的内分泌干扰物废水最优处理条件为:催化剂浓度为6 g/L,表观气速为8.34×10-3 m/s,表观液速为1.11×10-2 m/s。在最优条件下处理120 min,双酚A降解率高达90%以上,符合处理要求。
     本课题还进一步对比研究了Gd-TiO2和普遍商业化P25-TiO2光催化剂处理内分泌干扰物的性能。前者不论是在光催化效率方面还是沉降分离方面都明显优于后者。
     本研究表明,Gd-TiO2光催化剂和气-液-固循环浆态光催化反应器是处理内分泌干扰物双酚A的高效体系,有着较好的应用前景。
Endocrine Disrupting Chemicals(EDCs), which is also called Environmental Hormone, is a kind of exogenous chemicals that can destroy normal metabolism,functions of exudation and procreation of organism and human being through disrupting the synthesis, exudation, and metabolism of nature hormone. As an important material of organic industry, Bisphenol A(BPA) exists widely in the environment, which is very harmful to organism and human being.
     Titania heterogeneous photocatalysis oxidation technology has being used in the treatment of EDCs because of its safety, high reaction speed, complete oxidation, low energy consumption and no secondary contamination. In order to set up a highly efficient treatment system of BPA , a new gas-liquid-solid circulating slurry photocatalytic reactor(GLSCSPCR) has been designed in this paper.
     Then a comprehensive performance evaluation of GLSCSPCR by comparing with common-used annular and air-lift slurry photocatalytic reactors though the degradation and nitrogen removal of an azo dye with respect to the apparent quantum yield of azo dye degradation, the rate and electrical energy consumption of nitrogen removal. The study shows that the newly designed GLSCSPCR behaves better.
     Self-made rare earth doped photocatalyst Gd-TiO2 had been used in GLSCSPCR to treat simulated EDCs waste water——BPA aqueous solution. Effect of operation parameters such as catalyst concentration, superficial gas velocity and superficial liquid velocity to the photocatalytic degradation BPA has been studied. Results show when the volume is 1800 ml, BPA original concentration is 10 mg/L, the optimized operation parameters are 6 g/L, 8.34×10-3 m/s and 1.11×10-2 m/s. The photocatalytic degradation rate of BPA can reach more than 90% after 120 min degradation under optimized condition.
     More over, comparative research of Gd-TiO2 and commercial photocatalyst P25-TiO2 has investigated in this paper, the former one is more excellent not only in photocatalytic efficiency but also the performance of sedimentation.
     In conclusion, Gd-TiO2 photocatalyst and GLSCSPCR can be a high efficient treatment system of BPA, which shows good industrial application.
引文
[1]袁理.双酚A降解菌的分离鉴定及其降解特性:[硕士学位论文].长沙:湖南大学,2006.1-10
    [2]李纯茂,张勇,俞宁.内分泌干扰物研究进展.新乡医学院学报,2006,23(6):641-643
    [3]毛矛.聚砜—活性炭杂化微球清除环境激素双酚A的研究:[生物医学工程硕士学位论文].成都:四川大学,2005.1-12
    [4]任仁,黄俊.哪些物质属于内分泌干扰物(EDCs).安全与环境工程,2004,11(3):7-10
    [5] Craig D R,Brown E,Craft J A,ect.Effects of sewage effluent and ethynyl oestradiol upon molecular markers of oestrogenic exposure , maturation and reproductive success in the sand goby.Aquatic Toxicology,2003,62(2):119-134
    [6]肖云波,于海琴.双酚A在环境中迁移转化的研究进展.山西建筑,2007,33(6):180-181
    [7] Staples C A,Dorn P B,Kleka G M,ect.A review of the environmental fate,effects,and exposures of bisphenol A.Chemosphere,1998,36(10):2150
    [8] Voordeckers J W,Fennell D E,Jones K.Anaerobic biotransformation of tetrabromobisphenol A,tetrachlor0bisphenol A,and bisphenol A in estuarine sediments.Environmental Science& Technology,2002,36(4):696-701
    [9] Olea N,Pular R,Perez P,ect.Estrogenicity of resinbased composites and sealants used in dentistry.Environment Heahh Persperctives,1996,104(3):298-305
    [10] Brotons J A,Serrano M F,Villalobos M,ect.Xenoestrogens released from laequere coatings in food cans.Environment Health Persperctives,1995,103(6):608-612
    [11] Steinmetz R,Mitchner N A,Grant A,ect.The xenoestrogen bisphenol A induces growth,differentiation,and cfos gene expression in the female reproductive tract.Endocrinology,1998,139(6):2741-2747
    [12] Hayashi Y,Matsuda R,Haishima Y,ect.Validation of HPLC and GC-MS systems for bisphenol-A leached from hemodialyzers on the basis of FUMI theory.Pharmaceutical and Biomedical Analysis,2002,28(3):421-429
    [13]邓红梅,梁春营,陈永亨.水环境中双酚A的污染及其生态毒理效应.环境污染与防治,2009,31(7):70-75
    [14] Haishima Y,Hayashi Y,Yagani T,ect.Elution of bisphenol A from hemodialyzers consisting of polycarbonate and polysulfone resins.Journal of Biomedical Materials Research,2001,58(2):209-215
    [15] Welshons W V,Nagel S C,Saal F S.Large effects from small exposures:III endocrine mechanisms mediating effects of bisphenol A at levels of human exposure.Endocrinology,2006,147:556-569
    [16] Kawai K,Takehiro N,Nishikata H,ect.Aggressive behavior and serum testosterone concentration during the maturation process of male mice:the effects of fetal exposure to bisphenol A.Environmental Health Perspectives,2003,111:175-178
    [17] Sakaue M,Ohsako s,Ishimura R,ect.Bisphenol A affects spermatogenesis in the adult rat even at a low dose.Journal of Occupational Health,2001,43:185-190
    [18]庄惠生,杨光.双酚A对鲤鱼急性和亚急性毒性的研究.环境化学,2005,24(6):682-684
    [19]李睿,刘玉,谭凤仪,等.双酚A对微小小环藻的毒性效应.中山大学学报,2006,45(3):110-112
    [20] Tyl R W,Myers C B,Marr M C,ect.Three-generation reproductive toxicity study of dietary bisphenol A in CD Sprague-Dawley rats.Toxicological Sciences,2002,68:121-146
    [21] Aikawa H,Koyama S,Matsuda M,ect.Relief effect of vitamin A on the decreased motility ofsperm an d the increased incidence of malformed sperm in mice exposed neonatally to bisphenol A.Cell Tissue Research,2004,315:119-124
    [22] Takahashi O,Oishi S.Testicular toxicity of dietarily or parenterally administered bisphenol A in rats and mice.Food and Chemical Toxicology,2003,41:1035-1044
    [23]邓茂先,吴德生,陈祥贵,等.双酚A雄性生殖毒性的体内外实验研究.中华预防医学杂志,2004,38(6):383-387
    [24]李勇,裴新荣,龙鼎新,等.双酚A对植人后大鼠、小鼠胚胎致畸性的体外实验研究.卫生研究,2003,32(2):89-91
    [25] Timms B G,Howdeshell K L,Barton L,ect.Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra.Proceedings of National Academic Science of USA,2005,102:7014-7019
    [26]王旭平,任道凤,逢兵,等.男工接触双酚A的雌激素样作用调查报告.职业卫生与应急救援,1999,17(1):15-16
    [27]陈于,韩令力,丁莉,等.职业性内分泌干扰物对女工生殖系统影响的研究.重庆医科大学学报,2009,34(6):811-813
    [28] Chitra KC,Latchoumycandane C,Mathur P P.Induction of oxidative stress by bisphenol A in the epididymal sperm ofrats.Toxicology,2003,185:119-127
    [29]覃丹丹,袁伟,高尔生,等.双酚A对雄性生殖功能影响的研究进展.环境与健康杂志,2007,24(7):550-552
    [30] Kang J H,Kondo F.Bisphenol A degradation by bacteria isolated from river water.Archives of Environment Contamination and Toxicology,2002,43:265-269
    [31]王燕春,刘启凯,赵庆祥.双酚A的活性炭吸附特性.华东理工大学学报,2006,32(4):431-433
    [32]肖吉敏,王槐三,刘玉鑫,等.树脂吸附处理模拟双酚A生产中含酚废水的研究.四川大学学报,2003,35(2):64-67
    [33] Korshin G V,Kim J,Gan L.Comparative study of reactions of endocrine disruptors bisphenol A and diethylstilbestrol in electrochemical treatment and chlorination.Water Research,2006,40:1070-1078
    [34]何志明,李秀芬,堵国成.微曝气Fenton氧化法处理模拟双酚A废水的效果及其生物验证.环境工程学报,2009,3(9):1573-1577
    [35]高建峰,徐春彦,王久芬,等.US/AC/H202去除水中内分泌干扰物双酚A.山西化工,2008,28(3):8-10
    [36]高娜,于志强,廖汝娥,等.二氧化锰氧化降解双酚A的动力学.生态环境学报,2009,l 8(2):431-434
    [37] Chiang K,Lim T M,Tsen L,ect.Photocatalytic degradation and mineralization of bisphenolA by TiO2 and platinized TiO2.Applied Catalysis A:General,2004, 261:225–237
    [38] Niwa R K,Terao Y,Nozawa R.Environmental Toxicology and Pharmacology,2002,12:27-35
    [39] Torres R A,Nieto J I,Combet E,ect.Influence of TiO2 concentration on the synergistic effect between photocatalysis and high-frequency ultrasound for organic pollutant mineralization in water.Applied Catalysis B:Environmental,2008,80:168–175
    [40] Yeo M K,Kang M.Photodecomposition of bisphenol A on nanometer-sized TiO2 thin film and the associated biological toxicity to zebrafish (Danio rerio) during and after photocatalysis.Water research,2006,40:1906-1914
    [41]柴文,王旭红,陈奠宇.纳米TiO2光催化降解双酚A的研究.材料导报,2009,23:100-102
    [42]胡普查,肖举强,展宗城,等.纳米掺氮TiO2可见光降解内分泌干扰物BPA研究.环境科学与技术,2009,32(3):46-48
    [43]芮旻,高乃云,徐斌,等.饮用水处理工艺去除两种典型内分泌干扰物的性能.给水排水, 2006,32(4):1-6
    [44]付川,郭劲松,潘杰,等.三维电场协同TiO2光催化降解水中双酚A的研究.中国给水排水,2009,25(7):70-82
    [45] Chin S S,Lim T M,Chiang K,ect.Factors affecting the performance of a low-pressure submerged membrane photocatalytic reactor.Chemical Engineering Journal,2007,130:53–63
    [46] Torres-Palma R A,Nieto J I,Combet E,ect.An innovative ultrasound, Fe2+ and TiO2 photoassisted process for bisphenol A mineralization.Water Research,2010,44(7):2245-2252
    [47] Park S J,Chin S S,Jia Y,ect.Regeneration of PAC saturated by bisphenol A in PAC/TiO2 combined photocatalysis system.Desalination,2010,250:908-914
    [48]古政荣,陈爱平,戴智铭.活性炭—纳米二氧化钛复合光催化空气净化网的研制.华东理工大学学报,2000,26(1):367-370
    [49] Dunlop P M,Byrne J A,Manga N.The photocatalytic removal of bacterial pollutants from drinking water.Journal of Photochemistry and Photobiology A: Chemistry,2002,148:355-363
    [50] Gumy D,Rincon A G,Hajdu R,ect.Solar photocatalysis for detoxification and disinfection of water: Different types of suspended and fixed TiO2 catalysts study.Solar Energy,2006,80:1376-1381
    [51] Cho S P,Hong S C,Hong S I.Photocatalytic degradation of the landfill leachate containing refractory matters and nitrogen compounds.Applied Catalysis B:Environmental,2002,39 :125–133
    [52] Kositzi M,Poulios I,Malato S,ect.Solar photocatalytic treatment of synthetic municipal wastewater.Water Research,2004,38:1147-1154
    [53] Guillard C,Disdier J,Monnet C,ect.Solar efficiency of a new deposited titania photocatalyst:chlorophenol, pesticide and dye removal applications.Applied Catalysis B: Environmental,2003,46:319-332
    [54] Kamat P V.Photochemistry on nonreactive and reactive (Semiconductor) surfaces.Chemical Reviews,1993,93:267-300
    [55] Bard A J.Photoelectrochemistry.Science,1980,207(4427):139-144
    [56] Reddy K M.Bandgap studies on anatase titanium dioxide nanoparticles,Materials Chemistry and Physics,2002,78:239-245
    [57] Fukahori S,Ichiura H,Kitaoka T,ect.Capturing of bisphenol A photodecomposition intermediates by composite TiO2–zeolite sheets.Applied Catalysis B:Environmental,2003,46:453–462
    [58]陶红,郝思秋,刘静,等.Ti-MCM-41分子筛对水中双酚A的催化光降解反应历程.水资源与水工程学报,2009,20(4):39-42
    [59] Katsumata H,Kawabe S,Kaneco S.Degradation of bisphenol A in water by the photo-fenton reaction.Journal of Photochemistry and Photobiology A:Chemistry,2004,162:297-305
    [60]徐锐,童仕唐.二氧化钛光催化活性及其改性研究.武汉科技大学学报,2001,24(4):358
    [61]桑雪梅,全学军,陶长元,等.几种典型有毒有机污染物的光催化降解研究.化学研究与应用,2009,21(2):180-183
    [62] Wyness P.Performance of nonconcentrating solar photocatalytic oxidation reactor.Part I:Flat-plate configuration.Journal of Solar Engineering,1994,116:2-7
    [63] Goslich R.Solar water treatment:principles and reactors.Water Science and Technology,1997,14(4):77-79
    [64]亓建伟.纳米二氧化钛用于医院含菌废水处理的光催化反应器设计:[生物医学工程硕士学位论文].成都:四川大学,2005.33-34
    [65] Fujishima A , Honda K . Electrochemical photocatalysis of water at a semiconductorelectrode.Nature,1972,238:37-38
    [66] Cai R X,Kubota Y,Shuin T,ect.Induction of cytotoxicity by photoexcited TiO2 particles.Cancer Research,1992,52:2346-2348
    [67] Hu S,Yan Y H,Wang Y F,ect.Titanium dioxide nanoparticle absorbed by hepatoma cells in Vitro.Journal of Wuhan University of Technology,2005,20(3):31-34
    [68] Wang L,Mao J,Zhang G H,ect.Nano-cerium-element-doped titanium dioxide induces apoptosis of Bel 7402 human hepatoma cells in the presence of visible light.World Journal of Gastroenterology,2007,13(29):4011-4014
    [69] Thevenot P,Cho J,Wavhal D,ect.Surface chemistry influences cancer killing effect of TiO2 nanoparticles.Nanomedicine:Nanotechnology,Biology,and Medicine,2008,4:226-236
    [70] Quan X J,Zhao Q H,Tan H Q,ect.Comparative study of lanthanide oxide doped titanium dioxide photocatalysts prepared by coprecipitation and sol–gel process.Materials Chemistry and Physics,2009,114(1):90-98
    [71] Sun J H,Qiao L P,Sun S P,ect.Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation.Journal of Hazardous Materials,2008,155:312–319
    [72] Kamble S P,Sawant S B,Pangarkar V G.Heterogeneous photocatalytic degradation of p-toluenesulfonic acid using concentrated solar radiation in slurry photoreactor.Journal of Hazardous Materials,2007,140:149-154
    [73] Golegl,Stout J D,Burda C,ect.Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale.Journal of Physical Chemistry B,2004,108(4):1230-1240
    [74]王丽军,张煜,李希.湍动浆态床流体力学研究(Ⅰ)气含率及其分布规律.化工学报,2008,59(12):2997-3002
    [75]邓舜扬,王强,等.新型塑料薄膜.北京:中国轻工业出版社,1999.328-329
    [76]邱仁荣,赵颖,姚曙光.印染废水深度处理及回用技术的研究现状.工业水处理,2007,27(9):11
    [77] Sahel K, Perol N, Chermette H,ect.Photocatalytic decolorization of remazol black 5(RB5) and procion red MX-5B—isotherm of adsorption, kinetic of decolorization and mineralization.Applied Catalysis B:Environment,2007,77:100-109
    [78]韩长秀,曹梦,张宝贵.絮凝法在印染废水处理中的应用进展.工业水处理,2006,,26(9):5-9
    [79]何珍宝.印染废水特点及处理技术.印染,2007,17:41-44
    [80] Chung K T,Stevens S J.Degradation of azo dyes by environmental microorganisms and helminths.Environmental Toxicology and Chemistry, 1993,12:2121-2132
    [81] Brown M A, Devito S C.Predicting azo dyes toxicity.Critical Reviews in Environment Science and Technology,1993,23:249-324
    [82]钟金汤.偶氮染料及其代谢产物的化学结构与毒性关系的回顾与前瞻.环境与职业医学,2004,21(1):58-61
    [83] Oh S W, Kang M N, Cho C W,ect.Detection of carcinogenic amines form dyestuffs or dyed substrates.Dye and Pigments,1997,33:119-135
    [84]韩春媚,林林,谷庆宝,等.偶氮染料4BS光解动力学和总氮脱除的初步研究.环境科学研究,2007,20(6):101-105
    [85]赵成文,戚奎华,史晓波,等.催化光还原水产氢量子收率测定的研究.化学通报,1983,2:10-13
    [86]林少华,李田.太阳能固定膜光催化反应器的效率评价.化工学报,2008, 59(1):90-95
    [87]中华人民共和国环境保护局.GB11894-89.中华人民共和国国家标准——水质总氮的测定碱性过硫酸钾消解紫外分光光度法.中国标准出版社,1990-07-01.192-195
    [88]中华人民共和国环境保护局.GB7479-87.中华人民共和国国家标准——水质铵氮的测定纳氏试剂比色法.中国标准出版社,1987-08-01.68-72
    [89]中华人民共和国环境保护局.GB7480-87.中华人民共和国国家标准——水质硝酸盐氮的测定酚二磺酸分光光度法.中国标准出版社,1987-08-01.73-76
    [90]中华人民共和国环境保护局.GB7498-87.中华人民共和国国家标准——水质亚硝酸盐氮的测定分光光度法.中国标准出版社,1987-08-01.77-81
    [91] Chiou C H,Wu C Y,Juang R S.Influence of operating parameters on photocatalytic degradation of phenol in UV/ TiO2 process.Chemical Engineering Journal,2008,139:322-329
    [92] Qourzal S,Tamimi M,Assabbane A,ect.Photocatalytic degradation and adsorption of 2-naphthol on suspended TiO2 surface in a dynamic reactor.Journal of Colloid and Interface Science,2005,286:621-626
    [93] Bizani E,Fytianos K,Poulios I,ect.Photocatalytic decolorization and degradation of dye solution and wastewater in the presence of titanium dioxide.Journal of Hazardous materials,2006,136:85-94
    [94] Nam W,Kim J,Han G Y.Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor.Chemosphere,2002,47:1019-1024
    [95] Yu H L,Zhang K L,Rossi C.Theoretical study on photocatalytic oxidation of VOCs using nano-TiO2 photocatalyst.Journal of Photochemistry and Photobiology A,2007,188(1):65-73
    [96] Akyol A,Bayramoglu M.The degradation of an azo dye in a batch slurry photocatalytic reactor.Chemical Engineering and Processing,2008,47:2150-2156
    [97] Ibhadon A O,Greenway G M,Yue Y.Photocatalytic activity of surface modified TiO2/RuO2/SiO2 nanoparticles for azo-dye degradation.Catalysis Communications,2008,9:153-157
    [98] Khataee A R,Pons M N,Zahraa O.Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation:influence of dye molecular structure.Journal of Hazardous materials,2009,168:451-457
    [99] Sadik W A.Effect of inorganic oxidants in photodecolourization of an azo dye.Journal of Photochemistry and Photobiology A:Chemistry,2007,191:132-137
    [100] Lin Y J,Lee A,Teng L S,ect.Effect of experimental factors on nitrobenzaldehyde photoisomerization.Chemosphere,2002,48:1-8
    [101] Konstantinou I K,Albanis T A.TiO2-assited photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigation.Applied Catalytic B:Environment,2004,49:1-14
    [102] Nikazar M,Gholivand K,Mahanpoor K.Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst.Desalination,2008,294
    [103]柴文,王旭红,陈奠宇,等.纳米TiO2光催化降解双酚A的研究.材料导报,2009,23:100-102
    [104]任霁晴,贾大兵,状亚峰.紫外分光光度法测定塑料制品中双酚A.吉林化工学报,2007,24(4):40
    [105]程沧沧,付洁媛,岳茜,等.TiO2薄膜光催化降解双酚A的研究.环境污染治理技术与设备,2005,6(7):37-39
    [106] Tsai W T,Lee M K,Su T Y,ect. Photodegradation of bisphenol-A in a batch TiO2 suspension reactor.Journal of Hazardous Materials,2009,168:269-275
    [107] Kaneco S,Rahman M A,Suzuki T,ect.Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide.Journal of Photochemistry and PhotobiologyA:Chemistry,2004,163 :419–424
    [108]陈孝云,刘守新,陈曦,等.TiO2/wAC复合光催化剂的酸催化水解合成及表征.物理化学学报,2006,22(5):517-522
    [109]杨红,张克荣,吴德生.双酚A光催化降解研究.中国卫生检验杂志,2002,12(5):521-522
    [110] Wong C C,Chu W.The direct photolysis and photocatalytic degradation of alcohol at different TiO2 and UV sources.Chemosphere,2003,50 :981–987
    [111]Chin S S,Lim T M,Chiang K,ect.Hybrid low-pressure submerged membrane photoreactor for the removal of bisphenol A.Desalination,2007,202 :253–261
    [112] Soparajee K,Qasim S A,Basak S,ect.An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part II:experiments on the ultrafiltration unit and combined operation.Journal of Applied Electrochemistry, 1999,29:1111–1118
    [113] Emets E P,Kolomeytsev G Y,Polluektov P P,ect.Control of disactivation processes by using a new laser bubble sizer.Journal of Aerosol Science,1996,27 :559–560
    [114] Szymanski W W . Optical behaviour of fine bubbles—possibility if real time size characterization.Journal of Aerosol Science,1996,537-538
    [115]赵清华,全学军,谭怀琴,等.La掺杂TiO2光催化剂的制备与表征.催化学报,2008,29(3):269-274
    [116] Jun L,Jimmy C Y.An investigation on photo catalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air.Photochemistry and Photobiology A:Chemistry,1998,116:63-67
    [117] Janus M,Morawski A W.New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition.Applied Catalysis B:Environmental,2007,75:118–123
    [118] Janus M,Tryba B,Inagaki M,ect.New preparation of a carbon-TiO2 photocatalyst by carbonization of n-hexane deposited on TiO2.Applied Catalysis B:Environmental,2004,52:61–67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700