用户名: 密码: 验证码:
啤酒有害产酸细菌选择性培养基的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
啤酒是以麦芽、水为主要原料,添加啤酒花,经啤酒酵母发酵而成的一种低酒精度、含有泡沫和一定量CO2的发酵酒。由于啤酒中存在乙醇(0.5%-10%,w/v),酒花苦味物质(大约17-55ppm的异α-酸),高浓度的CO2(大约0.5%,w/v),较低的pH值(3.8-4.7),极低的氧含量(<0.1ppm),使得啤酒被认为是一种安全的饮料。但是如果操作不慎或卫生条件不严,仍难免有厌氧菌等有害菌的污染。乳酸菌是啤酒厂中最容易污染,且对啤酒质量危害最大的有害菌之一。
     从济南、青岛、北京三地啤酒厂中分离到有害菌18株,经革兰氏染色、过氧化氢酶实验、发酵葡萄糖产乳酸实验等证明,15株为乳酸菌。从15株乳酸菌中选择6株典型的菌株,进行发酵麦汁产酸实验。结果表明,6株乳酸菌均能使麦汁酸度上升1.5°T。
     啤酒有害乳酸菌按形态可分为乳酸杆菌和乳酸球菌。采用单因素实验和正交实验优化乳酸杆菌和乳酸球菌的选择性培养基的成分和培养条件。单因素实验确定最优碳源、氮源分别为葡萄糖、胰蛋白胨、大豆蛋白胨,正交实验优化了其用量为:葡萄糖4%、胰蛋白胨2%、大豆蛋白胨0.5 %;选择MgSO4·7H2O、MnSO4·4H2O、K2HPO4作为培养基的无机盐组分,正交实验优化三者的用量为MgSO4·7H2O 0.02%,MnSO4·4H2O 0.005%,K2HPO40.4% ;对供试菌L1、L3、P1、P2的生长因子进行筛选,发现VB5和泛酸钙对4株菌的生长有不同程度的促进作用。选择胡萝卜汁、番茄汁、苹果汁作为乳酸杆菌的天然生长因子,选择酵母粉、豌豆汁作为乳酸球菌的天然生长因子。正交实验优化乳酸杆菌天然生长因子的添加量为胡萝卜汁3%,番茄汁25%,苹果汁3%;乳酸球菌生长因子的用量为酵母粉0.3%,豌豆汁5%。确定了培养基的初始pH值为6.0-6.2,培养温度为25℃。
     啤酒生产中很多工序的取样中都存在啤酒酵母,啤酒酵母的存在干扰有害菌的检测。采用纳他霉素作为啤酒酵母的抑制剂。纳他霉素是一种新型抗真菌剂。采用圆滤纸片法测定了纳他霉素对供试酵母206#、308#、303#、354#的抑制效果。实验表明,5ppm纳他霉素对四株菌产生的抑菌圈直径分别为14mm、16mm、16mm、18mm;最低抑制浓度实验表明,纳他霉素对206#、303#、354#的MIC为3ppm,对308#的MIC为4ppm。高温、强酸、强碱影响纳他霉素的抑菌活性。纳他霉素经121℃维持30min后,10 ppm纳他霉素无法抑制供试菌株的生长。当pH在5.0-7.0时,纳他霉素抑菌活性最高;当pH<5.0或>7.0时,溶解度提高,但是活性损失增大。
     乳酸菌在培养基中生长代谢,产生乳酸,改变培养基的pH值。单一指示剂存在变色pH范围过宽,或变色不够灵敏等缺点,因此优化了混合指示剂。将氯酚红与溴钾酚紫、溴钾酚绿、溴酚蓝、溴百里香酚蓝四种指示剂按照不同的比例混合组成混合指示剂,实验表明,以氯酚红与溴钾酚紫混合的效果最佳。用pH计测定溶液变色前后的pH值,结果表明,氯酚红与溴钾酚紫按1:3的比例混合时,颜色由紫红变为黄色,且变色pH范围为6.45-5.93,单因素实验确定其在培养基中的最佳添加量为1.0%(v/v)。
Beer is a kind of product which is fermented by Saccharomyces cerevisiae. Its main raw materials are malt、water、hop、Saccharomyces cerevisiae.Beer has been regarded as a safe beverage due to the presence of ethanol (0.5%-10%,w/v)、hop bitter compounds(approx 17-55ppm of iso-α-acids)、the high content of carbon dioxide(approx 0.5%w/v)、the low pH(3.8-4.7)、the extremely reduced content of oxygen(<0.1ppm). However,a few microorganisms still survived in beer as a result of the wrong operation and poor sanitation.These microorganisms are called as beer spoilage bacteria.Lactic acid bacteria are the most polluted and harmful bacteria.
     18 strains were isolated from breweries in JiNan, QingDao and BeiJing. 15 strains were determined to be lactic acid bacteria by the Gram staining, catalase test, morphological examination and so on. The test for acid–producing in wort showed that 6 strains from15 strains could make the acidity of wort increase 1.5°T.
     Beer spoilage lactic acid bacteria can be divided into lactobacilli and pediococci according to morphology. The composition of lactobacilli and pediococci’selective medium and their conditions for incubation were optimized by single factor experiment and orthogonal experiment.The optimal carbon source and nitrogen source were glucose, typtone, soybean peptone.Their concentrations were 4%, 2%, 0.5% respectively according to orthogonal experiment; MgSO4·7H2O、MnSO4·4H2O、K2HPO4 were used as the mineral salts of the medium and their concentrations were 0.02%, 0.005%, 0.4% respectively. The experiment of growth factors for L1, L3, P1, P2 showed that VB5 and calcium pantothenate could have an incentive effect on strains’growth. Some natural materials could substitute for these Vitamine.Carrot juice,tomato juice,apple juice could be lactobacilli’natural growth factors and their concentrations were 3%,25%,3%;yeast powder,bean juice could substitute for pediococci’natural growth factors and their concentrations were 0.3% and 5%.The original pH of the medium was determined at 6.0-6.2 and the temperature for incubation was at 25℃。
     Saccharomyces cerevisiae existed in many processes of brewing.The presence of Saccharomyces cerevisiae disturbed the determination of beer spoilage bacteria during the incubation on plate.Natamycin is a kind of new antibiotics and can be used in the determination of beer spoilage bacteria. It examined the inhibition of Natamycin on Saccharomyces cerevisiae 206#、S. cerevisiae 308#、S. cerevisiae 303#、S. cerevisiae 354# by use of round filter paper. The result showed that the diamters of antimicrobialzone made by 5ppm Natamycin were 14mm、16mm、16mm、18mm respectively.The test for minimal inhibition concentration showed that the MIC on 206#、308#、303#、354#were 3ppm、4ppm、3ppm、3ppm.Temperature、acid、base have an negative effect on Natamycin. The result showed that 10ppm Natamycin lose inhibition effect after the thermal treatment at 121℃for 30min. The inhibition activist of Natamycin was the highest when the pH of solution at 5.0-7.0.The solution of Natamycin in the water was improved when the pH was lower than 5.0 or higher than 7.0, but the activist was lowed at the same time.
     Lactic acid bacteria growed in the media,as a result, they produced lactic acid and the pH of the medium was changed. Single indicator was deficited in colour change and sensitivity, so optimized the mixed indicator. Mixed chlorophenol red with bromocresol purple, bromocresol green, bromophenol blue, bromothymol blue respectively according to different proportion .The mixed indicator which changed colour significantly was Chlorophenol red with Bromocresol purple.When mixed Chlorophenol red with Bromocresol purple according to the proportion of 1:3(v/v),the colour was changed from red to yellow and the pH of mixed indicator was determined from 6.45 to 5.93 by pH meter. The best concentration of this mixed indicator used in the medium was 1.0%(v/v) according to single factor experiment.
引文
[1] 周 广 田 , 聂 聪 , 崔 云 前 , 等 . 啤 酒 酿 造 技 术 [M]. 济 南 : 山 东 大 学 出 版社,2004:1-3,22,487,491-498
    [2] 徐同兴,胡叔平,王智方. 啤酒生产[M]. 上海:上海科学普及出版社,1988:1
    [3] Koji Suzuki,Kazumaru Iijima,Kanta Sakamoto,et al. A Review of Hop Resistance in Beer Spoilage Lactic Acid Bacteria[J]. J.Inst.Brew. 2006,112(2),173-191
    [4] 于同立,聂聪,韩玉霞. 啤酒生产中的环境条件与啤酒有害菌[J]. 山东轻工业学院学报,2001,15(1):70-73
    [5] 凌代文,东秀珠. 乳酸细菌分离鉴定及实验方法[M]. 北京:中国轻工业出版社,1999:6
    [6] Kanta Sakamoto. Beer Spoilage Bacteria and Hop Resistance in Lactobacillus brevis[M]. Ridderprint offsetdrukkerij b.v.,Ridderkerk, the Netherlands,2002:3-10
    [7] 管敦仪. 啤酒工业手册(修订版) [M]. 北京:中国轻工业出版社,2000:454
    [8] 周德庆. 微生物学教程(修订版)[M].北京:高等教育出版社,2002:85,151-152,361
    [9] 王治权,陈远河,尚水英. 啤酒酵母实用技术[M]. 上海:上海科学普及出版社,1990:75
    [10] 田小群,周世宁. 基于 16S rDNA 的 PCR 快速鉴定啤酒腐败菌的研究[J]. 酿酒,2006,33(2):51-54
    [11] 徐岩,张丽苹,顾国贤. 聚合酶链式反应技术(PCR)鉴定啤酒腐败菌的最新进展[J]. 食品与发酵工业,2000,27(5):71-74
    [12] 郑 云 飞 , 金 建 中 , 顾 国 贤 . 啤 酒 污 染 乳 酸 菌 PCR 引 物 的 设 计 [J]. 酿酒,2002,29(2):44-47
    [13] 袁丽,高瑞昌. PCR 技术在酿酒中的应用[J]. 酿酒科技,2004, (6):70-71
    [14] 李红 , 刘芳 . 套组 PCR 在啤酒工业中检测污染的乳酸菌 [J]. 啤酒科技,2002,( 10):9-13
    [15] Dr. Matthias Kiehne,Dr. Cordt Gr?newald,and Frédérique Chevalier. Detection and Identification of Beer-Spoilage BacteriaUsing Real-Time Polymerase Chain Reaction[J] .Master Brewers Association of the Americas, 2005,42(3):214-218
    [16] Scheu P.,Berghof K.,Stahl U. Detection of Pathogenic and Spoilage Micro-Organisms in Food with the Polymerase Chain Reaction[J]. Food Microbiol,1998,15: 13-31
    [17] 杨振泉,顾瑞霞. DNA 标记技术在乳酸菌分类鉴定中的应用[J]. 中国乳品工业 2005,33(5):35-38
    [18] 李华芝,李秀艳,徐亚同. 荧光原位杂交技术在微生物群落结构研究中的应用[J]. 净水技术,2006,25(1):16-19
    [19] 沈萍,陈向东. 微生物学(第二版) [M]. 北京:高等教育出版社,2006:82
    [20] Elias Hakalehto. Identification by Immunoblot Analysis of Major Antigenic Determinants of the Anaerobic Beer Spoilage Bacterium Genus Pevtinatus[J]. FEMS Microbiology Letters, 67(3): 307-311
    [21] Youichi Tsuchiya, Yasukazu Nakakita, Junji Watari et al. Monoclonal Antibodies Specific for the Beer Spoilage Ability of Lactic Acid Bacteria[J]. J.Am.Soc.Brew.Chem, 2000,58(3):89-93
    [22] Whiting M.S., Ingledew W.M.. Bacterial Surface Antigen-specific Monoclonal Antibodies Used to Detect Beer-Spoilage Pediococci[J]. Can.J.Microbiol,1999,45:670
    [23] 唐春林,车振明. 食品微生物快速检测技术研究进展[J]. 江西食品工业,2005, (4): 42-44
    [24] Koji Suzuki, Kazumaru Iijima,Shizuka Asano,et al. Induction of Viable but Nonculturable State in Beer Spoilage Lactic Acid Bacteria[J]. J.Inst.Brew, 2006,112(4),295-301
    [25] 王叔淳. 食品卫生检验技术手册(第三版)[M]. 北京:化学工业出版社,2002:28
    [26] Koji Suzuki, Kazumaru Iijima, Kazutaka Ozaki, et al. Isolation of a Hop-Sensitive Variant of Lactobacillus lindneri and Identification of Genetic Markers for Beer Spoilage Ability of Lactic Acid Bacteria[J]. American Society for Microbiology, 2005,71(9): 5089-5097
    [27] 栗伟 , 赵辉 . 啤酒中乳酸菌的分离鉴定及产酸特性研究 [J]. 酿酒科技,2006,(2) :44-45
    [28] 武卫,王新艳,刘广丰,等. 山梨酸替代放线菌酮进行厌氧菌检测的可行性研究[J]. 啤酒科技,2003,( 3): 10-11
    [29] 东秀珠,蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社,2001:390
    [30] 成堃,于同立. 啤酒酵母中乳酸菌的分离鉴定[J]. 中国酿造,2007,(1):50-52
    [31] 隋新,姜铁民,王建,等. 乳酸菌混合菌株基础培养基及增殖因子的筛选[J]. 食品研究与开发,2005,26(6): 49-50
    [32] 万红兵,田洪涛,马乐辉,等. 保加利亚乳杆菌番茄复合汁增菌培养基的优选研究[J]. 中国乳品工业, 2006,34(8):14-17
    [33] 丁玉萍,吕冬云,吴玉德. 保加利亚乳杆菌和嗜热链球菌发酵豆乳促进生长剂的研究[J]. 食品与发酵工业, 2005,31(12):120-122
    [34] 张帆,王建华,刘立恒,等. 嗜酸乳杆菌的培养条件及其生物学特性[J]. 食品与发酵工业,2005,31(3):43-45
    [35] 张卉,李健,李波,等. 高产类胡萝卜素 LRY-01 发酵条件的优化研究[J]. 工业微生物,2006,36(1):47-50
    [36] 魏述众. 生物化学[M]. 北京:中国轻工业出版社,2002:237,289
    [37] H.W.多伊尔. 细菌的新陈代谢[M]. 北京:科学出版社,1983:632-641
    [38] 张致平. 微生物药物学[M]. 北京:化学工业出版社,2003:392
    [39] 成堃,于同立,孙海云. 纳他霉素的研究与应用[J]. 江苏调味副食品,2006(1): 16-18
    [40] 凌关庭. 天然食品添加剂手册[M]. 北京:化学工业出版社,2001:238
    [41] 李东,杜连祥,路福平,等. 纳他霉素的抑菌谱及最小抑菌浓度[J]. 食品工业科技,2004,25(7): 143-144
    [42] 陈晓丽,吕振岳,黄东东,等. 新型天然食品防腐剂纳他霉素的研究进展[J]. 食品研究与开发,2002,23(4):23-24
    [43] 陈冠群,季波. 纳他霉素的特性及应用[J]. 中国乳品工业,2002,30(4):26-28
    [44] 凌关庭,许胜明,王苏蜀. 纳他霉素对广式月饼防霉效果的试验[J]. 食品工业, 1998,(3): 20-22
    [45] 成堃,于同立. 纳他霉素对啤酒酵母抑制作用的研究及应用[J]. 酿酒科技, 2007,(3): 35-37
    [46] 李春喜,姜丽娜,邵云,等. 生物统计学(第三版)[M]. 北京:科学出版社,2005:57-62
    [47] 刘耘,周磊. 无机及分析化学[M]. 山东大学出版社,2001:77-80
    [48] 周南. pH指示剂 (下)[J]. 上海化工,2001,(20):18-22
    [49] 钧辉,陶力,李俊,等. 生物化学实验(第三版)[M]. 北京:科学出版社,2002:157
    [50] Fernandez J.L., Simpson W.J.. Aspects of the Resistance of Lactic Acid Bacteria to Hop Bitter Acids[J]. J.Appl.Microbiol,1993,75:315-319
    [51] 郭勇,郑穗平. 酶学[M]. 广州:华南理工大学出版社,2003:30-37
    [52] Priest F.G., Campbell I., Brewing Microbiology[M]. Elsevier Applied Science,London
    [53] 邱光正,张天秀,刘耘. 大学基础化学实验[M]. 济南:山东大学出版社,2000:79
    [54] 孙永艳. RAPD-PCR 技术用于啤酒生产过程中微生物检测的研究[D]. 太原:山西大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700