用户名: 密码: 验证码:
丙烯酰胺毒性控制初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品热加工过程中会形成丙烯酰胺,该物质具有神经毒性、基因毒性等,对动物具有致癌性,其毒性的控制是目前国际上研究的热点。丙烯酰胺本身是低毒的,当丙烯酰胺进入机体后经细胞色素P450 2E1催化氧化为环氧丙酰胺,后者才是对机体产生危害的根源。加入外源性抗氧化剂(如维生素C、蛋氨酸、大蒜素等)可有效抑制丙烯酰胺的环氧化,降低环氧丙酰胺的形成,达到控制丙烯酰胺毒性的目的。本文以抑制丙烯酰胺的环氧化和降低其吸收为切入点,对丙烯酰胺毒性控制作一些基础性的探索。
     1.食品中美拉德反应生成丙烯酰胺的同时还会形成一些具有抗氧化活性的物质。本论文为了研究由美拉德反应生成的抗氧化物质的抗氧化能力与由同一反应形成的丙烯酰胺的浓度之间的关系,通过模拟食品中葡萄糖和天门冬酰胺美拉德反应,探寻丙烯酰胺生成量和美拉德反应产物抗氧化活性间关系。
     利用反相高效液相色谱(RP-HPLC)检测丙烯酰胺的浓度,以DPPH清除率、还原能力和羟基自由基清除率表征产物的抗氧化活性,研究了pH值、温度、时间、葡萄糖和天门冬酰胺体积比、氨基酸和糖对美拉德反应的影响。结果表明,食品热加工过程中既会生成丙烯酰胺又可以生成具有抗氧化活性的物质,且随着丙烯酰胺生成量的增加,美拉德反应产物抗氧化活性也增强(在120℃和180℃之间,丙烯酰胺生成量和产物羟基清除率在一定程度上呈线性关系),这些抗氧化物质有可能作为食品内源性抗氧化剂参与抑制丙烯酰胺的环氧化,降低环氧丙酰胺的生成,从而控制丙烯酰胺的毒性。
     2.模拟体外丙烯酰胺和谷胱甘肽反应,其产物可经尿液直接排出体外,降低了丙烯酰胺的吸收,减少被氧化的丙烯酰胺浓度。通过降低丙烯酰胺吸收的方法,为进一步控制丙烯酰胺毒性提供新的思路。
     建立了谷胱甘肽巯基反相高效液相色谱检测方法,通过巯基变化测得丙烯酰胺和谷胱甘肽一次反应速率和二次反应速率分别为0.0491 min~(-1)和0.0001 mM~(-1)min~(-1)。结果表明,丙烯酰胺与谷胱甘肽反应后可以降低游离丙烯酰胺的含量,有可能在一定程度上起到降低丙烯酰胺毒性的作用。
Acrylamide produced in heat-processed foods had been known to be neurotoxic,genotoxic and carcinogenic in animals.Presently, investigation of inhibiting acrylamide-induced toxicity had triggered worldwide concern.It was well known that acrylamide converted into glycidamide was catalyzed from P450 2E1 in vivo,which played an important role in toxicity effects.Exogenous antioxidant can inhibit acrylamide toxicity bycontrolling epoxidation to decrease the process of its conversion into glycidamide such as Vitamine C,Methionine,Allicin, etc.There was a preliminary study on reducing acrylamide toxicity by controlling epoxidation and elimination of acrylamide.
     1.Maillard reaction in foods produced acrylamide and other products which exhibited antioxidant activity.The aim of this study was to estimate the correlation of acrylamide with antioxidant activity of Maillard reaction products(MRPs)by a glucose-asparagine model.
     Acrylamide in reaction solutions was determined by reversed phase high performance liquid chromatography(RP-HPLC).Antioxidant activity was characterized by 1,1-dipheny-2-picrylhydrazyl(DPPH), reducing power and hydroxyl radical scavenging activity.Factors including pH,temperature,reaction time,the volume ratio of glucose-to-asparagines,the sorts of amino acid as well as sugar affecting the acrylamide formation were tested with glucose-asparagines as a model.By the way,products from Maillard reaction exhibited antioxidant activity.The result in this paper showed the more concentration of acrylamide,the higher antioxidant activity of MRPs(hydroxyl radical scavenging activity presented good correlation with acrylamide treated between 120℃and 180℃).Antioxidant activity of MRPs may inhibit acrylamide toxicity by preventing the process of epoxidation from P450 2E1 to decrease glycidamide.
     2.Acrylamide-glutathione reaction simulated in vitro was investigated.The reaction products were directly excreted in urine,which decreased the absorption of acrylamide not to be converted into glycidamide.Reducing of acrylamide absorption will provide a new way for controlling acrylamide toxicity.
     A RP-HPLC method was developed for determination of glutathione sulfhydryl to observe the acrylamide-glutathione reaction and pseudo-first-order rate constants and second-order rate constants of acrylamide with glutathione were 0.0491 min~(-1)and 0.0001 mM~(-1)min~(-1) respectively.It was showed that the process of reaction will decrease the concentration of acrylamide for controlling acrylamide toxicity.
引文
[1]Bernhard Rothweile,Eberhardt Kuhn,Harry Prest.气相色谱/质谱法分析食品中的丙烯酰胺[J].中国环境监测,2004,20(5):71-74.
    [2]范崇东,王淼,卫功元等.谷胱甘肽测定方法研究进展[J].生物技术,2004,114(11):68-70.
    [3]冯涛,郊微云.苯并(α)芘对大弹涂鱼肝脏还原型谷胱甘肽含量的影响[J].厦门大学学报(自然科学版),2001,40(5):1095-1099.
    [4]樊祥,方晓明,陈家华等.液相色谱—串联四级杆质谱对食品中丙烯酰胺的测定研究[J].分析测试学报,2005,24(3):82-85.
    [5]刘红河,陈春晓,柳其芳等.高效液相色谱—串联质谱联用测定富含淀粉食品中丙烯酰胺[J].分析化学,2006,34:235-238.
    [6]林奇龄,欧仕益,欧云付.活性炭固相萃取—高效液相色谱联用分析食品中的丙烯酰胺[J].食品工业科技,2005,26(6):172-173.
    [7]贾松,吕立夏,杨翠香等.丙烯酰胺对小鼠小脑SOD基因表达的影响[J].同济大学学报(医学版),2003,24(1):28-30.
    [8]齐莹莹,吴莹,狄俊伟等.电化学发光猝灭法测定谷胱甘肽[J].光谱学与光谱分析,2005,125(12):195-197.
    [9]孙洪刚,吕义珍.谷胱甘肽的代谢和应用[J].卫生职业教育,2004,22(10):126.
    [10]杨培慧,齐剑英,冯德雄等.谷胱甘肽的应用及其检测方法[J].中国生化药物杂志,2002,23(1):52-54.
    [11]杨生玉,张彭湃,马武生.紫外分光光度法分析测定微量丙烯酰胺的研究[J].食品科技,2005(1):81-83.
    [12]袁媛,胡小松.丙烯酰胺毒性的研究进展[J].食品工业科技,2005,26(4):187-189.
    [13]欧仕益,林其龄等.几种添加剂对丙烯酰胺的脱除作用[J].中国油脂,2004,29(7):61-63.
    [14]张根义.热加工食品中丙烯酰胺的形成机理和风险分析[J].无锡轻工大学报,2003,22(4):91-99.
    [15]赵榕,邵兵,赵婕等.液相色谱-电喷雾质谱/质谱法测定高温烹制的淀粉类食品中的 丙烯酰胺[J].色谱,2005,23(3):289-291.
    [16]周宇,朱圣陶,刘仁平.气相色谱法测定食品中丙烯酰胺[J].食品科学,2006,27(3):194-196.
    [17]Achim Claus,Georg M.Weisz,Andreas Schieber,et al.Pyrolytic acrylamide formation from purified wheat gluten and gluten-supplemented wheat bread rolls[J].Mol.Nutr.Food Res,2006,50:87-93.
    [18]Adam Becalski,Benjamin P.-Y.Lau,David Lewis,et al.Acrylamide in French fries:influence of free amino acids and sugars[J].J.Agric.Food Chem,2004,52:3801-3806.
    [19]Adam Becalski,Benjamin P.-Y.Lau,David Lewis,et al.Acrylamide in foods:occurrence,sources,and modeling[J].J.Agric.Food Chem,2003,51:802-808.
    [20]Adriana Pavesi Arisseto,Maria Cecilia Toledo,Yasmine Govaert,et al.Determination of acrylamide levels in selected foods in Brazil[J].Food Addit Contam,2007,24(3):236-241.
    [21]Agata Stobiecka,Hanna Radecka,Jerzy Radecki.Novel voltammetric biosensor for determining acrylamide in food samples[J].Biosens Bioelectron,2007,22:2165-2170.
    [22]Akio Yasuhara,Yuuka Tanaka,Matt Hengel,et al.Gas Chromatographic investigation of acrylamide formation in browning model systems[J].J.Agric.Food Chem,2003,51:3999-4003.
    [23]Alain Pittet,Adrienne Perisset,Jean-Marie Oberson.Trace level determination of acrylamide in cereal-based foods by gas chromatography-mass spectrometry[J].J Chromatogr A,2004,1035:123-130.
    [24]Alberto Garofalo,Irma Lavagnini.Application of a novel strategy for the recovery and trace enrichment of acrylamide monomer to its liquid chromatographic determination in acrylamide copolymers[J].Analyst,1988,113:1205-1207.
    [25]Anthony F.Lagalante,Matthew A.Felter.Silylation of acrylamide for analysis by solid-phase microextraction/gas chromatography/ion-trap mass spectrometry[J].J.Agric.Food Chem,2004,52:3744-3748.
    [26]Bagdonaite K,Murkovic M.Factors affecting the formation of acrylamide in coffee[J].Czech Journal of Food Science,2004,22:22-24.
    [27]Birgit Paulsson,Agneta Rannug,Alistair P.Henderson,et al.In vitro studies of the influence of glutathione transferases and epoxide hydrolase on the detoxification of acrylamide and glycidamide in blood [J].Mutat Res, 2005, 580:53-59.
    [28] Birgit Paulsson, Natalia Kotova, Jan Grawe, et al. Induction of micronuclei in mouse and rat by glycidamide, genotoxic metablite of acrylamide [J]. Mutat Res, 2003, 535:15-24.
    [29] B. Paulsson, F. Granath, J. Grawe, et al. The multiplicative model for cancer risk assessment: applicability to acrylamide [J].Carcinogenesis, 2001, 22:817-819.
    [30] Calleman C. J. The metabolism and pharmacokinetics of acrylamide: implications for mechanisms of toxicity and human risk estimation [J]. Drug Metab Rev, 1996, 28: 527-590.
    [31] Castle L. Determination of acrylamide monomer in mushrooms grown on polyacrylamide gel [J]. J.Agic.Food Chem, 1993,41:1261-1263.
    [32] C. J. Calleman, Emma Bergmark, Lucio G. Costa. Acrylamide is metabolized to glycidamide in the rat: evidence from hemoglobin adduct formation [J]. Chem. Res. Toxicol, 1990, 3, 406-412.
    [33] C. J. Calleman, Y. Wu, F. He, et al. Relationships between biomarkers of exposure and neurological effects in a group of workers exposed to acrylamide [J]. Toxicol Appl Pharm, 1994,126:361-371.
    [34] David F. V. Lewisa, Michael G. Birdb, Dennis V. Parke. Molecular modelling of CYP2E1 enzymes from rat, mouse and man: an explanation for species differences in butadiene metabolism and potential carcinogenicity, and rationalization of CYP2E substrate specificity [J]. Toxicology, 1997, 118:93-113.
    [35] David V. Zyzak, Robert A. Sanders, Marko Stojanovic, et al. Acrylamide formation mechanism in heated Foods [J]. J. Agric. Food Chem, 2003, 51:4782-4787.
    [36] D. C. Macwilliams, D. C. Kaufman, B. F. Waling. Polarographic and spectrophotometric determination of acrylamide in acrylamide polymers and copolymers [J].Anal chem, 1965, 37(12):1546-1552.
    [37] Denis Andrzejewski, John A. G. Roach, Msrtha L. Gay, et al. Analysis of coffee for the presence of acrylamide by LC-MS/MS [J]. J. Agric. Food Chem, 2004, 52:1996-2002.
    [38] D. F. V. Lewis, B. G. Lake, M. G. Bird, et al. Homology modeling CYP2E1 based on the CYP2C5 crystal structure: investigation of enzyme-substrate and Enzyme-inhibitor interactions [J]. Toxicol in Vitro, 2003, 17:93-105.
    
    [39] Dhiraj A. V, Kalidas S. Acrylamide in food: a model for mechanism of formation and its reduction [J]. Innovative Food Science and Emerging Technologies, 2003,4:331-338.
    [40] Dirk Taubert, Reinhild Gl(o|¨)ckner, Dieter Müller, et al. The garlic ingredient diallyl sulfide inhibits cytochrome P450 2E1 dependent bioactivation of acrylamide to glycidamide [J]. Toxicol Lett, 2006, 164:1-5.
    [41] D. Segerb(a|¨)ck, C. J. Calleman, J. L. Schroeder, et al. Formation of N-7-(2-carbamoyl-2-hydroxyethyl)guanine in DNA of the mouse and the rat following intraperitoneal administration of [14C]acrylamide[J]. Carcinogenesis, 1995, 16:1161-1165.
    [42] E. Bermudo, O. Nunez, L. Puignou, et al. Analysis of acrylamide in food samples by capillary zone electrophoresis [J]. J Chromatogr A, 2006, 1120: 199-204.
    [43] Eden Tareke, Per Rydberg, Patrik Karlsson, et al. Analysis of acrylamide, a carcinogen formed in heated foodstuffs [J]. J. Agric. Food Chem, 2002, 50:4998-5006.
    [44] Ellman G. L. Tissue sulfhydryl groups [J]. Arch Biochem Biophys, 1959, 82:70-77.
    [45] Emma Bergmark, Carl Johan Calleman, Fengsheng He, et al. Determination of hemoglobin adducts in humans occupationally exposed to acrylamide [J]. Toxicol Appl Pharm, 1993, 120:45-54.
    [46] Erik V. Petersson, Johan Rosen, Charlotta Turner, et al. Critical factors and pitfalls affecting the extraction of acrylamide from foods: an optimisation study [J]. Anal Chim Acta, 2006, 557:287-295.
    [47] Erland Brathen, Agnieszka Kita, Svein Halvor Knutsen, et al. Addition of glycine reduces the content of acrylamide in cereal and potato products [J]. J. Agric. Food Chem, 2005, 53, 3259-3264.
    [48] Erland Brathen, Svein Halvor Knutsen.Effect of temperature and time on the formation of acrylamidein starch-based and cereal model systems, flat breads and bread [J].Food Chem, 2005, 92:693-700.
    [49] E. Tareke, P. Rydberg, P. Karlsson, et al. Acrylamide: a cooking carcinogen? [J]. Chem. Res. Toxicol, 2000, 13:517-522.
    [50] Eva Anzenbacherova, Jiri Hudecek, Daniel Murgida, et al. Active sites of two orthologous cytochromes P450 2E1: differences revealed by spectroscopic methods [J]. Biochemical and Biophysical Research Communications, 2005, 338:477-482.
    
    [51] Forkert P. G, Redza Z. M, Mangos S, et al. Induction and regulation of CYP2E1 in murine liver after acute and chronic acetone administration[J]. Drug Metab Dispos, 1994, 22:248-253.
    [52] Franco Pedreschi, Karl Kaack, Kit Granby. Reduction of acrylamide fonnation in potato slices during frying [J]. LWT, 2004, 37:679-685.
    [53] Franco Pedreschi, Karl Kaack, Kit Granby. Acrylamide content and color development in fried potato strips [J]. Food Res Int, 2006, 39:40-46.
    [54] Franco Pedreschi, Oscar Bustos, Domingo Mery, et al. Color kinetics and acrylamide fonnation in NaCl soaked potato chips [J]. J Food Eng, 2007, 79:989-997.
    [55] Frederic Mestdagh, Bruno De Meulenaer, Carlos Van Peteghem. Influence of oil degradation on the amounts of acrylamide generated in a model system and in French fries [J]. Food Chem, 2007, 100:1153-1159.
    [56] F. Tateo, M. Bononi. A GC/MS method for the routine determination of acrylamide in food [J].J.Food Sci, 2003, 15(1):149-151.
    [57] G. Gamboa da Costa, M. I. Churchwell, L. P. Hamilton, et al. DNA adduct fonnation from acrylamide via conversion to glycidamide in adult and neonatal mice [J]. Chem. Res. Toxicol, 2003, 16:1328-1337.
    [58] Grace C. Tong, William K. Cornwell, Gary E. Means.Reactions of acrylamide with glutathione and serum albumin [J]. Toxicol Lett, 2004, 147:127-131.
    [59] Hani M. Al-Dmoor. Determination of acrylamide levels in selected traditional foodstuffs and drinks in Jordan [J]. Journal of Food, Agriculture & Environment, 2005, 3 (2): 77-80.
    [60] Hans Lingnert, Spiros Grivas, Margaretha J(a|¨)gerstad, et al. Acrylamide in food: mechanisms of formation and influencing factors during heating of foods [J]. Scandinavian Journal of Nutrition, 2002,46 (4): 159-172.
    [61] Hideo Kurebayashi, Yasuo Ohno. Metabolism of acrylamide to glycidamide and their cytotoxicity in isolated rat hepatocytes: protective effects of GSH precursors [J].Arch Toxicol, 2006.
    [62] Innocenzo G. Casella, Marianna Pierri, Michela Contursi. Determination of acrylamide and acrylic acid by isocratic liquid chromatography with pulsed electrochemical detection [J].J Chromatogr A,2006, 1107: 198-203.
    
    [63] International Agency for Research on Cancer (IARC), Acrylamide, IARC monographs on the evaluation of carcinogen risk to humans, Some Industrial Chemicals, vol. 60, IARC, Lyon, France 1994, pp. 389-433.
    [64] IPCS International Programme on Chemical Safety, Enviromental Health Criteria 49: acrylamide. Geneva: World Health Organization, 1985.
    [65] Jeroen J. Knol, Wil A. M. van Loon, Jozef P. H. Linssen, et al. Toward a kinetic model for acrylamide formation in a glucose-asparagine reaction system[J]. J. Agric. Food Chem, 2005, 53:6133-6139.
    
    [66] Jerry M. Rice. The carcinogenicity of acrylamide [J].Mutat Res, 2005, 580:3-20.
    [67] J. J. Solomon, J. Fedyk, F. Mukai, et al. Direct alkylation of 2'-deoxynucleosides and DNA following in vitro reaction with acrylamide [J]. Cancer Res, 1985,45:3465-3470.
    [68] Johan Rosen, Karl-Erik Hellen(a|¨)s. Analysis of acrylamide in cooked foods by liquid chromatography tandem mass Spectrometry[J]. Analyst, 2002, 127:880-882.
    [69] John A. G. Roach, Denis Andrzejewski, Msrtha L. Gay, et al. Rugged LC-MS/MS survey analysis for acrylamide in foods [J]. J. Agric. Food Chem, 2003, 51:7547-7554.
    [70] J(o|¨)rgen R. Pedersen, Jim O. Olsson. Soxhlet extraction of acrylamide from potato chips [J]. Analyst, 2003, 128:332-334.
    [71] J. S. Ahn, L. Castle, D. B. Clarke, et al. Verification of the findings of acrylamide in heated foods[J].Food Addit Contam, 2002, 19(12): 1116-1124.
    [72] J. S. E. Williams. Influence of variety and processing conditions on acrylamide levels in fried potato crisps [J]. Food Chem, 2005, 90:875-881.
    [73] J. Stephen Elmore, Georglos Koutsidis, Andrew Dodson, et al. Measurement of acrylamide and its precursors in potato, wheat, and rye model systems[J].J. Agric. Food Chem, 2005, 53:1286-1293.
    [74] K. A. Johnson, S. J. Gorzinski, K. M. Bodner, et al. Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats [J]. Toxicol.Appl. Pharmacol, 1986, 85 (2): 154-168.
    [75] Katell Fiselier, Annetta Hartmann, Alessandro Fiscalini, et al. Higher acrylamide contents in French fries prepared from "fresh" prefabricates [J]. Eur Food Res Technol, 2005, 221:376-381.
    
    [76] Katell Fiselier, Diego Bazzocco, Fabiana Gama-Baumgartner, et al. Influence of the frying temperature on acrylamide formation in French fries [J].Eur Food Res Technol, 2005.
    [77] K. Hashimoto, W. N. Aldridge. Biochemical studies on acrylamide, a neurotoxic agent [J]. Biochem Pharmacol, 1970, 19:2591-2604.
    [78] Kit Granby, Sisse Fagt. Analysis of acrylamide in coffee and dietary exposure to acrylamide from coffee [J].Anal Chim Acta, 2004, 520:177-182.
    [79] K. L. Dearfield, C. O. Abernathy, M. S. Ottley, et al. Acrylamide: its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity [J]. Mutat Res, 1988, 195:45-77.
    [80] K. L. Dearfield, G. R. Douglas, U. H. Ehling, et al. Acrylamide: a review of its genotoxicity and an assessment of heritable genetic risk [J]. Mutat Res, 1995, 330(1-2): 71-99.
    [81] Koichi Inoue, Yoshihiro Yoshimura, Hiroyuki Nakazawa, et al. Development of high-performance liquid chromatography-electrospray mass spectrometry with size-exclusion chromatography for determination of acrylamide in fried foods [J]. Journal of Liquid Chromatography & Related Technologies, 2003, 26(12): 1877-1884.
    [82] Koni Grob, Maurus Biedermann, Sandra Biedermann-Brem, et al. French fries with less than 100 mg/kg acrylamide.A collaboration between cooks and analysts [J]. Eur Food Res Technol, 2003, 217:185-194.
    [83] K. S. Leungy, A. Linz, C. K. Tsangy, et al. Acrylamide in Asian foods in Hong Kong [J]. Food Addit Contam, 2003, 20(12): 1105-1113.
    [84] Kyoung-Youl Lee, Makoto Shibutani, Keiko Kuroiwa, et al. Chemoprevention of acrylamide toxicity by antioxidative agents in rats-effective suppression of testicular toxicity by phenylethyl isothiocyanate [J]. Arch Toxicol, 2005, 79:531-541.
    [85] Lan Shaw, Barbara Thomson.Acrylamide food risk [J].The Lancet, 2003, 361:434.
    [86] L. Brown, M. Rhead. Liquid Chromatographic determination of acrylamide monomer in natural and polluted aqueous environments [J].Analyst, 1979, 104:391-399.
    [87] M. A. Friedman, L. H. Dulak, M. A. Stedham.A lifetime oncogenicity study in rats with acrylamide [J]. Fundam.Appl.Toxico, 1995, 27(1): 95-105.
    [88] Magnus Jezussek, Peter Schieberle. A new LC/MS-method for the quantitation of acrylamide based on a stable isotope dilution assay and derivatization with 2-mercaptobenzoic acid.comparison with two GC/MS methods [J]. J. Agric. Food Chem, 2003, 51:7866-7871.
    [89] Matthias Baum, Evelyne Fauth, Silke Fritzen, et al. Acrylamide and glycidamide: genotoxic effects in V79-cells and human blood [J]. Mutat Res,2005,580:61-69.
    [90] Maw-Rong Lee, Li-Yo Chan, Jianpeng Dou. Determination of acrylamide in food by solid-phase microextraction coupled to gas chromatography-positive chemical ionization tandem mass Spectrometry [J]. Anal Chim Acta, 2007, 582:19-23.
    [91] Maya Graf, Thomas M. Amrein, Stephan Graf, et al. Reducing the acrylamide content of a semi-finished biscuit on industrial scale [J]. LWT, 2006, 39:724-728.
    [92] Melanie Isabell Boettcher, Thomas Schettgen, Birgitta Kütting, et al. Mercapturic acids of acrylamide and glycidamide as biomarkers of the internal exposure to acrylamide in the general population[J]. Mutat Res, 2005, 580:167-176.
    [93] Mendel Friedman, J. F. Cavins, J. S. Wall. Relative nucleophilic reactivities of amino groups and mercaptide ions in addition reactions with α,β-unsaturated compounds [J].Journal of the American Chemistry Society, 1965, 87(16): 3672-3682.
    [94] M. Friedman. Chemistry, biochemistry, and safety of acrylamide.a review [J]. J. Agric. Food Chem, 2003, 51:4504-4526.
    [95] Michael Fairhead, Silva Giannini, Elizabeth M. J. Gillam, et al. Functional characterisation of an engineered multidomain human P450 2E1 by molecular Lego[J].J Biol Inorg Chem, 2005, 10:842-853.
    [96] Michael Granvogl, Peter Schieberle. Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide[J].J. Agric. Food Chem, 2006, 54, 5933-5938.
    [97] M. J. Miller, D. E. Carter, I. G. Sipes. Pharmacokinetics of acrylamide in Fisher-344 rats [J]. Toxicol.Appl. Pharmacol, 1982, 63:36-44.
    [98] Mottram D. S, Wedzicha B. L, Dodson A. T. Acrylamide is formed in the mailard reaction [J]. Nature, 2002,419-449.
    [99] Nikoline J. Nielsen, Kit Granby, Rikke V. Hedegaard, et al. A liquid chromatography-tandem mass spectrometry method for simultaneous analysis of acrylamide and the precursors, asparagine and reducing sugars in bread [J].Anal Chim Acta, 2006, 557:211-220.
    [100] N. Zeynep Atay, Dilek C, et al. Acrylamide and glycidamide adducts of guanine [J]. J Mol Struc-THEOCHEM, 2005, 728: 249-251.
    [101] Peter Koehler. Concentration of low and high molecular weight thiols in wheat dough as affected by different concentration of ascorbic acid [J].J.Agri.Food Chem, 2003, 51: 4948-4953.
    [102] P. P. Fu, L. S. Von Tungeln, G. J. Hammons, et al. Metabolic activation capacity of neonatal mice in relation to the neonatal mouse tumorigenicity bioassay [J]. Drug Metab.Rev, 2000, 32:241-266.
    [103] Richard H. Stadler, Fabien Robert, Sonja Riediker, et al. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction [J]. J. Agric. Food Chem, 2004, 52:5550-5558.
    [104] Richard Mackman, Zuyu Guo, F. Peter Guengerich, et al. Active site topology of human cytochrome P450 2E1[J]. Chem. Res. Toxicol, 1996, 9:223-226.
    [105] Richard M. LoPachin, Richard A, et al. Acrylamide toxicities and food safety: session Ⅳ summary and research needs [J]. NeuroToxicology, 2004, 25:507-509.
    [106] Richard M. LoPachin. The Changing view of acrylamide neurotoxicity[J]. NeuroToxicology, 2004,25:617-630.
    [107] R. J. Bull, M. Robinson, J. A. Stober. Carcinogenic activity of acrylamide in the skin and lung of Swiss-ICR mice[J]. Cancer Lett, 1984, 24(2): 209-212.
    [108] R. J. Bull, M. Robinson, R. D. Laurie, et al. Carcinogenic effects of acrylamide in Sencar and A/J mice [J].Cancer Res, 1984,44(1): 107-111.
    [109] Sagratini Gianni, Fabbri Armando, Marucci Gabriella, et al. HPLC-MS validation of QualisaFoo biosensor kit for cost-effective control of acrylamide levels in Italian coffee[J]. Food Control, 2007, 18:1267-1271.
    [110] Sandra B, Anja N, Koni G, et al. How much reducing sugar may potatoes contain to avoid excessive acrylamide formation during roasting and baking? [J]. Eur Food Res Technol, 2003, 217:369-373.
    [111] S Belgin Erdogdu, Tun(?) Koray Palazoglu, Vural G(o|¨)kmen, et al. Reduction of acrylamide formation in French fries by microwave pre-cooking of potato strips [J]. J Sci Food Agric, 2007,87:133-137.
    [112] S. Cavalli, S. Polesello, G. Saccani. Determination of acrylamide in drinking water by large-volume direct injection and ion-exclusion chromatography-mass Spectrometry [J].J Chromatogr A, 2004, 1039:155-159.
    [113] S. C. Sumner, L. Selvaraj, S. K. Nauhaus, et al. Urinary metabolites from F344 rats and B6C3F1 mice coadministered acrylamide and acrylonitrile for 1 or 5 days [J]. Chem. Res.Toxicol, 1997, 10:1152-1160.
    [114] Sonja Riediker, Richard H. Stadler. Analysis of acrylamide in food by isotope-dilution liquid chromatography coupled with electrospray ionization tandem mass Spectrometry [J]. J Chromatogr A, 2003, 1020:121-130.
    [115] S. P. Chawla, Ramesh Chander, Arun Sharma, et al. Antioxidant formation by γ-irradiation of glucose-amino acid model systems [J]. Food Chem, 2007, 103:1297-1304.
    [116] S. R. Betso, J. D. Mclean. Determination of acrylamide monomer by differential pulse polarography[J]. Anal chem, 1976, 48(4):766-769.
    [117] Stadler R. H, Imre Blank, Natalia Varga, et al. Acrylamide from Maillard reaction products [J].Nature, 2002,419-449.
    [118] Sumner S. C, Fennell T. R, Moore T. A, et al. Role of cytochrome P450 2E1 in the metabolism of acrylamide and acrylonitrile in mice[J]. Chem.Res.Toxicol, 1999, 12:1110-1116.
    [119] Sune Eriksson. Acrylamide in food products: Identification, formation and anal- ytical methodology. Doctoral Thesis, Department of Environmental Chemistry, Stockholm University, Sweden, 2005.
    [120] Surdyk N, Rosen J, Andersson R, et al. Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread[J]. J Agric Food Chem, 2004, 52:2047-2051.
    [121] Susan C. J. Sumner, Leena Selvaraj, Sara K. Nauhaus, et al. Urinary metaboliters from F344 Rats and B6C3F1 mice coadministered acrylamide and acryonitrile for 1 or 5 days [J]. Chem. Res.Toxicol, 1997, 10:1152-1160.
    [122] Susanna Eerola, Koen Hollebekkers, Anja Hallikainen, et al. Acrylamide levels in finnish foodstuffs analysed with liquid chromatography tandem mass Spectrometry [J]. Mol.Nutr. Food Res, 2007, 51.
    [123] Szu-Chuan Shen, Kou-Chan Tseng, James Swi-Bea Wu, et al. An analysis of Maillard reaction products in ethanolic glucose-glycine solution[J]. Food Chem, 2007, 102:281-287.
    [124] Taeymans D, Ashby J, Blank I, et al. A review of acrylamide: an industry perspective on research, analysis, formation and control [J]. Crit Rev Food Sci Nutr, 2004, 44:323-347.
    [125] T. Goldmann, A. Perisset, M. -C. Bertholet, et al. Impact of extraction conditions on the content of acrylamide in model systems and food [J]. Food Addit Contain, 2006, 23(5): 437-445.
    [126] Thomas Wenzl, Lubomir Karasek, Johan Rosen, et al. Collaborative trial validation study of two methods, one based on high performance liquid chromatography-tandem mass spectrometry and on gas chromatography-mass spectrometry for the determination of acrylamide in bakery and potato products[J]. J Chromatogr A, 2006, 1132: 211-218.
    [127] Thuerry Delatour, Adrienne Pearisset, Till Goldmann, et al. Improved sample preparation to determine acrylamide in difficult matrixes such as chocolate powder, cocoa, and coffee by liquid chromatography tandem mass spectroscopy [J]. J. Agric. Food Chem, 2004, 52:4625-4631.
    [128] Varoujan A. Yaylayan, Andrzej Wnorowski, Carolina Perez Locas. Why asparagine needs carbohydrates to generate acrylamide [J]. J. Agric. Food Chem, 2003, 51:1753-1757.
    [129] Vural G(o|¨)kmen, Tune Koray Palazoglu, Hamide Z. Senyuva. Relation between the acrylamide formation and time-temperature history of surface and core regions of French fries [J]. Journal of Food Engineering, 2006, 77:972-976.
    [130] V. Yusa, G. Quintas, O. Pardo, et al. Determination of acrylamide in foods by pressurized fluid extraction and liquid chromatography-tandem mass Spectrometry used for a survey of Spanish cereal-based foods [J]. Food Addit Contam, 2006, 23(3): 237-244.
    [131] Weenen H. Reactive intermediates and carbohydrate fragmentation in maillard chemistry [J]. Food Chem, 1998, 62(4):393-401.
    [132] Xun Zhou, Liu-Yin Fan, Wei Zhang, et al. Separation and determination of acrylamide in potato chips by micellar electrokinetic capillary chromatography[J]. Talanta, 2007, 71:1541-1545.
    [133] Yuan Yuan, Guang-hua Zhao, Xiao-song Hu, et al. High correlation of methylgyoxal with acrylamide formation in glucose/asparagines Maillard reaction model [J].Eur Food Technol, 2007.
    
    [134] Yaylayan V. A, Wnorowski A, Locas C. P. Why asparagine needs carbohydrate to generate acrylamide [J]. J Agri Food Chem, 2003, 51:1753-1757.
    [135] Yu Zhang. Genyi Zhang, Ying Zhang. Occurrence and analytical methods of acrylamide in heat-treated foods [J]. J Chromatogr A, 2005, 1075:1-21.
    [136] Yu Zhang, Yi Dong, Yiping Ren, et al. Rapid determination of acrylamide contaminant in conventional fried foods by gas chromatography with electron capture detector [J]. J Chromatogr A, 2006, 1116: 209-216.
    [137] Yu Zhang, Yiping Ren, Hangmei Zhao, et al. Determination of acrylamide in Chinese traditional carbohydrate-rich foods using gas chromatography with micro-electron capture detector and isotope dilution liquid chromatography combined with electrospray ionization tandem mass spectrometry[J]. Anal Chim Acta, 2007, 584:322-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700